1
|
Sychantha D, Chen X, Koteva K, Prehna G, Wright GD. Targeting bacterial nickel transport with aspergillomarasmine A suppresses virulence-associated Ni-dependent enzymes. Nat Commun 2024; 15:4036. [PMID: 38740750 DOI: 10.1038/s41467-024-48232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.
Collapse
Affiliation(s)
- David Sychantha
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Xuefei Chen
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Kalinka Koteva
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada.
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Cao S, Zhang Y, Bao R, Wang T, Zhu L, Zhang Q. Helicobacter hepaticus promotes liver fibrosis through oxidative stress induced by hydrogenase in BALB/c mice. Helicobacter 2023; 28:e13001. [PMID: 37334992 DOI: 10.1111/hel.13001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND It has been documented that Helicobacter hepaticus produces a nickel-containing hydrogen-oxidizing hydrogenase enzyme, which is necessary for hydrogen-supported amino acid uptake. Although H. hepaticus infection has been shown to promote liver inflammation and fibrosis in BALB/c mice, the impact of hydrogenase on the progression of liver fibrosis induced by H. hepaticus has not been explored. MATERIALS AND METHODS BALB/c mice were inoculated with hydrogenase mutant (ΔHyaB) or wild type (WT) H. hepaticus 3B1 for 12 and 24 weeks. H. hepaticus colonization, hepatic histopathology, serum biochemistry, expression of inflammatory cytokines, and oxidative stress signaling pathways were detected. RESULTS We found that ΔHyaB had no influence on the colonization of H. hepaticus in the liver of mice at 12 and 24 weeks post infection (WPI). However, mice infected by ΔHyaB strains developed significantly alleviated liver inflammation and fibrosis compared with WT infection. Moreover, ΔHyaB infection remarkably increased the expression of hepatic GSH, SOD, and GSH-Px, and decreased the liver levels of MDA, ALT, and AST compared to WT H. hepaticus infected group from 12 to 24 WPI. Furthermore, mRNA levels of Il-6, Tnf-α, iNos, Hmox-1, and α-SMA were significantly decreased with an increase of Nfe2l2 in the liver of mice infected by ΔHyaB strains. In addition, ΔHyaB H. hepaticus restored the activation of the Nrf2/HO-1 signaling pathway, which is inhibited by H. hepaticus infection. CONCLUSIONS These data demonstrated that H. hepaticus hydrogenase promoted liver inflammation and fibrosis development mediated by oxidative stress in male BALB/c mice.
Collapse
Affiliation(s)
- Shuyang Cao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuanyuan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ruoyu Bao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tao Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Sebastiampillai S, Lacasse MJ, McCusker S, Campbell T, Nitz M, Zamble DB. Using a high-throughput, whole-cell hydrogenase assay to identify potential small molecule inhibitors of [NiFe]-hydrogenase. Metallomics 2022; 14:6747159. [DOI: 10.1093/mtomcs/mfac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Abstract
[NiFe]-hydrogenases are used by several human pathogens to catalyze the reversible conversion between molecular hydrogen and protons and electrons. Hydrogenases provide an increased metabolic flexibility for pathogens, such as Escherichia coli and Helicobacter pylori, by allowing the use of molecular hydrogen as an energy source to promote survival in anaerobic environments. With the rise of antimicrobial resistance and the desire for novel therapeutics, the [NiFe]-hydrogenases are alluring targets. Inhibiting the nickel insertion pathway of [NiFe]-hydrogenases is attractive as this pathway is required for the generation of functional enzymes and is orthogonal to human biochemistry. In this work, nickel availability for the production and function of E. coli [NiFe]-hydrogenase was explored through immunoblot and activity assays. Whole-cell hydrogenase activities were assayed in high throughput against a small molecule library of known bioactives. Iodoquinol was identified as a potential inhibitor of the nickel biosynthetic pathway of [NiFe]-hydrogenase through a two-step screening process, but further studies with immunoblot assays showed confounding effects dependent on the cell growth phase. This study highlights the significance of considering the growth phenotype for whole-cell based assays overall and its effects on various cellular processes influenced by metal trafficking and homeostasis.
Collapse
Affiliation(s)
| | - Michael J Lacasse
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6 , Canada
| | - Susan McCusker
- Centre for Microbial Chemical Biology , MDCL-2330, Hamilton, Ontario L8S 4K1 , Canada
| | - Tracey Campbell
- Centre for Microbial Chemical Biology , MDCL-2330, Hamilton, Ontario L8S 4K1 , Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6 , Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6 , Canada
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8 , Canada
| |
Collapse
|
5
|
Lin WY, Liaw SJ. Deacidification by FhlA-dependent hydrogenase is involved in urease activity and urinary stone formation in uropathogenic Proteus mirabilis. Sci Rep 2020; 10:19546. [PMID: 33177598 PMCID: PMC7658346 DOI: 10.1038/s41598-020-76561-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Proteus mirabilis is an important uropathogen, featured with urinary stone formation. Formate hydrogenlyase (FHL), consisting of formate dehydrogenase H and hydrogenase for converting proton to hydrogen, has been implicated in virulence. In this study, we investigated the role of P. mirabilis FHL hydrogenase and the FHL activator, FhlA. fhlA and hyfG (encoding hydrogenase large subunit) displayed a defect in acid resistance. fhlA and hyfG mutants displayed a delay in medium deacidification compared to wild-type and ureC mutant failed to deacidify the medium. In addition, loss of fhlA or hyfG decreased urease activity in the pH range of 5-8. The reduction of urease activities in fhlA and hyfG mutants subsided gradually over the pH range and disappeared at pH 9. Furthermore, mutation of fhlA or hyfG resulted in a decrease in urinary stone formation in synthetic urine. These indicate fhlA- and hyf-mediated deacidification affected urease activity and stone formation. Finally, fhlA and hyfG mutants exhibited attenuated colonization in mice. Altogether, we found expression of fhlA and hyf confers medium deacidification via facilitating urease activity, thereby urinary stone formation and mouse colonization. The link of acid resistance to urease activity provides a potential strategy for counteracting urinary tract infections by P. mirabilis.
Collapse
Affiliation(s)
- Wen-Yuan Lin
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10016, Taiwan, ROC
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, No. 1, Chang-Te Street, Taipei, 10016, Taiwan, ROC. .,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
7
|
Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB. The structure of hydrogenase-2 from Escherichia coli: implications for H 2-driven proton pumping. Biochem J 2018; 475:1353-1370. [PMID: 29555844 PMCID: PMC5902676 DOI: 10.1042/bcj20180053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 01/19/2023]
Abstract
Under anaerobic conditions, Escherichia coli is able to metabolize molecular hydrogen via the action of several [NiFe]-hydrogenase enzymes. Hydrogenase-2, which is typically present in cells at low levels during anaerobic respiration, is a periplasmic-facing membrane-bound complex that functions as a proton pump to convert energy from hydrogen (H2) oxidation into a proton gradient; consequently, its structure is of great interest. Empirically, the complex consists of a tightly bound core catalytic module, comprising large (HybC) and small (HybO) subunits, which is attached to an Fe-S protein (HybA) and an integral membrane protein (HybB). To date, efforts to gain a more detailed picture have been thwarted by low native expression levels of Hydrogenase-2 and the labile interaction between HybOC and HybA/HybB subunits. In the present paper, we describe a new overexpression system that has facilitated the determination of high-resolution crystal structures of HybOC and, hence, a prediction of the quaternary structure of the HybOCAB complex.
Collapse
Affiliation(s)
- Stephen E Beaton
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Rhiannon M Evans
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Alexander J Finney
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ciaran M Lamont
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Fraser A Armstrong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| | - Frank Sargent
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, U.K.
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
8
|
Maity A, Pal M, Maithani S, Ghosh B, Chaudhuri S, Pradhan M. Molecular hydrogen in human breath: a new strategy for selectively diagnosing peptic ulcer disease, non-ulcerous dyspepsia and
Helicobacter pylori
infection. J Breath Res 2016; 10:036007. [DOI: 10.1088/1752-7155/10/3/036007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Cornish AJ, Green R, Gärtner K, Mason S, Hegg EL. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri. PLoS One 2015; 10:e0125324. [PMID: 25927230 PMCID: PMC4416025 DOI: 10.1371/journal.pone.0125324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/19/2015] [Indexed: 01/13/2023] Open
Abstract
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Collapse
Affiliation(s)
- Adam J. Cornish
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robin Green
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Katrin Gärtner
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Saundra Mason
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Eric L. Hegg
- Great Lakes Bioenergy Research Center and the Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
The emergence and spread of drug-resistant pathogens and our inability to develop new antimicrobials to overcome resistance has inspired scientists to consider new targets for drug development. Cellular bioenergetics is an area showing promise for the development of new antimicrobials, particularly in the discovery of new anti-tuberculosis drugs where several new compounds have entered clinical trials. In this review, we have examined the bioenergetics of various bacterial pathogens, highlighting the versatility of electron donor and acceptor utilisation and the modularity of electron transport chain components in bacteria. In addition to re-examining classical concepts, we explore new literature that reveals the intricacies of pathogen energetics, for example, how Salmonella enterica and Campylobacter jejuni exploit host and microbiota to derive powerful electron donors and sinks; the strategies Mycobacterium tuberculosis and Pseudomonas aeruginosa use to persist in lung tissues; and the importance of sodium energetics and electron bifurcation in the chemiosmotic anaerobe Fusobacterium nucleatum. A combination of physiological, biochemical, and pharmacological data suggests that, in addition to the clinically-approved target F1Fo-ATP synthase, NADH dehydrogenase type II, succinate dehydrogenase, hydrogenase, cytochrome bd oxidase, and menaquinone biosynthesis pathways are particularly promising next-generation drug targets. The realisation of cellular energetics as a rich target space for the development of new antimicrobials will be dependent upon gaining increased understanding of the energetic processes utilised by pathogens in host environments and the ability to design bacterial-specific inhibitors of these processes.
Collapse
|