1
|
Wang N, Chen C, Ren J, Dai D. MicroRNA delivery based on nanoparticles of cardiovascular diseases. Mol Cell Biochem 2024; 479:1909-1923. [PMID: 37542599 DOI: 10.1007/s11010-023-04821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Cardiovascular disease, especially myocardial infarction, is a serious threat to human health. Many drugs currently used cannot achieve the desired therapeutic effect due to the lack of selectivity. With the in-depth understanding of the role of microRNA (miRNA) in cardiovascular disease and the wide application of nanotechnology, loading drugs into nanoparticles with the help of nano-delivery system may have a better effect in the treatment of cardiomyopathy. In this review, we highlight the latest research on miRNAs in the treatment of cardiovascular disease in recent years and discuss the possibilities and challenges of using miRNA to treat cardiomyopathy. Secondly, we discuss the delivery of miRNA through different nano-carriers, especially inorganic, polymer and liposome nano-carriers. The preparation of miRNA nano-drugs by encapsulating miRNA in these nano-materials will provide a new treatment option. In addition, the research status of miRNA in the treatment of cardiomyopathy based on nano-carriers is summarized. The use of this delivery tool cannot only realize therapeutic potential, but also greatly improve drug targeting and reduce side effects.
Collapse
Affiliation(s)
- Nan Wang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Chunyan Chen
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jianmin Ren
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Dandan Dai
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
2
|
Iacobescu L, Ciobanu AO, Corlatescu AD, Simionescu M, Iacobescu GL, Dragomir E, Vinereanu D. The Role of Circulating MicroRNAs in Cardiovascular Diseases: A Novel Biomarker for Diagnosis and Potential Therapeutic Targets? Cureus 2024; 16:e64100. [PMID: 39114238 PMCID: PMC11305655 DOI: 10.7759/cureus.64100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs, involved in a large variety of pathological conditions, tend to be potential specific biomarkers in cardiovascular diseases. Moreover, these short, non-coding RNAs, regulate post-transcriptional gene expression and protein synthesis, making them ideal for therapeutic targets. Down-regulation and up-regulation of specific microRNAs are currently studied as a novel approach to the diagnosis and treatment of cardiovascular diseases, such as chronic and acute coronary syndromes, atherosclerosis, heart failure, and arrhythmia. MicroRNAs are interesting and attractive targets for cardiovascular-associated therapeutics because of their stability, tissue-specific expression pattern, and secretion of body fluids. Extended research on their isolation, detection, and function will provide the standardization needed for using microRNAs as biomarkers and potential therapeutic targets. This review will summarize recent data on the implication of microRNAs in cardiovascular diseases, their potential role as biomarkers for diagnosis, and also the challenges of using microRNAs as future therapeutic targets.
Collapse
Affiliation(s)
- Loredana Iacobescu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Andreea-Olivia Ciobanu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | | | - Maya Simionescu
- Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, ROU
| | - Georgian L Iacobescu
- Orthopedics and Traumatology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| | - Elena Dragomir
- Cellular Biology, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, ROU
| | - Dragos Vinereanu
- Cardiology, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
- Cardiology, University Emergency Hospital, University of Medicine and Pharmacy "Carol Davila", Bucharest, ROU
| |
Collapse
|
3
|
Paneru BD, Hill DA. The role of extracellular vesicle-derived miRNAs in adipose tissue function and metabolic health. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00027. [PMID: 37501663 PMCID: PMC10371064 DOI: 10.1097/in9.0000000000000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Extracellular vesicles (EVs) are nanometer size lipid particles that are released from virtually every cell type. Recent studies have shown that miRNAs carried by EVs play important roles in intercellular and interorgan communication. In the context of obesity and insulin resistance, EV-derived miRNAs functionally bridge major metabolic organs, including the adipose tissue, skeletal muscle, liver, and pancreas, to regulate insulin secretion and signaling. As a result, many of these EV-derived miRNAs have been proposed as potential disease biomarkers and/or therapeutic agents. However, the field's knowledge of EV miRNA-mediated regulation of mammalian metabolism is still in its infancy. Here, we review the evidence indicating that EV-derived miRNAs provide cell-to-cell and organ-to-organ communication to support metabolic health, highlight the potential medical relevance of these discoveries, and discuss the most important knowledge gaps and future directions for this field.
Collapse
Affiliation(s)
- Bam D. Paneru
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David A. Hill
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Institute for Immunology, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Ou Y, Zong D, Ouyang R. Role of epigenetic abnormalities and intervention in obstructive sleep apnea target organs. Chin Med J (Engl) 2023; 136:631-644. [PMID: 35245923 PMCID: PMC10129098 DOI: 10.1097/cm9.0000000000002080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Obstructive sleep apnea (OSA) is a common condition that has considerable impacts on human health. Epigenetics has become a rapidly developing and exciting area in biology, and it is defined as heritable alterations in gene expression and has regulatory effects on disease progression. However, the published literature that is integrating both of them is not sufficient. The purpose of this article is to explore the relationship between OSA and epigenetics and to offer better diagnostic methods and treatment options. Epigenetic modifications mainly manifest as post-translational modifications in DNA and histone proteins and regulation of non-coding RNAs. Chronic intermittent hypoxia-mediated epigenetic alterations are involved in the progression of OSA and diverse multiorgan injuries, including cardiovascular disease, metabolic disorders, pulmonary hypertension, neural dysfunction, and even tumors. This article provides deeper insights into the disease mechanism of OSA and potential applications of targeted diagnosis, treatment, and prognosis in OSA complications.
Collapse
Affiliation(s)
- Yanru Ou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
6
|
Llop D, Ibarretxe D, Plana N, Rosales R, Taverner D, Masana L, Vallvé JC, Paredes S. A panel of plasma microRNAs improves the assessment of surrogate markers of cardiovascular disease in rheumatoid arthritis patients. Rheumatology (Oxford) 2022; 62:1677-1686. [PMID: 36048908 DOI: 10.1093/rheumatology/keac483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) present increased risk of cardiovascular (CV) disease compared with the general population. Moreover, CV risk factors that have causal relationship with atherosclerosis do not seem to fully explain the accelerated process that they exhibit. We evaluated the association of a 10 microRNAs panel with surrogate markers of subclinical arteriosclerosis (carotid intima media thickness (cIMT), carotid plaque presence (cPP), pulse wave velocity (PWV) and distensibility) in a cohort of RA patients. METHODS 199 patients with RA were included. Surrogate markers of arteriosclerosis were measured with My Lab 60 X-Vision sonographer. MicroRNAs were extracted from plasma and quantified with qPCR. Multivariate models and classification methods were performed. RESULTS Multivariate models showed that microRNAs-24 (β = 15.48), 125a (β = 9.93), 132 (β = 11.52), 146 (β = 15.12), 191 (β = 13.25) and 223 (β = 13.30) were associated with cIMT globally. MicroRNA-24 (OR = 0.41), 146 (OR = 0.36) and Let7a (OR = 0.23) were associated with cPP in men. Including the microRNAs in a PLS-DA model properly classified men with and without cPP. MicroRNA-96 (β = -0.28) was associated with PWV in male patients. Finally, several miRNAs were also associated with cIMT, cPP and arterial stiffness in the high DAS28 group and in the earlier tertile groups of disease duration. CONCLUSION Plasmatic expression of microRNA-24, 96, 103, 125a, 132, 146, 191, 223 and Let7a were associated with surrogate markers of CV disease and could be predictors of CV risk in patients with RA.
Collapse
Affiliation(s)
- Didac Llop
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Daiana Ibarretxe
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Núria Plana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Roser Rosales
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Delia Taverner
- Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Lluís Masana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Joan Carles Vallvé
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Silvia Paredes
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.,Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| |
Collapse
|
7
|
Feng Y, Lu Y. Advances in vitiligo: Update on therapeutic targets. Front Immunol 2022; 13:986918. [PMID: 36119071 PMCID: PMC9471423 DOI: 10.3389/fimmu.2022.986918] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Vitiligo, whose treatment remains a serious concern and challenge, is an autoimmune skin disease characterized by patches of depigmentation. The increasing application of molecular-targeted therapy in skin diseases, such as psoriasis and systemic lupus erythematosus, has dramatically improved their condition. Besides, there is a favorable effect of repigmentation in the treatment of the above diseases combined with vitiligo, implying that molecular-targeted therapy may also have utility in vitiligo treatment. Recently, the role of cytokine and signaling pathways in vitiligo pathogenesis are increasingly recognized. Thus, investigations are underway targeting the molecules described above. In this paper, we present a synopsis of current practices in vitiligo treatment and introduce the improvement in identifying new molecular targets and applying molecular-targeted therapies, including those under development in vitiligo treatment, providing valuable insight into establishing further precision medicine for vitiligo patients.
Collapse
|
8
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Zare M, Pemmada R, Madhavan M, Shailaja A, Ramakrishna S, Kandiyil SP, Donahue JM, Thomas V. Encapsulation of miRNA and siRNA into Nanomaterials for Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14081620. [PMID: 36015246 PMCID: PMC9416290 DOI: 10.3390/pharmaceutics14081620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/22/2023] Open
Abstract
Globally, cancer is amongst the most deadly diseases due to the low efficiency of the conventional and obsolete chemotherapeutic methodologies and their many downsides. The poor aqueous solubility of most anticancer medications and their low biocompatibility make them ineligible candidates for the design of delivery systems. A significant drawback associated with chemotherapy is that there are no advanced solutions to multidrug resistance, which poses a major obstacle in cancer management. Since RNA interference (RNAi) can repress the expression of genes, it is viewed as a novel tool for advanced drug delivery. this is being explored as a promising drug targeting strategy for the treatment of multiple diseases, including cancer. However, there are many obstructions that hinder the clinical uses of siRNA drugs due to their low permeation into cells, off-target impacts, and possible unwanted immune responses under physiological circumstances. Thus, in this article, we review the design measures for siRNA conveyance frameworks and potential siRNA and miRNA drug delivery systems for malignant growth treatment, including the use of liposomes, dendrimers, and micelle-based nanovectors and functional polymer-drug delivery systems. This article sums up the advancements and challenges in the use of nanocarriers for siRNA delivery and remarkably centers around the most critical modification strategies for nanocarriers to build multifunctional siRNA and miRNA delivery vectors. In short, we hope this review will throw light on the dark areas of RNA interference, which will further open novel research arenas in the development of RNAi drugs for cancer.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.Z.); (S.R.)
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
| | - Rakesh Pemmada
- Departments of Materials Science and Engineering, Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
| | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, India
- Correspondence: (M.M.); (V.T.)
| | - Aswathy Shailaja
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.Z.); (S.R.)
| | | | - James M. Donahue
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Vinoy Thomas
- Departments of Materials Science and Engineering, Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA;
- Center for Nanoscale Materials and Biointegration (CNMB), Center for Clinical and Translational Science (CCTS), University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Correspondence: (M.M.); (V.T.)
| |
Collapse
|
10
|
Liu X, Cheng F, Bai X, Zhao T, Zhao L, Wang L, Li M, Wu X, Chen X, Tang P, Wang M, Jiang L, Yan C, Pei F, Gao X, Ma N, Yang B, Zhang Y. MiR-203 is an anti-obese miRNA by targeting ASBT. iScience 2022; 25:104708. [PMID: 35856025 PMCID: PMC9287609 DOI: 10.1016/j.isci.2022.104708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is characterized by excessive fat deposition within the body. Bile acids (BA) are important regulators for controlling the absorption of lipid. Here we show that miR-203 exerts weight-loss and lipid-lowering effects by increasing total BA excretion in obese rodents. miR-203 overexpression transgenic mice are resistant to high-fat diet (HFD)-induced obesity and dyslipidemia. Moreover, the knockdown of miR-203 deteriorates metabolic disorders. ASBT plays important role in regulating BA homeostasis and is a direct target of miR-203. In human intestinal epithelial cells, overexpression of miR-203 decreases the cellular uptake of BA by inhibiting ASBT. Furthermore, TCF7L2 is downregulated in obese mice and acts as a transcription factor of miR-203. The ASBT mRNA level was positively correlated with the body mass index (BMI) of population, while the miR-203 level was negatively associated with BMI. Taken together, these data suggest miR-203 could be a new therapeutic BA regulator for obesity and dyslipidemia. miR-203 is downregulated in obese rodents and overweight/obese population ASBT is a direct target of miR-203 in obesity TCF7L2 acts as an upstream activator of miR-203 in obesity miR-203 ameliorates obesity and dyslipidemia by increasing TBAs and lipids excretion
Collapse
|
11
|
Xu K, Chen C, Wu Y, Wu M, Lin L. Advances in miR-132-Based Biomarker and Therapeutic Potential in the Cardiovascular System. Front Pharmacol 2021; 12:751487. [PMID: 34795586 PMCID: PMC8594750 DOI: 10.3389/fphar.2021.751487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerotic cardiovascular disease and subsequent heart failure threaten global health and impose a huge economic burden on society. MicroRNA-132 (miR-132), a regulatory RNA ubiquitously expressed in the cardiovascular system, is up-or down-regulated in the plasma under various cardiac conditions and may serve as a potential diagnostic or prognostic biomarker. More importantly, miR-132 in the myocardium has been demonstrated to be a master regulator in many pathological processes of ischemic or nonischemic heart failure in the past decade, such as myocardial hypertrophy, fibrosis, apoptosis, angiogenesis, calcium handling, neuroendocrine activation, and oxidative stress, through downregulating target mRNA expression. Preclinical and clinical phase 1b studies have suggested antisense oligonucleotide targeting miR-132 may be a potential therapeutic approach for ischemic or nonischemic heart failure in the future. This review aims to summarize recent advances in the physiological and pathological functions of miR-132 and its possible diagnostic and therapeutic potential in cardiovascular disease.
Collapse
Affiliation(s)
- Kaizu Xu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Chungui Chen
- Department of Radiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Ying Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Meifang Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Liming Lin
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| |
Collapse
|
12
|
Taverner D, Llop D, Rosales R, Ferré R, Masana L, Vallvé JC, Paredes S. Plasma expression of microRNA-425-5p and microRNA-451a as biomarkers of cardiovascular disease in rheumatoid arthritis patients. Sci Rep 2021; 11:15670. [PMID: 34341435 PMCID: PMC8329234 DOI: 10.1038/s41598-021-95234-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
To validate in a cohort of 214 rheumatoid arthritis patients a panel of 10 plasmatic microRNAs, which we previously identified and that can facilitate earlier diagnosis of cardiovascular disease in rheumatoid arthritis patients. We identified 10 plasma miRs that were downregulated in male rheumatoid arthritis patients and in patients with acute myocardial infarction compared to controls suggesting that these microRNAs could be epigenetic biomarkers for cardiovascular disease in rheumatoid arthritis patients. Six of those microRNAs were validated in independent plasma samples from 214 rheumatoid arthritis patients and levels of expression were associated with surrogate markers of cardiovascular disease (carotid intima-media thickness, plaque formation, pulse wave velocity and distensibility) and with prior cardiovascular disease. Multivariate analyses adjusted for traditional confounders and treatments showed that decreased expression of microRNA-425-5p in men and decreased expression of microRNA-451 in women were significantly associated with increased (β = 0.072; p = 0.017) and decreased carotid intima-media thickness (β = -0.05; p = 0.013), respectively. MicroRNA-425-5p and microRNA-451 also increased the accuracy to discriminate patients with pathological carotid intima-media thickness by 1.8% (p = 0.036) in men and 3.5% (p = 0.027) in women, respectively. In addition, microRNA-425-5p increased the accuracy to discriminate male patients with prior cardiovascular disease by 3% (p = 0.008). Additionally, decreased expression of microRNA-451 was significantly associated with decreased pulse wave velocity (β = -0.72; p = 0.035) in overall rheumatoid arthritis population. Distensibility showed no significant association with expression levels of the microRNAs studied. We provide evidence of a possible role of microRNA-425-5p and microRNA-451 as useful epigenetic biomarkers to assess cardiovascular disease risk in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Delia Taverner
- Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Dídac Llop
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Roser Rosales
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Raimon Ferré
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Luis Masana
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
- Servicio de Medicina Interna, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
| | - Joan-Carles Vallvé
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain.
- Institut D'Investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.
- Facultat de Medicina, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Silvia Paredes
- Sección de Reumatología, Hospital Universitario Sant Joan, Reus, Catalonia, Spain
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| |
Collapse
|
13
|
Du H, Zhao Y, Li H, Wang DW, Chen C. Roles of MicroRNAs in Glucose and Lipid Metabolism in the Heart. Front Cardiovasc Med 2021; 8:716213. [PMID: 34368265 PMCID: PMC8339264 DOI: 10.3389/fcvm.2021.716213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that participate in heart development and pathological processes mainly by silencing gene expression. Overwhelming evidence has suggested that miRNAs were involved in various cardiovascular pathological processes, including arrhythmias, ischemia-reperfusion injuries, dysregulation of angiogenesis, mitochondrial abnormalities, fibrosis, and maladaptive remodeling. Various miRNAs could regulate myocardial contractility, vascular proliferation, and mitochondrial function. Meanwhile, it was reported that miRNAs could manipulate nutrition metabolism, especially glucose and lipid metabolism, by regulating insulin signaling pathways, energy substrate transport/metabolism. Recently, increasing studies suggested that the abnormal glucose and lipid metabolism were closely associated with a broad spectrum of cardiovascular diseases (CVDs). Therefore, maintaining glucose and lipid metabolism homeostasis in the heart might be beneficial to CVD patients. In this review, we summarized the present knowledge of the functions of miRNAs in regulating cardiac glucose and lipid metabolism, as well as highlighted the miRNA-based therapies targeting cardiac glucose and lipid metabolism.
Collapse
Affiliation(s)
- Hengzhi Du
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yanru Zhao
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34121-34153. [PMID: 33963999 DOI: 10.1007/s11356-021-14109-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases (CVDs) have diverse physiopathological mechanisms with interconnected oxidative stress and inflammation as one of the common etiologies which result in the onset and development of atherosclerotic plaques. In this review, we illustrate this strong crosstalk between oxidative stress, inflammation, and CVD. Also, mitochondrial functions underlying this crosstalk, and various approaches for the prevention of redox/inflammatory biological impacts will be illustrated. In part, we focus on the laboratory biomarkers and physiological tests for the evaluation of oxidative stress status and inflammatory processes. The impact of a healthy lifestyle on CVD onset and development is displayed as well. Furthermore, the differences in oxidative stress and inflammation are related to genetic susceptibility to cardiovascular diseases and the variability in the assessment of CVDs risk between individuals; Omics technologies for measuring oxidative stress and inflammation will be explored. Finally, we display the oxidative stress-related microRNA and the functions of the redox basis of epigenetic modifications.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
15
|
Lei Z, Wahlquist C, El Azzouzi H, Deddens JC, Kuster D, van Mil A, Rojas-Munoz A, Huibers MM, Mercola M, de Weger R, Van der Velden J, Xiao J, Doevendans PA, Sluijter JPG. miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a. Front Cardiovasc Med 2021; 8:592362. [PMID: 33816571 PMCID: PMC8017124 DOI: 10.3389/fcvm.2021.592362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Compromised cardiac function is a hallmark for heart failure, mostly appearing as decreased contractile capacity due to dysregulated calcium handling. Unfortunately, the underlying mechanism causing impaired calcium handling is still not fully understood. Previously the miR-132/212 family was identified as a regulator of cardiac function in the failing mouse heart, and pharmaceutically inhibition of miR-132 is beneficial for heart failure. In this study, we further investigated the molecular mechanisms of miR-132/212 in modulating cardiomyocyte contractility in the context of the pathological progression of heart failure. We found that upregulated miR-132/212 expressions in all examined hypertrophic heart failure mice models. The overexpression of miR-132/212 prolongs calcium decay in isolated neonatal rat cardiomyocytes, whereas cardiomyocytes isolated from miR-132/212 KO mice display enhanced contractility in comparison to wild type controls. In response to chronic pressure-overload, miR-132/212 KO mice exhibited a blunted deterioration of cardiac function. Using a combination of biochemical approaches and in vitro assays, we confirmed that miR-132/212 regulates SERCA2a by targeting the 3′-end untranslated region of SERCA2a. Additionally, we also confirmed PTEN as a direct target of miR-132/212 and potentially participates in the cardiac response to miR132/212. In end-stage heart failure patients, miR-132/212 is upregulated and correlates with reduced SERCA2a expression. The up-regulation of miR-132/212 in heart failure impairs cardiac contractile function by targeting SERCA2a, suggesting that pharmaceutical inhibition of miR-132/212 might be a promising therapeutic approach to promote cardiac function in heart failure patients.
Collapse
Affiliation(s)
- Zhiyong Lei
- Experimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Division Lab, Central Diagnosis Laboratory Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christine Wahlquist
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Hamid El Azzouzi
- Experimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Janine C Deddens
- Experimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Diederik Kuster
- Department of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Alain van Mil
- Experimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Agustin Rojas-Munoz
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Manon M Huibers
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mark Mercola
- Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Roel de Weger
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jolanda Van der Velden
- Department of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Junjie Xiao
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China
| | - Pieter A Doevendans
- Experimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands.,Central Military Hospital Utrecht, Utrecht, Netherlands
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020; 12:E3119. [PMID: 33113880 PMCID: PMC7694039 DOI: 10.3390/cancers12113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Tremendous progress in RNAi delivery methods and design has allowed for the effective development of siRNA-based therapeutics that are currently under clinical investigation for various cancer treatments. This approach has the potential to revolutionize cancer therapy by providing the ability to specifically downregulate or upregulate the mRNA of any protein of interest. This exquisite specificity, unfortunately, also has a downside. Genetic variations in the human population are common because of the presence of single nucleotide polymorphisms (SNPs). SNPs lead to synonymous and non-synonymous changes and they occur once in every 300 base pairs in both coding and non-coding regions in the human genome. Much less common are the somatic mosaicism variations associated with genetically distinct populations of cells within an individual that is derived from postzygotic mutations. These heterogeneities in the population can affect the RNAi's efficacy or more problematically, which can lead to unpredictable and sometimes adverse side effects. From a more positive viewpoint, both SNPs and somatic mosaicisms have also been implicated in human diseases, including cancer, and these specific changes could offer the ability to effectively and, more importantly, selectively target the cancer cells. In this review, we discuss how SNPs in the human population can influence the development and success of novel anticancer RNAi therapies and the importance of why SNPs should be carefully considered.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Maciej Jaśkiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| |
Collapse
|
17
|
Cring MR, Sheffield VC. Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther 2020; 29:3-12. [PMID: 33037407 DOI: 10.1038/s41434-020-00197-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
The field of gene therapy has made significant strides over the last several decades toward the treatment of previously untreatable genetic disease. Gene therapy techniques have been aimed at mitigating disease features of recessive and dominant disorders, as well as several cancers and other diseases. While there have been numerous disease targets of gene therapy trials, only four therapies have reached FDA and/or EMA approval for clinical use. Gene correction using CRISPR-Cas9 is an extension of gene therapy that has received considerable attention in recent years and boasts many possible uses beyond classical gene therapy approaches. While there is significant therapeutic potential using gene therapy and gene correction strategies, a number of hurdles remain to be overcome before they become more common in clinical use, particularly with regards to safety and efficacy. As research progresses in this exciting field, it is likely that these therapies will become first-line treatments and will have tremendous positive impacts on the lives of patients with genetic disorders.
Collapse
Affiliation(s)
- Matthew R Cring
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA, USA. .,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
18
|
Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020; 160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.
Collapse
Affiliation(s)
- Qiangbing Yang
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Juntao Fang
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhiyong Lei
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Circulatory Health Laboratory, Utrecht University, Utrecht, the Netherlands
| | - Raymond Schiffelers
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
20
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
21
|
Lei Z, Fang J, Deddens JC, Metz CHG, van Eeuwijk ECM, El Azzouzi H, Doevendans PA, Sluijter JPG. Loss of miR-132/212 Has No Long-Term Beneficial Effect on Cardiac Function After Permanent Coronary Occlusion in Mice. Front Physiol 2020; 11:590. [PMID: 32612537 PMCID: PMC7309700 DOI: 10.3389/fphys.2020.00590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Myocardial infarction (MI) is caused by occlusion of the coronary artery and induces ischemia in the myocardium and eventually a massive loss in cardiomyocytes. Studies have shown many factors or treatments that can affect the healing and remodeling of the heart upon infarction, leading to better cardiac performance and clinical outcome. Previously, miR-132/212 has been shown to play an important role in arteriogenesis in a mouse model of hindlimb ischemia and in the regulation of cardiac contractility in hypertrophic cardiomyopathy in mice. In this study, we explored the role of miR-132/212 during ischemia in a murine MI model. Methods and Results: miR-132/212 knockout mice show enhanced cardiac contractile function at baseline compared to wild-type controls, as assessed by echocardiography. One day after induction of MI by permanent occlusion, miR-132/212 knockout mice display similar levels of cardiac damage as wild-type controls, as demonstrated by infarction size quantification and LDH release, although a trend toward more cardiomyocyte cell death was observed in the knockout mice as shown by TUNEL staining. Four weeks after MI, miR-132/212 knockout mice show no differences in terms of cardiac function, expression of cardiac stress markers, and fibrotic remodeling, although vascularization was reduced. In line with these in vivo observation, overexpression of miR-132 or miR-212 in neonatal rat cardiomyocyte suppress hypoxia induced cardiomyocyte cell death. Conclusion: Although we previously observed a role in collateral formation and myocardial contractility, the absence of miR-132/212 did not affect the overall myocardial performance upon a permanent occlusion of the coronary artery. This suggests an interplay of different roles of this miR-132/212 before and during MI, including an inhibitory effect on cell death and angiogenesis, and a positive effect on cardiac contractility and autophagic response. Thus, spatial or tissue specific manipulation of this microRNA family may be essential to fully understand the roles and to develop interventions to reduce infarct size.
Collapse
Affiliation(s)
- Zhiyong Lei
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Juntao Fang
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Janine C Deddens
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Corina H G Metz
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Esther C M van Eeuwijk
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hamid El Azzouzi
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands.,National Heart Institute, Utrecht, Netherlands.,Central Military Hospital Utrecht, Utrecht, Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands.,UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
22
|
Jiang ZF, Zhang L, Shen J. MicroRNA: Potential biomarker and target of therapy in acute lung injury. Hum Exp Toxicol 2020; 39:1429-1442. [PMID: 32495695 DOI: 10.1177/0960327120926254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs stretching over 18-22 nucleotides and considered to be modifiers of many respiratory diseases. They are highly evolutionary conserved and have been implicated in several biological processes, including cell proliferation, apoptosis, differentiation, among others. Acute lung injury (ALI) is a fatal disease commonly caused by direct or indirect injury factors and has a high mortality rate in intensive care unit. Changes in expression of several types of miRNAs have been reported in patients with ALI. Some miRNAs suppress cellular injury and accelerate the recovery of ALI by targeting specific molecules and decreasing excessive immune response. For this reason, miRNAs are proposed as potential biomarkers for ALI and as therapeutic targets for this disease. This review summarizes current evidence supporting the role of miRNAs in ALI.
Collapse
Affiliation(s)
- Z-F Jiang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - L Zhang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - J Shen
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Steffens S, Van Linthout S, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1850-1862. [DOI: 10.1093/cvr/cvaa137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Cardiac injury may have multiple causes, including ischaemic, non-ischaemic, autoimmune, and infectious triggers. Independent of the underlying pathophysiology, cardiac tissue damage induces an inflammatory response to initiate repair processes. Immune cells are recruited to the heart to remove dead cardiomyocytes, which is essential for cardiac healing. Insufficient clearance of dying cardiomyocytes after myocardial infarction (MI) has been shown to promote unfavourable cardiac remodelling, which may result in heart failure (HF). Although immune cells are integral key players of cardiac healing, an unbalanced or unresolved immune reaction aggravates tissue damage that triggers maladaptive remodelling and HF. Neutrophils and macrophages are involved in both, inflammatory as well as reparative processes. Stimulating the resolution of cardiac inflammation seems to be an attractive therapeutic strategy to prevent adverse remodelling. Along with numerous experimental studies, the promising outcomes from recent clinical trials testing canakinumab or colchicine in patients with MI are boosting the interest in novel therapies targeting inflammation in cardiovascular disease patients. The aim of this review is to discuss recent experimental studies that provide new insights into the signalling pathways and local regulators within the cardiac microenvironment promoting the resolution of inflammation and tissue regeneration. We will cover ischaemia- and non-ischaemic-induced as well as infection-related cardiac remodelling and address potential targets to prevent adverse cardiac remodelling.
Collapse
Affiliation(s)
- Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Via Paradisa, Pisa 56124, Italy
| |
Collapse
|
24
|
Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W, Yuan M. Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases. Front Bioeng Biotechnol 2020; 7:489. [PMID: 32083068 PMCID: PMC7005934 DOI: 10.3389/fbioe.2019.00489] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have become a serious threat to human life and health. Though many drugs acting via different mechanism of action are available in the market as conventional formulations for the treatment of CVDs, they are still far from satisfactory due to poor water solubility, low biological efficacy, non-targeting, and drug resistance. Nano-drug delivery systems (NDDSs) provide a new drug delivery method for the treatment of CVDs with the development of nanotechnology, demonstrating great advantages in solving the above problems. Nevertheless, there are some problems about NDDSs need to be addressed, such as cytotoxicity. In this review, the types and targeting strategies of NDDSs were summarized, and the new research progress in the diagnosis and therapy of CVDs in recent years was reviewed. Future prospective for nano-carriers in drug delivery for CVDs includes gene therapy, in order to provide more ideas for the improvement of cardiovascular drugs. In addition, its safety was also discussed in the review.
Collapse
Affiliation(s)
- Yudi Deng
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xudong Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haibin Shen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiangnan He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zijian Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenzhen Liao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
25
|
Non-coding RNAs in Cardiac Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:163-180. [PMID: 32285411 DOI: 10.1007/978-981-15-1671-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide, and with the dramatically increasing numbers of heart failure patients in the next 10 years, mortality will only increase [1]. For patients with end-stage heart failure, heart transplantation is the sole option. Regrettably, the number of available donor hearts is drastically lower than the number of patients waiting for heart transplantation. Despite evidence of cardiomyocyte renewal in adult human hearts, regeneration of functional myocardium after injury can be neglected. The limited regenerative capacity due to inadequate proliferation of existing cardiomyocytes is insufficient to repopulate areas of lost myocardium [2]. As a solution, the hypothesis that adult stem cells could be employed to generate functional cardiomyocytes was proposed. One of the early studies that supported this hypothesis involved direct injection of hematopoietic c-kit-positive cells derived from bone marrow into the infarcted heart [3]. However, in sharp contrast, more recent evidence emerged demonstrating that these hematopoietic stem cells only differentiate into cells down the hematopoietic lineage rather than into cardiomyocytes [4, 5], and the focus shifted towards stem cells residing in the heart, called cardiac progenitor cells. These CPCs were extracted and injected into the myocardium to regenerate the heart [6]. In recent years, over 80 pre-clinical studies employing cardiac stem cells in vivo in large and small animals to evaluate the effect on functional parameters were systematically reviewed, identifying differences between large and small animals [7]. Despite the positive outcome of these stem cell therapies on functional parameters, c-kit-positive cardiac progenitor cells were shown to contribute minimally to the generation of functional cardiomyocytes [8, 9]. This heavily debated topic is summarized concisely by van Berlo and Molkentin [10]. Recently, single-cell sequencing and genetic lineage tracing of proliferative cells in the murine heart in both homeostatic and regenerating conditions did not yield a quiescent cardiac stem cell population or other cell types that support transdifferentiation into cardiomyocytes, nor did it support proliferation of cardiac myocytes [11, 12]. Now, the focus is shifting towards exploiting the limited regenerative capacity of the cardiomyocytes themselves, by re-activating proliferation of existing cardiomyocytes through dedifferentiation, reentry into the cell cycle, and cytokinesis. This process is the new focus of research to promote cardiac regeneration, and can be controlled on multiple levels, including cell-cycle manipulation, reprogramming, small molecules, extra-cellular matrix (ECM), proteins, and RNA regulation [13].
Collapse
|
26
|
Ooi JYY, Bernardo BC. Translational Potential of Non-coding RNAs for Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:343-354. [PMID: 32285423 DOI: 10.1007/978-981-15-1671-9_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jenny Y Y Ooi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Clayton, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
28
|
Peters MMC, Meijs TA, Gathier W, Doevendans PAM, Sluijter JPG, Chamuleau SAJ, Neef K. Follistatin-like 1 in Cardiovascular Disease and Inflammation. Mini Rev Med Chem 2019; 19:1379-1389. [PMID: 30864520 DOI: 10.2174/1389557519666190312161551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/16/2022]
Abstract
Follistatin-like 1 (FSTL1), a secreted glycoprotein, has been shown to participate in regulating developmental processes and to be involved in states of disease and injury. Spatiotemporal regulation and posttranslational modifications contribute to its specific functions and make it an intriguing candidate to study disease mechanisms and potentially develop new therapies. With cardiovascular diseases as the primary cause of death worldwide, clarification of mechanisms underlying cardiac regeneration and revascularization remains essential. Recent findings on FSTL1 in both acute coronary syndrome and heart failure emphasize its potential as a target for cardiac regenerative therapy. With this review, we aim to shed light on the role of FSTL1 specifically in cardiovascular disease and inflammation.
Collapse
Affiliation(s)
- Marijn M C Peters
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Timion A Meijs
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Wouter Gathier
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Pieter A M Doevendans
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| | - Klaus Neef
- Department of Cardiology, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, Netherlands
| |
Collapse
|
29
|
Jana A, Narula P, Chugh A, Kulshreshtha R. Efficient delivery of anti-miR-210 using Tachyplesin, a cell penetrating peptide, for glioblastoma treatment. Int J Pharm 2019; 572:118789. [PMID: 31726199 DOI: 10.1016/j.ijpharm.2019.118789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022]
Abstract
The levels of microRNAs (miRNAs) are altered in various diseases including glioblastoma (GBM) and this alteration may have widespread effects on various hallmarks of cancer cells. MiR210 is overexpressed in GBM and functions as an oncogenic miRNA. Anti-miR210 therapy holds great promise but its efficient delivery remains a major challenge. Our work here explores a novel role of Tachyplesin (Tpl), a cell-penetrating antimicrobial peptide, as a nanocarrier for anti-miR210. Tpl electrostatically interacts with anti-miR210 at 1:25 and 1:50 (anti-miR:Tpl) weight ratios to form a complex and efficiently delivers anti-miR210 inside GBM cells cultured as 2D and 3D spheroid model. Treatment of GBM cells with the complex significantly inhibited miR210 levels (~90%), proliferation, migration and spheroid formation ability and induced apoptosis as evident by increased levels of caspase 3/7 and ROS. GBM cells pre-treated with anti-miR210:Tpl complex were also found to be sensitive to TMZ mediated action. Uptake of the complex in GBM cells induced the levels of miR210 targeted tumor suppressor genes, NeuroD2 and HIF3A. Overall, our work reveals a novel and efficient miRNA delivery ability of Tpl in glioma cells, holding a great promise for treatment of GBM and potentially for other cancers.
Collapse
Affiliation(s)
- Anirban Jana
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pankhuri Narula
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
30
|
Kopechek JA, McTiernan CF, Chen X, Zhu J, Mburu M, Feroze R, Whitehurst DA, Lavery L, Cyriac J, Villanueva FS. Ultrasound and Microbubble-targeted Delivery of a microRNA Inhibitor to the Heart Suppresses Cardiac Hypertrophy and Preserves Cardiac Function. Am J Cancer Res 2019; 9:7088-7098. [PMID: 31660088 PMCID: PMC6815962 DOI: 10.7150/thno.34895] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRs) are dysregulated in pathological left ventricular hypertrophy. AntimiR inhibition of miR-23a suppressed hypertension-induced cardiac hypertrophy in preclinical models, but clinical translation is limited by a lack of cardiac-targeted delivery systems. Ultrasound-targeted microbubble cavitation (UTMC) utilizes microbubbles as nucleic acid carriers to target delivery of molecular therapeutics to the heart. The objective of this study was to evaluate the efficacy of UTMC targeted delivery of antimiR-23a to the hearts of mice for suppression of hypertension-induced cardiac hypertrophy. Methods: Cationic lipid microbubbles were loaded with 300 pmol negative control antimiR (NC) or antimiR-23a. Mice received continuous phenylephrine infusion via implanted osmotic minipumps, then UTMC treatments with intravenously injected antimiR-loaded microbubbles 0, 3, and 7 days later. At 2 weeks, hearts were harvested and miR-23a levels were measured. Left ventricular (LV) mass and function were assessed with echocardiography. Results: UTMC treatment with antimiR-23a decreased cardiac miR-23a levels by 41 ± 8% compared to UTMC + antimiR-NC controls (p < 0.01). Furthermore, LV mass after 1 week of phenylephrine treatment was 17 ± 10% lower following UTMC + antimiR-23a treatment compared to UTMC + antimiR-NC controls (p = 0.02). At 2 weeks, fractional shortening was 23% higher in the UTMC + antimiR-23a mice compared to UTMC + antimiR-NC controls (p < 0.01). Conclusions: UTMC is an effective technique for targeted functional delivery of antimiRs to the heart causing suppression of cardiac hypertrophy and preservation of systolic function. This approach could represent a revolutionary therapy for patients suffering from pathological cardiac hypertrophy and other cardiovascular conditions.
Collapse
|
31
|
Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 2019; 37:107-124. [PMID: 29243000 DOI: 10.1007/s10555-017-9717-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers "smart" targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianchao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
32
|
Finotti A, Fabbri E, Lampronti I, Gasparello J, Borgatti M, Gambari R. MicroRNAs and Long Non-coding RNAs in Genetic Diseases. Mol Diagn Ther 2019; 23:155-171. [PMID: 30610665 PMCID: PMC6469593 DOI: 10.1007/s40291-018-0380-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the discovery and classification of non-coding RNAs, their roles have gained great attention. In this respect, microRNAs and long non-coding RNAs have been firmly demonstrated to be linked to regulation of gene expression and onset of human diseases, including rare genetic diseases; therefore they are suitable targets for therapeutic intervention. This issue, in the context of rare genetic diseases, is being considered by an increasing number of research groups and is of key interest to the health community. In the case of rare genetic diseases, the possibility of developing personalized therapy in precision medicine has attracted the attention of researchers and clinicians involved in developing "orphan medicinal products" and proposing these to the European Medicines Agency (EMA) and to the Food and Drug Administration (FDA) Office of Orphan Products Development (OOPD) in the United States. The major focuses of these activities are the evaluation and development of products (drugs, biologics, devices, or medical foods) considered to be promising for diagnosis and/or treatment of rare diseases or conditions, including rare genetic diseases. In an increasing number of rare genetic diseases, analysis of microRNAs and long non-coding RNAs has been proven a promising strategy. These diseases include, but are not limited to, Duchenne muscular dystrophy, cystic fibrosis, Rett syndrome, and β-thalassemia. In conclusion, a large number of approaches based on targeting microRNAs and long non-coding RNAs are expected in the field of molecular diagnosis and therapy, with a facilitated technological transfer in the case of rare genetic diseases, in virtue of the existing regulation concerning these diseases.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy.
| |
Collapse
|
33
|
Affiliation(s)
- Joost P G Sluijter
- From the Laboratory of Experimental Cardiology, Department of Cardiology (J.P.G.S., G.P.), UMC Utrecht Regenerative Medicine Center (J.P.G.S.), and Laboratory of Clinical Chemistry (G.P.), University Medical Center Utrecht, The Netherlands
| | - Gerard Pasterkamp
- From the Laboratory of Experimental Cardiology, Department of Cardiology (J.P.G.S., G.P.), UMC Utrecht Regenerative Medicine Center (J.P.G.S.), and Laboratory of Clinical Chemistry (G.P.), University Medical Center Utrecht, The Netherlands.
| |
Collapse
|
34
|
Gong YY, Luo JY, Wang L, Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid Redox Signal 2018; 29:1092-1107. [PMID: 28969427 DOI: 10.1089/ars.2017.7328] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress caused by overproduction of reactive oxygen species (ROS) in cells is one of the most important contributors to the pathogenesis of cardiovascular and metabolic diseases such as hypertension and atherosclerosis. Excessive accumulation of ROS impairs, while limiting oxidative stress protects cardiovascular and metabolic function through various cellular mechanisms. Recent Advances: MicroRNAs (miRNAs) are novel regulators of oxidative stress in cardiovascular cells that modulate the expression of redox-related genes. This article summarizes recent advances in our understanding of how miRNAs target major ROS generators, antioxidant signaling pathways, and effectors in cells of the cardiovascular system. CRITICAL ISSUES The role of miRNAs in regulating ROS in cardiovascular cells is complicated because miRNAs can target multiple redox-related genes, act on redox regulatory pathways indirectly, and display context-dependent pro- or antioxidant effects. The complex regulatory network of ROS and the plethora of targets make it difficult to pin point the role of miRNAs and develop them as therapeutics. Therefore, these properties should be considered when designing strategies for therapeutic or diagnostic development. FUTURE DIRECTIONS Future studies can gain a better understanding of redox-related miRNAs by investigating their own regulatory mechanisms and the dual role of ROS in the cardiovascular systems. The combination of improved study design and technical advancements will reveal newer pathophysiological importance of redox-related miRNAs.
Collapse
Affiliation(s)
- Yao-Yu Gong
- 1 School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Jiang-Yun Luo
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Li Wang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Yu Huang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
35
|
Islas JF, Moreno-Cuevas JE. A MicroRNA Perspective on Cardiovascular Development and Diseases: An Update. Int J Mol Sci 2018; 19:E2075. [PMID: 30018214 PMCID: PMC6073753 DOI: 10.3390/ijms19072075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize the latest research pertaining to MicroRNAs (miRs) related to cardiovascular diseases. In today's molecular age, the key clinical aspects of diagnosing and treating these type of diseases are crucial, and miRs play an important role. Therefore, we have made a thorough analysis discussing the most important candidate protagonists of many pathways relating to such conditions as atherosclerosis, heart failure, myocardial infarction, and congenital heart disorders. We approach miRs initially from the fundamental molecular aspects and look at their role in developmental pathways, as well as regulatory mechanisms dysregulated under specific cardiovascular conditions. By doing so, we can better understand their functional roles. Next, we look at therapeutic aspects, including delivery and inhibition techniques. We conclude that a personal approach for treatment is paramount, and so understanding miRs is strategic for cardiovascular health.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| | - Jorge Eugenio Moreno-Cuevas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| |
Collapse
|
36
|
Lei Z, van Mil A, Xiao J, Metz CHG, van Eeuwijk ECM, Doevendans PA, Sluijter JPG. MMISH: Multicolor microRNA in situ hybridization for paraffin embedded samples. ACTA ACUST UNITED AC 2018; 18:e00255. [PMID: 29876304 PMCID: PMC5989586 DOI: 10.1016/j.btre.2018.e00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
A robust, sensitive and flexible multicolor miRNA in situ hybridization (MMISH) technique for paraffin embedded sections can be combined with both immunohistochemical and immunofluorescent staining. Usage of urea in our buffers which enhances the target-probe affinity by preventing intermolecular interaction within miRNAs or individual probes, and by reversing the EDC fixation induced epitope loss by denaturing the antigens, less toxic compared to toxic formamide. Second, it can be combined with immunofluorescent stainings, which allows one to analyze the expression and precise (sub)cellular location of the miRNA of interest.
To understand and assess the roles of miRNAs, visualization of the expression patterns of specific miRNAs is needed at the cellular level in a wide variety of different tissue types. Although miRNA in situ hybridization techniques have been greatly improved in recent years, they remain difficult to routinely perform due to the complexity of the procedure. In addition, as it is crucial to define which tissues or cells are expressing a particular miRNA in order to elucidate the biological function of the miRNA, incorporation of additional stainings for different cellular markers is necessary. Here, we describe a robust and flexible multicolor miRNA in situ hybridization (MMISH) technique for paraffin embedded sections. We show that the miRNA in situ protocol is sensitive and highly specific and can successfully be combined with both immunohistochemical and immunofluorescent stainings.
Collapse
Affiliation(s)
- Zhiyong Lei
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht 3584CT, The Netherlands
| | - Junjie Xiao
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, China
| | - Corina H G Metz
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht 3584CT, The Netherlands
| | - Esther C M van Eeuwijk
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands.,Central Military Hospital, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht 3584CT, The Netherlands
| |
Collapse
|
37
|
Gao F, Wang FG, Lyu RR, Xue F, Zhang J, Huo R. SLC35E3 identified as a target of novel‑m1061‑5p via microRNA profiling of patients with cardiovascular disease. Mol Med Rep 2018; 17:5159-5167. [PMID: 29393345 PMCID: PMC5865981 DOI: 10.3892/mmr.2018.8498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNA) are considered to be potential therapeutic targets for the treatment of various cardiovascular diseases (CVDs). To understand the underlying mechanism of miRNAs and target genes associated with CVD, deep sequencing of blood samples from three patients with CVD and three controls was performed using the Illumina HiSeq 2000 system. The results of the present study revealed that 65 abnormal hsa‑miRNAs targeted 2,784 putative genes in patients with CVD; 59 upregulated miRNAs targeted 2,401 genes and six downregulated miRNAs targeted 383 genes. In addition, a total of 49 Gene Ontology (GO) biological processes and were enriched, and the target genes of downregulated miRNAs were enriched in 12 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of these pathways are responsible for lipid and glycan metabolism. In particular, three downregulated miRNAs, hsa‑miR‑1268b, hsa‑miR‑1273d, hsa‑miR‑3187‑5p, were involved in a‑linolenic acid metabolism. The target genes of upregulated miRNAs were enriched in 15 KEGG pathways, mainly in the 'neurodegenerative diseases and cancers' class. In the present study five novel upregulated miRNAs, including m0499‑5p, m0970‑5p, m1042‑5p, m1061‑5p and m1953‑5p, and a downregulated miRNA, novel‑m1627‑5p, were identified in patients with CVD. Novel‑m1627‑5p was demonstrated to target 146 human genes. Additionally, Novel‑m1061‑5p targeted four genes, including fumarylacetoacetate hydrolase domain containing 2A, potassium voltage‑gated channel, Shaw‑related subfamily, member 4, coiled‑coil domain containing 85C and solute carrier family 35 member E3 (SLC35E3). The GO term, 'carbohydrate derivative transport involving in biological process', was associated with SLC35E3. Novel‑m1061‑5p in patients with CVD may repress the expression levels of SLC35E3, a member of the nucleoside sugar transporter subfamily E, which is known to cause defective glycol‑conjugation in the Golgi complex and/or the endoplasmic reticulum. Further investigation is required to understand the underlying mechanisms of the novel miRNAs. Novel‑m1061‑5p may serve as a marker for prognosis or a potential target for the treatment of CVD.
Collapse
Affiliation(s)
- Feng Gao
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fa-Gang Wang
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ren-Rong Lyu
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Feng Xue
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jian Zhang
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Ran Huo
- Department of Aesthetic, Plastic and Burn Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
38
|
MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochem Soc Trans 2017; 46:11-21. [PMID: 29196609 DOI: 10.1042/bst20170037] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of ∼22 nucleotides, which have increasingly been recognized as potent post-transcriptional regulators of gene expression. MiRNA targeting is defined by the complementarities between positions 2-8 of miRNA 5'-end with generally the 3'-untranslated region of target mRNAs (messenger RNAs). The capacity of miRNAs to simultaneously inhibit many different mRNAs allows for an amplification of biological responses. Hence, miRNAs are extremely attractive targets for therapeutic regulation in several diseases, including cardiovascular. Novel approaches are emerging to identify the miRNA functions in cardiovascular biology processes and to improve miRNA delivery in the heart and vasculature. In the present study, we provide an overview of current studies of miRNA functions in cardiovascular cells by the use of high-content screening. We also discuss the challenge to achieve a safe and targeted delivery of miRNA therapeutics in cardiovascular cells.
Collapse
|
39
|
Maitrias P, Metzinger-Le Meuth V, Nader J, Reix T, Caus T, Metzinger L. The Involvement of miRNA in Carotid-Related Stroke. Arterioscler Thromb Vasc Biol 2017; 37:1608-1617. [PMID: 28775076 DOI: 10.1161/atvbaha.117.309233] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in developed countries. Stroke is associated with a marked disability burden and has a major economic impact; this is especially true for carotid artery stroke. Major advances in primary and secondary prevention during the last few decades have helped to tackle this public health problem. However, better knowledge of the physiopathology of stroke and its underlying genetic mechanisms is needed to improve diagnosis and therapy. miRNAs are an important, recently identified class of post-transcriptional regulators of gene expression and are known to be involved in cerebrovascular disease. These endogenous, small, noncoding RNAs may have applications as noninvasive biomarkers and therapeutic tools in practice. Here, we review the involvement of several miRNAs in cell-based and whole-animal models of stroke, with a focus on human miRNA profiling studies of carotid artery stroke. Lastly, we describe the miRNAs' potential role as a biomarker of stroke.
Collapse
Affiliation(s)
- Pierre Maitrias
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.).
| | - Valérie Metzinger-Le Meuth
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Joseph Nader
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Thierry Reix
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Thierry Caus
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| | - Laurent Metzinger
- From the Department of Cardiovascular Surgery, Amiens University Hospital, France (P.M., J.N., T.R., T.C.); University Paris 13, Sorbonne Paris Cite, UFR SMBH, Bobigny, France (V.M.-L.M.); INSERM Unit-1088, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications, Centre Universitaire de Recherche en Santé, University Picardie Jules Verne, Amiens, France (P.M., V.M.-L.M., J.N., T.C., L.M.); Medicine College, Jules Verne University of Picardie, Amiens, France (P.M., T.R.); and Department of Biochemistry, Center of Human Biology, Amiens University Hospital, France (L.M.)
| |
Collapse
|
40
|
The Management of Cardiovascular Risk through Epigenetic Biomarkers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9158572. [PMID: 28785591 PMCID: PMC5530445 DOI: 10.1155/2017/9158572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
Epigenetic sciences study heritable changes in gene expression not related to changes in the genomic DNA sequence. The most important epigenetic mechanisms are DNA methylation, posttranslational histone modification, and gene regulation by noncoding RNAs, such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). Cardiovascular diseases (CVD) are responsible for at least one-third of premature deaths worldwide and represent a heavy burden of healthcare expenditure. We will discuss in this review the most recent findings dealing with epigenetic alterations linked to cardiovascular physiopathology in patients. A particular focus will be put on the way these changes can be translated in the clinic, to develop innovative and groundbreaking biomarkers in CVD field.
Collapse
|
41
|
Zhu WJ, Yang SD, Qu CX, Zhu QL, Chen WL, Li F, Yuan ZQ, Liu Y, You BG, Zhang XN. Low-density lipoprotein-coupled micelles with reduction and pH dual sensitivity for intelligent co-delivery of paclitaxel and siRNA to breast tumor. Int J Nanomedicine 2017; 12:3375-3393. [PMID: 28490877 PMCID: PMC5413542 DOI: 10.2147/ijn.s126310] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle for the clinical therapy of malignant human cancers. The discovery of RNA interference provides efficient gene silencing within tumor cells for reversing MDR. In this study, a new “binary polymer” low-density lipoprotein–N-succinyl chitosan–cystamine–urocanic acid (LDL–NSC–SS–UA) with dual pH/redox sensitivity and targeting effect was synthesized for the co-delivery of breast cancer resistance protein small interfering RNA (siRNA) and paclitaxel (PTX). In vivo, the co-delivering micelles can accumulate in tumor tissue via the enhanced permeability and retention effect and the specific recognition and combination of LDL and LDL receptor, which is overexpressed on the surface of tumor cell membranes. The siRNA–PTX-loaded micelles inhibited gene and drug release under physiological conditions while promoting fast release in an acid microenvironment or in the presence of glutathione. The micelles escaped from the lysosome through the proton sponge effect. Additionally, the micelles exhibited superior antitumor activity and downregulated the protein and mRNA expression levels of breast cancer resistance protein in MCF-7/Taxol cells. The biodistribution and antitumor studies proved that the siRNA–PTX-loaded micelles possessed prolonged circulation time with a remarkable tumor-targeting effect and effectively inhibited tumor growth. Therefore, the novel dual pH/redox-sensitive polymers co-delivering siRNA and PTX with excellent biocompatibility and effective reversal of MDR demonstrate a considerable potential in cancer therapy.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Shu-di Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Chen-Xi Qu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Qiao-Ling Zhu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou.,Department of Clinical Medicine, Nanjing Gulou Hospital, Nanjing, People's Republic of China
| | - Wei-Liang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Fang Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Zhi-Qiang Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Ben-Gang You
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| |
Collapse
|
42
|
Wang F, Gao L, Meng LY, Xie JM, Xiong JW, Luo Y. A Neutralized Noncharged Polyethylenimine-Based System for Efficient Delivery of siRNA into Heart without Toxicity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33529-33538. [PMID: 27960377 DOI: 10.1021/acsami.6b13295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cationic polymers constitute an important class of materials in development of delivery vehicles for nucleic acid-based therapeutics. Among them, polyethylenimine (PEI) has been a classical cationic carrier intensively studied for therapeutic delivery of DNA, RNA, and short RNA molecules to treat diseases. However, the development of PEI for in vivo applications has been hampered by the inherent problems associated with the material, particularly its cytotoxicity and the instability of the nucleic acid complexation systems formed via electrostatic interactions. Here, we demonstrate a strategy to modify PEI polymers via hydrazidation to create neutralized, stable, and multifunctional system for delivering siRNA molecules. Through substitution of the primary amino groups of PEI with neutral hydrazide groups, cross-linked nanoparticles with surface decorated with a model targeting ligands were generated. The neutral cross-linked siRNA nanoparticles not only showed favorable biocompatibility and cell internalization efficiency in vitro but also allowed for significant tissue uptake and gene silencing efficiency in zebrafish heart in vivo. Our study suggests transformation of conventional branched PEI into a neutral polymer that can lead to a new category of nonviral carriers, and the resulting functional delivery systems may be further explored for development of siRNA therapeutics for treating cardiovascular disease/injury.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Lu Gao
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Liu-Yi Meng
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Jing-Ming Xie
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Jing-Wei Xiong
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, ‡Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, and §School of Life Sciences, Peking University , Beijing, China 100871
| |
Collapse
|
43
|
Xue J, Yang J, Luo M, Cho WC, Liu X. MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opin Drug Discov 2016; 12:141-157. [PMID: 27866431 DOI: 10.1080/17460441.2017.1263298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Lung cancer is one of the leading causes of cancer-related mortality worldwide. MicroRNAs (miRNAs) are endogenous non-coding small RNAs that repress the expression of a broad array of target genes. Many efforts have been made to therapeutically target miRNAs in cancer treatments using miRNA mimics and miRNA antagonists. Areas covered: This article summarizes the recent findings with the role of miRNAs in lung cancer, and discusses the potential and challenges of developing miRNA-targeted therapeutics in this dreadful disease. Expert opinion: The development of miRNA-targeted therapeutics has become an important anti-cancer strategy. Results from both preclinical and clinical trials of microRNA replacement therapy have shown some promise in cancer treatment. However, some obstacles, including drug delivery, specificity, off-target effect, toxicity mediation, immunological activation and dosage determination should be addressed. Several delivery strategies have been employed, including naked oligonucleotides, liposomes, aptamer-conjugates, nanoparticles and viral vectors. However, delivery remains a main challenge in miRNA-targeting therapeutics. Furthermore, immune-related serious adverse events are also a concern, which indicates the complexity of miRNA-based therapy in clinical settings.
Collapse
Affiliation(s)
- Jing Xue
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China.,b College of Life Science , Ningxia University , Yinchuan , China
| | - Jiali Yang
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - Meihui Luo
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China
| | - William C Cho
- c Department of Clinical Oncology , Queen Elizabeth Hospital , Kowloon , Hong Kong
| | - Xiaoming Liu
- a Center of Laboratory Medicine , General Hospital of Ningxia Medical University , Yinchuan , China.,b College of Life Science , Ningxia University , Yinchuan , China.,d Human Stem Cell Institute , General Hospital of Ningxia Medical University , Yinchuan , Ningxia , China
| |
Collapse
|
44
|
Metzinger-Le Meuth V, Burtey S, Maitrias P, Massy ZA, Metzinger L. microRNAs in the pathophysiology of CKD-MBD: Biomarkers and innovative drugs. Biochim Biophys Acta Mol Basis Dis 2016; 1863:337-345. [PMID: 27806914 DOI: 10.1016/j.bbadis.2016.10.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/04/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023]
Abstract
microRNAs comprise a novel class of endogenous small non-coding RNAs that have been shown to be implicated in both vascular damage and bone pathophysiology. Chronic kidney disease-mineral bone disorder (CKD-MBD) is characterized by vessel and bone damage secondary to progressive loss of kidney function. In this review, we will describe how several microRNAs have been implicated, in recent years, in cellular and animal models of CKD-MBD, and have been very recently shown to be deregulated in patients with CKD. Particular emphasis has been placed on the endothelial-specific miR-126, a potential biomarker of endothelial dysfunction, and miR-155 and miR-223, which play a role in both vascular smooth muscle cells and osteoclasts, with an impact on the vascular calcification and osteoporosis process. Finally, as these microRNAs may constitute useful targets to prevent or treat complications of CKD-MBD, we will discuss their potential as innovative drugs, describe how they could be delivered in a timely and specific way to vessels and bone by using the most recent techniques such as nanotechnology, viral vectors or CRISPR gene targeting.
Collapse
Affiliation(s)
- Valérie Metzinger-Le Meuth
- C.U.R.S, Laboratoire INSERM U1088, Chemin du Thil, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France; Université Paris 13, Sorbonne Paris Cité, UFR SMBH, 74 rue Marcel Cachin, 93017, Bobigny cedex, France
| | | | - Pierre Maitrias
- C.U.R.S, Laboratoire INSERM U1088, Chemin du Thil, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France; Department of Cardiovascular Surgery, Amiens University Hospital, France
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, APHP, UVSQ University, INSERM U1018 team5, Paris, France
| | - Laurent Metzinger
- C.U.R.S, Laboratoire INSERM U1088, Chemin du Thil, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France.
| |
Collapse
|
45
|
Liao C, Gui Y, Guo Y, Xu D. The regulatory function of microRNA-1 in arrhythmias. MOLECULAR BIOSYSTEMS 2016; 12:328-33. [PMID: 26671473 DOI: 10.1039/c5mb00806a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arrhythmia, the basis of which is cardiomyocyte ion channel abnormalities, poses a serious threat to human health. A large number of studies have demonstrated that miRNA-1(miR-1) is involved in the occurrence of arrhythmia in many myocardial pathological conditions by post-transcriptionally regulating a variety of ion channels and proteins related to cardiac electrical activity. We aim at emphasizing the relationship between miR-1 and ion channels and proteins involved in the process of arrhythmia. In addition, we will pay attention to its future therapeutic prospects.
Collapse
Affiliation(s)
- Caixiu Liao
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Yajun Gui
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Yuan Guo
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| | - Danyan Xu
- Department of Cardiology, Internal Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
46
|
Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49:5-32. [PMID: 27175518 PMCID: PMC4902075 DOI: 10.3892/ijo.2016.3503] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.
Collapse
|
47
|
Wong LL, Wang J, Liew OW, Richards AM, Chen YT. MicroRNA and Heart Failure. Int J Mol Sci 2016; 17:502. [PMID: 27058529 PMCID: PMC4848958 DOI: 10.3390/ijms17040502] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) imposes significant economic and public health burdens upon modern society. It is known that disturbances in neurohormonal status play an important role in the pathogenesis of HF. Therapeutics that antagonize selected neurohormonal pathways, specifically the renin-angiotensin-aldosterone and sympathetic nervous systems, have significantly improved patient outcomes in HF. Nevertheless, mortality remains high with about 50% of HF patients dying within five years of diagnosis thus mandating ongoing efforts to improve HF management. The discovery of short noncoding microRNAs (miRNAs) and our increasing understanding of their functions, has presented potential therapeutic applications in complex diseases, including HF. Results from several genome-wide miRNA studies have identified miRNAs differentially expressed in HF cohorts suggesting their possible involvement in the pathogenesis of HF and their potential as both biomarkers and as therapeutic targets. Unravelling the functional relevance of miRNAs within pathogenic pathways is a major challenge in cardiovascular research. In this article, we provide an overview of the role of miRNAs in the cardiovascular system. We highlight several HF-related miRNAs reported from selected cohorts and review their putative roles in neurohormonal signaling.
Collapse
Affiliation(s)
- Lee Lee Wong
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Juan Wang
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| | - Arthur Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
- Cardiac Department, National University Health System, Tower Block Level 9, 1E Kent Ridge Road, Singapore 119228, Singapore.
- Christchurch Heart Institute, Department of Medicine, University of Otago, PO Box 4345, Christchurch 8014, New Zealand.
| | - Yei-Tsung Chen
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, #08-01, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
48
|
Kuninty PR, Schnittert J, Storm G, Prakash J. MicroRNA Targeting to Modulate Tumor Microenvironment. Front Oncol 2016; 6:3. [PMID: 26835418 PMCID: PMC4717414 DOI: 10.3389/fonc.2016.00003] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/03/2016] [Indexed: 02/02/2023] Open
Abstract
Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor microenvironment have emerged as key players involved in the development of cancer and its progression. miRNAs are small endogenous non-protein-coding RNAs that negatively regulate the expression of multiple target genes at post-transcriptional level and thereby control many cellular processes. In this review, we provide a comprehensive overview of miRNAs dysregulated in different stromal cells and their impact on the regulation of intercellular crosstalk in the tumor microenvironment. We also discuss the therapeutic significance potential of miRNAs to modulate the tumor microenvironment. Since miRNA delivery is quite challenging and the biggest hurdle for clinical translation of miRNA therapeutics, we review various non-viral miRNA delivery systems that can potentially be used for targeting miRNA to stromal cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| | - Jonas Schnittert
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| | - Gert Storm
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands; Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Jai Prakash
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| |
Collapse
|
49
|
miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 2015; 7:1771-92. [PMID: 26399457 DOI: 10.4155/fmc.15.107] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
miRNAs are small non-coding RNAs (ncRNAs), which regulate gene expression. Here, the authors describe the contribution of miRNAs to cardiac biology and disease. They discuss various strategies for manipulating miRNA activity including antisense oligonucleotides (antimiRs, blockmiRs), mimics, miRNA sponges, Tough Decoys and miRNA mowers. They review developments in chemistries (e.g., locked nucleic acid) and modifications (sugar, 'ZEN', peptide nucleic acids) and miRNA delivery tools (viral vectors, liposomes, nanoparticles, pHLIP). They summarize potential miRNA therapeutic targets for heart disease based on preclinical studies. Finally, the authors review current progress of miRNA therapeutics in clinical development for HCV and cancer, and discuss challenges that will need to be overcome for similar therapies to enter the clinic for patients with cardiac disease.
Collapse
|
50
|
M'Baya-Moutoula E, Louvet L, Metzinger-Le Meuth V, Massy ZA, Metzinger L. High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2202-12. [PMID: 26255635 DOI: 10.1016/j.bbadis.2015.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/21/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023]
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a common complication of CKD, and uremic toxins have been shown to be instrumental in this process. We have previously shown that miR-223 is increased in smooth muscle cells subjected to the uremic toxin inorganic phosphate (Pi). In the present study we investigated the influence of this miRNA in osteoclastogenesis in order to elucidate its role in the course of CKD-MBD. RT-qPCR demonstrated that high Pi concentration decreased miR-223 expression in differentiated RAW 264.7 cells. Up- and down-regulation of miR-223 was performed using specific pre-miR and anti-miR-223. Differentiation of monocyte/macrophage precursors was assessed by using RAW 264.7 cells and peripheral blood mononuclear cells (PBMC). TRAP activity and bone resorption were used to measure osteoclast activity. Pi induced a marked decrease in osteoclastogenesis in RAW cells and miR-223 levels were concomitantly decreased. Anti-miR-223 treatment inhibited osteoclastogenesis in the same way as Pi. In contrast, overexpression of miR-223 triggered differentiation, as reflected by TRAP activity. We showed that miR-223 affected the expression of its target genes NFIA and RhoB, but also osteoclast marker genes and the Akt signalling pathway, which induces osteoclastogenesis. These results were confirmed by measuring bone resorption activity of human PBMC differentiated into osteoclasts. We thus demonstrate a role of miR-223 in osteoclast differentiation, with rational grounds to use deregulation of this miRNA to selectively increase osteoclast-like activity in calcified vessels of CKD-MBD. This approach could alleviate vascular calcification without altering bone structure.
Collapse
Affiliation(s)
| | - Loïc Louvet
- INSERM U1088, CURS, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054 Amiens, France
| | - Valérie Metzinger-Le Meuth
- INSERM U1088, CURS, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054 Amiens, France; University Paris 13, UFR SMBH, 74 rue Marcel Cachin, F-93017 Bobigny, France
| | - Ziad A Massy
- INSERM U1088, CURS, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054 Amiens, France; Division of Nephrology, Ambroise Paré Hospital, Paris Ile de France Ouest (UVSQ) University, 09 Avenue Charles de Gaulle 92100 Boulogne Billancourt Cedex, France
| | - Laurent Metzinger
- INSERM U1088, CURS, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054 Amiens, France; Centre De Biologie Humaine (CBH), Amiens University Hospital, F-80054 Amiens, France.
| |
Collapse
|