1
|
Xiong Y, Ma Y, Lei J, Zhu J, Xie N, Tian F, Lu Q, Wen M, Zheng Q, Han Y, Jiang T, Liu Y. Highly proliferating cancer cells function as novel prognostic biomarkers for lung adenocarcinoma with particular usefulness for stage IA risk stratification. BMC Cancer 2025; 25:25. [PMID: 39773365 PMCID: PMC11707901 DOI: 10.1186/s12885-024-13308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The refinement of risk stratification in lung adenocarcinoma (LUAD) plays a pivotal role in advancing precision medicine; however, the current staging classification falls short of comprehensiveness, particularly in the case of stage IA patients. We aimed to molecularly stratify LUAD patients especially for stage IA. METHODS We analysed tumour heterogeneity and identified highly proliferating cancer cells (HPCs) in LUAD by performing single-cell RNA sequencing (scRNA-seq) analysis, immunohistochemical (IHC) staining using a tissue microarray, flow cytometry and biological experiments. Then, we quantified the content of HPCs in nine LUAD datasets by single-sample gene set enrichment analysis and evaluated the relationship between the percentage of HPCs and overall survival (OS). Next, we analysed the OS predictive effect of HPCs at different LUAD stages, especially for stage I risk stratification. Furthermore, we established a prognostic prediction model based on HPC-associated genes for clinical application. The above findings were validated in another five LUAD datasets. Finally, we explored the relationship between HPCs and the progressive pathological evolution of early-stage LUAD and the driving mutations by scRNA-seq, bulk RNA-seq and IHC staining. RESULTS LUAD tissues carry a small proportion of HPCs, which show potential for malignant proliferation and intense interactions with the microenvironment. A high HPC content is an independent risk factor for OS in LUAD patients, even in stage IA patients. HPCs can be used to establish a cut-off point for the prognosis of stage IA disease, with patients with a higher risk showing a prognosis similar to that of patients with stage IB disease. We built an R package (HSurADs) based on HPC-associated genes, which exhibited good efficacy for the prognostic prediction of LUAD. HPCs gradually increase with the pathological evolution of early-stage LUAD, which may be affected by TP53 mutations. CONCLUSION The HPC content can be used as a novel prognostic factor for LUAD, especially for stage IA risk stratification.
Collapse
Affiliation(s)
- Yanlu Xiong
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Innovation Center for Advanced Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongfu Ma
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Nianlin Xie
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Zheng
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Thoracic Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Yang Liu
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Shao G, Wang X, Zheng Y, Ma J, Wang L, Yan Z, Sun Z, Zhang S, Wu H, Lv Y, Huang H, Li J, Zhu T, Yang B, Wang N, Chen T, Guo X, Jin Y, Kang J, Wang H, Cao Y, Fu C. Identification of ANXA1 as a Novel Upstream Negative Regulator of Notch1 Function in AML. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409726. [PMID: 39447086 DOI: 10.1002/advs.202409726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Abnormal Notch1 expression has an important role in tumorigenesis. However, upstream control mechanisms for Notch1 are still insufficiently understood. Acute myeloid leukemia (AML) is one of the most common and lethal blood malignancies with limited possibilities for treatment. Thus, new therapeutic targets are urgently needed to improve current ineffective therapies. Herein, high Annexin A1 (ANXA1) expression is found correlated with hyperproliferation of AML cells, and then ANXA1 is identified as a novel negative regulator of Notch1 function in AML. Mechanistically, ANXA1 directly bound to the intracellular domain of Notch1 (NICD) to target this tumor suppressor for degradation. Furthermore, NICD executed its tumor suppressive function through activation of the p15 promoter. Thus, ablation of the Notch1-p15-mediated tumor suppression by ANXA1 provided a novel mechanism of AML proliferation. In human AML patients, a mutual exclusive relation is discovered between ANXA1 and Notch1/p15, corroborating mechanistic discovery. On the basis of these results, it is reasonably speculated that targeting ANXA1 would provide an effective approach for treatment of AML. In support of this new therapeutic paradigm, provided proof-of-concept data by antagonizing ANXA1 using NICD inhibitory peptides.
Collapse
Affiliation(s)
- Gang Shao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Department of Oncology, No.903 Hospital of PLA Joint Logistic Support Force, Hangzhou, 310013, China
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xi Wang
- Department of Oncology, No.903 Hospital of PLA Joint Logistic Support Force, Hangzhou, 310013, China
| | - Yiting Zheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junjie Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuyuan Zhang
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Hongzhang Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yudie Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Hemiao Huang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianhu Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tianyi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Nanxi Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Tao Chen
- Sartorius (Shanghai) Trading Co., Ltd., Shanghai, 200120, China
| | - Xuancheng Guo
- Hangzhou Acnovia Biotech Co., Ltd., Hangzhou, 310018, China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Jian Kang
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Lin K, Hou Y, Li R, Fan F, Hao Y, Wang Y, Huang Y, Li P, Zhu L, Huang X, Zhao YQ. Annexin-A1 tripeptide enhances functional recovery and mitigates brain damage in traumatic brain injury by inhibiting neuroinflammation and preventing ANXA1 nuclear translocation in mice. Metab Brain Dis 2024; 39:1559-1571. [PMID: 39120851 DOI: 10.1007/s11011-024-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
This study explores the role and mechanism of Annexin-A1 Tripeptide (ANXA1sp) in mitigating neuronal damage and promoting functional recovery in a mouse model of traumatic brain injury (TBI). Our goal is to identify ANXA1sp as a potential therapeutic drug candidate for TBI treatment. Adult male C57BL/6J mice were subjected to controlled cortical impact (CCI) to simulate TBI, supplemented by an in vitro model of glutamate-induced TBI in HT22 cells. We assessed neurological deficits using the Modified Neurological Severity Score (mNSS), tested sensorimotor functions with beam balance and rotarod tests, and evaluated cognitive performance via the Morris water maze. Neuronal damage was quantified using Nissl and TUNEL staining, while microglial activation and inflammatory responses were measured through immunostaining, quantitative PCR (qPCR), Western blotting, and ELISA. Additionally, we evaluated cell viability in response to glutamate toxicity using the Cell Counting Kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release. Intraperitoneal administration of ANXA1sp significantly enhanced neurological outcomes, markedly reducing sensorimotor and cognitive impairments caused by TBI. This treatment resulted in a significant reduction in lesion volume and decreased neuronal cell death in the ipsilateral cortex. Moreover, ANXA1sp effectively diminished microglial activation around the brain lesion and decreased the levels of pro-inflammatory markers such as IL-6, IL-1β, TNF-α, and TGF-β in the cortex, indicating a significant reduction in neuroinflammation post-TBI. ANXA1sp also offered protection against neuronal cell death induced by glutamate toxicity, primarily by inhibiting the nuclear translocation of ANXA1, highlighting its potential as a neuroprotective strategy in TBI management. Administration of ANXA1sp significantly reduced neuroinflammation and neuronal cell death, primarily by blocking the nuclear translocation of ANXA1. This treatment substantially reduced brain damage and improved neurological functional recovery after TBI. Consequently, ANXA1sp stands out as a promising neuroprotective agent for TBI therapy.
Collapse
Affiliation(s)
- Kai Lin
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yuejiao Hou
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruxin Li
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fengyan Fan
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yinan Hao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yuan Wang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yue Huang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Peng Li
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Lingling Zhu
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Yong-Qi Zhao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
4
|
Song F, Li J, Shi Q, Wong YK, Liu D, Lin Q, Wang J, Chen X. Quantitative Chemical Proteomics Reveals Triptolide Selectively Inhibits HCT116 Human Colon Cancer Cell Viability and Migration Through Binding to Peroxiredoxin 1 and Annexin A1. Adv Biol (Weinh) 2024; 8:e2300452. [PMID: 37794608 DOI: 10.1002/adbi.202300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Triptolide (TPL), a natural product extracted from Tripterygium wilfordii Hook F, exerts potential anti-cancer activity. Studies have shown that TPL is involved in multiple cellular processes and signal pathways; however, its pharmaceutical activity in human colorectal cancer (CRC) as well as the underlying molecular mechanism remain elusive. In this study, the effects of TPL on HCT116 human colon cancer cells and CCD841 human colon epithelial cells are first evaluated. Next, the protein targets of TPL in HCT116 cells are identified through an activity-based protein profiling approach. With subsequent in vitro experiments, the mode of action of TPL in HCT116 cells is elucidated. As a result, TPL is found to selectively inhibit HCT116 cell viability and migration. A total of 54 proteins are identified as the targets of TPL in HCT116 cells, among which, Annexin A1 (ANXA1) and Peroxiredoxin I/II (Prdx I/II) are picked out for further investigation due to their important role in CRC. The interaction between TPL and ANXA1 or Prdx I is confirmed, and it is discovered that TPL exerts inhibitory effect against HCT116 cells through binding to ANXA1 and Prdx I. The study reinforces the potential of TPL in the CRC therapy, and provides novel therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Fangli Song
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10700, China
| | - Jinglin Li
- Department of biological Sciences, National University of Singapore, Singapore, 117600, Singapore
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10700, China
| | - Yin Kwan Wong
- Department of biological Sciences, National University of Singapore, Singapore, 117600, Singapore
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10700, China
| | - Qingsong Lin
- Department of biological Sciences, National University of Singapore, Singapore, 117600, Singapore
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 10700, China
| | - Xiao Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
5
|
Abegunde SO, Grieve S, Reiman T. TAZ downregulated ANXA1 expression to modulate myeloma cell interactions with bone marrow mesenchymal stromal cells. Exp Hematol 2024; 138:104282. [PMID: 39032857 DOI: 10.1016/j.exphem.2024.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
We and others have previously shown that TAZ plays a tumor suppressive role in multiple myeloma. However, recent reports suggest that molecular crosstalk between the myeloma cells and bone marrow stromal components contributes to the myeloma cell survival and drug resistance. These reports further point to reciprocal interaction via adhesion molecules as the most prominent mechanism of intercellular crosstalk between myeloma cells and bone marrow mesenchymal stromal cells (BM-MSCs). YAP/TAZ silencing/expression has been shown to correlate across all cancers with a set of adhesion/extracellular matrix proteins. Therefore, we hypothesized that TAZ may regulate myeloma cell interaction with BM stromal cells by influencing the expression of distinct cell adhesion signatures. We used previously established TAZ myeloma cell line models, including DELTA47-pLENTI or TAZ knockout DELTA47 cells cocultured with or without BM-MSCs, as our study models. Using RNA sequencing analysis, we performed the first comprehensive screen for cell adhesion-related transcriptional targets of TAZ in multiple myeloma (MM). In doing so, we uncovered an enrichment of cell adhesion-related genes in TAZ knockout DELTA47 cells relatively to pLENTI-DELTA47 cells, including 11 genes with log2 fold change > 2 (p < 0.05), namely, ANXA1, ADGRL2, NCAM1, NCAM2, ADGRL3, CXADR, ALCAM, JAM2, KIRREL1, KIRREL2, and ADGRG7, suggesting possible relationship with TAZ. We validated ANXA1 as a bona fide target of TAZ in MM. We show that TAZ represses myeloma cell migration and interaction with BM-MSCs by transcriptionally downregulating ANXA1 expression via TEAD-dependent mechanism. Our data provide new insights into the understanding of the role of TAZ in the intercellular communication signals between myeloma cells and BM-MSCs. Our findings also suggest that ANXA1 represents a putative cell adhesion target to attenuate BM-MSC driven, tumor-promoting interaction with myeloma cells.
Collapse
Affiliation(s)
- Samuel O Abegunde
- Department of Biology, University of New Brunswick, Saint John, NB, Canada; Dalhousie Medicine NB, Saint John, NB, Canada; Vancouver General Hospital, Vancouver, BC, Canada.
| | | | - Tony Reiman
- Department of Biology, University of New Brunswick, Saint John, NB, Canada; Dalhousie Medicine NB, Saint John, NB, Canada; Saint John Regional Hospital, Saint John, NB, Canada.
| |
Collapse
|
6
|
Waki K, Ozawa M, Ohta K, Komatsu N, Yamada A. Tumor-derived mitochondrial formyl peptides suppress tumor immunity through modification of the tumor microenvironment. Cancer Sci 2024; 115:3218-3230. [PMID: 39086034 PMCID: PMC11447925 DOI: 10.1111/cas.16266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Mitochondrial N-formylpeptides are released from damaged or dead cells to the extracellular spaces and cause inflammatory responses. The role of mitochondrial N-formylpeptides in aseptic systemic inflammatory response syndromes induced by trauma or cardiac surgery has been well investigated. However, there are no reports regarding the role of mitochondrial N-formylpeptides in cancer. In this study, we investigated the role of tumor cell-derived mitochondrial N-formylpeptides in anti-tumor immunity using knockout murine tumor cells of mitochondrial methionyl-tRNA formyltransferase (MTFMT), which catalyze N-formylation of mitochondrial DNA-encoded proteins. There was no apparent difference among the wild-type and MTFMT-knockout clones of E.G7-OVA cells with respect to morphology, mitochondrial dynamics, glycolysis and oxidative phosphorylation, oxygen consumption rate, or in vitro cell growth. In contrast, in vivo tumor growth of MTFMT-knockout cells was slower than that of wild-type cells. A reduced number of myeloid-derived suppressor cells and an increase of cytotoxic T-lymphocytes in the tumor tissues were observed in the MTFMT-knockout tumors. These results suggested that tumor cell-derived mitochondrial N-formylpeptides had a negative role in the host anti-tumor immunity through modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Kayoko Waki
- Tumor Immunology Division, Research Center for Innovative Cancer TherapyKurume UniversityKurumeFukuokaJapan
| | - Miyako Ozawa
- Tumor Immunology Division, Research Center for Innovative Cancer TherapyKurume UniversityKurumeFukuokaJapan
| | - Keisuke Ohta
- Advanced Imaging Research CenterKurume University School of MedicineKurumeFukuokaJapan
| | - Nobukazu Komatsu
- Tumor Immunology Division, Research Center for Innovative Cancer TherapyKurume UniversityKurumeFukuokaJapan
- Department of ImmunologyKurume University School of MedicineKurume, FukuokaJapan
| | - Akira Yamada
- Tumor Immunology Division, Research Center for Innovative Cancer TherapyKurume UniversityKurumeFukuokaJapan
| |
Collapse
|
7
|
Schillinger J, Koci M, Bravo-Rodriguez K, Heilmann G, Kaschani F, Kaiser M, Beuck C, Luecke H, Huber R, Hellerschmied D, Burston SG, Ehrmann M. High resolution analysis of proteolytic substrate processing. J Biol Chem 2024; 300:107812. [PMID: 39313096 PMCID: PMC11513451 DOI: 10.1016/j.jbc.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Members of the widely conserved high temperature requirement A (HtrA) family of serine proteases are involved in multiple aspects of protein quality control. In this context, they have been shown to efficiently degrade misfolded proteins or protein fragments. However, recent reports suggest that folded proteins can also be native substrates. To gain a deeper understanding of how folded proteins are initially processed and subsequently degraded into short peptides by human HTRA1, we established an integrated and quantitative approach using time-resolved mass spectrometry, CD spectroscopy, and bioinformatics. The resulting data provide high-resolution information on up to 178 individual proteolytic sites within folded ANXA1 (consisting of 346 amino acids), the relative frequency of cuts at each proteolytic site, the preferences of the protease for the amino acid sequence surrounding the scissile bond, as well as the degrees of sequential structural relaxation and unfolding of the substrate that occur during progressive degradation. Our workflow provides precise molecular insights into protease-substrate interactions, which could be readily adapted to address other posttranslational modifications such as phosphorylation in dynamic protein complexes.
Collapse
Affiliation(s)
- Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michelle Koci
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | | | - Geronimo Heilmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Hartmut Luecke
- Nova School of Science and Technology, Lisbon, Portugal; Department of Biophysics, University of California, Irvine, California, USA
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany; Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Doris Hellerschmied
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, United Kingdom
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Ganesan T, Sinniah A, Ramasamy TS, Alshawsh MA. Cracking the code of Annexin A1-mediated chemoresistance. Biochem Biophys Res Commun 2024; 725:150202. [PMID: 38885563 DOI: 10.1016/j.bbrc.2024.150202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The annexin superfamily protein, Annexin A1, initially recognized for its glucocorticoid-induced phospholipase A2-inhibitory activities, has emerged as a crucial player in diverse cellular processes, including cancer. This review explores the multifaceted roles of Anx-A1 in cancer chemoresistance, an area largely unexplored. Anx-A1's involvement in anti-inflammatory processes, its complex phosphorylation patterns, and its context-dependent switch from anti-to pro-inflammatory in cancer highlights its intricate regulatory mechanisms. Recent studies highlight Anx-A1's paradoxical roles in different cancers, exhibiting both up- and down-regulation in a tissue-specific manner, impacting different hallmark features of cancer. Mechanistically, Anx-A1 modulates drug efflux transporters, influences cancer stem cell populations, DNA damages and participates in epithelial-mesenchymal transition. This review aims to explore Anx-A1's role in chemoresistance-associated pathways across various cancers, elucidating its impact on survival signaling cascades including PI3K/AKT, MAPK/ERK, PKC/JNK/P-gp pathways and NFκ-B signalling. This review also reveals the clinical implications of Anx-A1 dysregulation in treatment response, its potential as a prognostic biomarker, and therapeutic targeting strategies, including the promising Anx-A1 N-terminal mimetic peptide Ac2-26. Understanding Anx-A1's intricate involvement in chemoresistance offers exciting prospects for refining cancer therapies and improving treatment outcomes.
Collapse
Affiliation(s)
- Thanusha Ganesan
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia.
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University Malaya, 50603, Kuala, Lumpur, Malaysia; School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| |
Collapse
|
9
|
Alherz FA. Human sulfotransferase SULT2B1 physiological role and the impact of genetic polymorphism on enzyme activity and pathological conditions. Front Genet 2024; 15:1464243. [PMID: 39280099 PMCID: PMC11392796 DOI: 10.3389/fgene.2024.1464243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Human SULT2B1gene is responsible for expressing SULT2B1a and SULT2B1b enzymes, which are phase II metabolizing enzymes known as pregnenolone and cholesterol sulfotransferase (SULT), respectively. They are expressed in several tissues and contribute to steroids and hydroxysteroids homeostasis. Genetic variation of the SULT2B1 is reported to be associated with various pathological conditions, including autosomal recessive ichthyosis, cardiovascular disease, and different types of cancers. Understanding the pathological impact of SULT2B1 genetic polymorphisms in the human body is crucial to incorporating these findings in evaluating clinical conditions or improving therapeutic efficacy. Therefore, this paper summarized the most relevant reported studies concerning SULT2B1 expression, tissue distribution, substrates, and reported genetic polymorphisms and their mechanisms in enzyme activity and pathological conditions.
Collapse
Affiliation(s)
- Fatemah A Alherz
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Gao H, Xia M, Ruan H. Knockdown of sulfotransferase 2B1 suppresses cell migration, invasion and promotes apoptosis in ovarian carcinoma cells via targeting annexin A9. J Obstet Gynaecol Res 2024; 50:1334-1344. [PMID: 38777329 DOI: 10.1111/jog.15969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Sulfotransferase family 2B member 1 (SULT2B1) has been reported to play oncogenic role in many types of cancers. Nevertheless, the role that SULT2B1 played in ovarian cancer (OC) and the hidden molecular mechanism is obscure. METHODS Expression of SULT2B1 in OC was analyzed by GEPIA database. qRT-PCR and western blot (WB) was applied for the appraisement of SULT2B1 and Annexin A9 (ANXA9) in OC cell lines. The capabilities of cells to proliferate, migrate and invade were assessed with CCK-8 assay, wound healing assay, along with transwell assay. Cell apoptotic level was estimated utilizing flow cytometry. WB was employed for the evaluation of migration- and apoptosis-related proteins. Bioinformatic analysis and co-immunoprecipitation were used to predict and verify the combination of SULT2B1 and ANXA9. RESULTS The data showed that SULT2B1 and ANXA9 were upregulated in OC cells. SULT2B1 depletion suppressed the proliferative, migrative, and invasive capabilities of SKOV3 cells but facilitated the cell apoptosis. SULT2B1-regulated ANXA9 expression and were proved to bind to ANXA9. Additionally, ANXA9 deficiency exhibited the same impacts on cell migrative, invasive capability and apoptotic level as SULT2B1 silencing. Moreover, ANXA9 overexpression reversed the inhibitory impacts of SULT2B1 silencing on the proliferative, migrative, invasive, and apoptotic capabilities of SKOV3 cells. CONCLUSION In summary, SULT2B1 silencing repressed OC progression by targeting ANXA9.
Collapse
Affiliation(s)
- Haocheng Gao
- Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Mengjuan Xia
- Department of Central Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| | - Heqiu Ruan
- Department of Central Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, P.R. China
| |
Collapse
|
11
|
Wu D, Zhao X, Xie J, Yuan R, Li Y, Yang Q, Cheng X, Wu C, Wu J, Zhu N. Physical modulation of mesenchymal stem cell exosomes: A new perspective for regenerative medicine. Cell Prolif 2024; 57:e13630. [PMID: 38462759 PMCID: PMC11294442 DOI: 10.1111/cpr.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exo) offer promising therapeutic potential for various refractory diseases, presenting a novel therapeutic strategy. However, their clinical application encounters several obstacles, including low natural secretion, uncontrolled biological functions and inherent heterogeneity. On the one hand, physical stimuli can mimic the microenvironment dynamics where MSC-Exo reside. These factors influence not only their secretion but also, significantly, their biological efficacy. Moreover, physical factors can also serve as techniques for engineering exosomes. Therefore, the realm of physical factors assumes a crucial role in modifying MSC-Exo, ultimately facilitating their clinical translation. This review focuses on the research progress in applying physical factors to MSC-Exo, encompassing ultrasound, electrical stimulation, light irradiation, intrinsic physical properties, ionizing radiation, magnetic field, mechanical forces and temperature. We also discuss the current status and potential of physical stimuli-affected MSC-Exo in clinical applications. Furthermore, we address the limitations of recent studies in this field. Based on this, this review provides novel insights to advance the refinement of MSC-Exo as a therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Dan Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiansheng Zhao
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jiaheng Xie
- Department of Plastic SurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Ruoyue Yuan
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yue Li
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Quyang Yang
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiujun Cheng
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Changyue Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jinyan Wu
- Department of DermatologyChongzhou People's HospitalChengduChina
| | - Ningwen Zhu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
- Department of PlasticReconstructive and Burns Surgery, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
12
|
Xia Q, Yu Y, Zhan G, Zhang X, Gao S, Han T, Zhao Y, Li X, Wang Y. The Sirtuin 5 Inhibitor MC3482 Ameliorates Microglia‑induced Neuroinflammation Following Ischaemic Stroke by Upregulating the Succinylation Level of Annexin-A1. J Neuroimmune Pharmacol 2024; 19:17. [PMID: 38717643 DOI: 10.1007/s11481-024-10117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/21/2024] [Indexed: 06/07/2024]
Abstract
In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.
Collapse
Affiliation(s)
- Qian Xia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongbo Yu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuai Gao
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Tangrui Han
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yilin Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xing Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yonghong Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
13
|
Luo R, Liu J, Wen J, Zhou X. Single-cell Landscape of Malignant Transition: Unraveling Cancer Cell-of-Origin and Heterogeneous Tissue Microenvironment. RESEARCH SQUARE 2024:rs.3.rs-4085185. [PMID: 38645221 PMCID: PMC11030487 DOI: 10.21203/rs.3.rs-4085185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Understanding disease progression and sophisticated tumor ecosystems is imperative for investigating tumorigenesis mechanisms and developing novel prevention strategies. Here, we dissected heterogeneous microenvironments during malignant transitions by leveraging data from 1396 samples spanning 13 major tissues. Within transitional stem-like subpopulations highly enriched in precancers and cancers, we identified 30 recurring cellular states strongly linked to malignancy, including hypoxia and epithelial senescence, revealing a high degree of plasticity in epithelial stem cells. By characterizing dynamics in stem-cell crosstalk with the microenvironment along the pseudotime axis, we found differential roles of ANXA1 at different stages of tumor development. In precancerous stages, reduced ANXA1 levels promoted monocyte differentiation toward M1 macrophages and inflammatory responses, whereas during malignant progression, upregulated ANXA1 fostered M2 macrophage polarization and cancer-associated fibroblast transformation by increasing TGF-β production. Our spatiotemporal analysis further provided insights into mechanisms responsible for immunosuppression and a potential target to control evolution of precancer and mitigate the risk for cancer development.
Collapse
Affiliation(s)
| | - Jiajia Liu
- The University of Texas Health Science Center at Houston
| | - Jianguo Wen
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston
| |
Collapse
|
14
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
15
|
Hu J, Chen L, Ruan J, Chen X. The role of the annexin A protein family at the maternal-fetal interface. Front Endocrinol (Lausanne) 2024; 15:1314214. [PMID: 38495790 PMCID: PMC10940358 DOI: 10.3389/fendo.2024.1314214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Successful pregnancy requires the tolerance of the maternal immune system for the semi-allogeneic embryo, as well as a synchrony between the receptive endometrium and the competent embryo. The annexin family belongs to calcium-regulated phospholipid-binding protein, which functions as a membrane skeleton to stabilize the lipid bilayer and participate in various biological processes in humans. There is an abundance of the annexin family at the maternal-fetal interface, and it exerts a crucial role in embryo implantation and the subsequent development of the placenta. Altered expression of the annexin family and dysfunction of annexin proteins or polymorphisms of the ANXA gene are involved in a range of pregnancy complications. In this review, we summarize the current knowledge of the annexin A protein family at the maternal-fetal interface and its association with female reproductive disorders, suggesting the use of ANXA as the potential therapeutic target in the clinical diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Jingwen Hu
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Lin Chen
- Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Ruan
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
- Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Al-Ali HN, Crichton SJ, Fabian C, Pepper C, Butcher DR, Dempsey FC, Parris CN. A therapeutic antibody targeting annexin-A1 inhibits cancer cell growth in vitro and in vivo. Oncogene 2024; 43:608-614. [PMID: 38200229 PMCID: PMC10873194 DOI: 10.1038/s41388-023-02919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
In this study we conducted the first investigation to assess the efficacy of a novel therapeutic antibody developed to target annexin-A1 (ANXA1). ANXA1 is an immunomodulatory protein which has been shown to be overexpressed in, and promote the development and progression of, several cancer types. In particular, high ANXA1 expression levels correlate with poorer overall survival in pancreatic and triple-negative breast cancers, two cancers with considerable unmet clinical need. MDX-124 is a humanised IgG1 monoclonal antibody which specifically binds to ANXA1 disrupting its interaction with formyl peptide receptors 1 and 2 (FPR1/2). Here we show that MDX-124 significantly reduced proliferation (p < 0.013) in a dose-dependent manner across a panel of human cancer cell lines expressing ANXA1. The anti-proliferative effect of MDX-124 is instigated by arresting cell cycle progression with cancer cells accumulating in the G1 phase of the cell cycle. Furthermore, MDX-124 significantly inhibited tumour growth in both the 4T1-luc triple-negative breast and Pan02 pancreatic cancer syngeneic mouse models (p < 0.0001). These findings suggest ANXA1-targeted therapy is a viable and innovative approach to treat tumours which overexpress ANXA1.
Collapse
Affiliation(s)
- Hussein N Al-Ali
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK
| | - Scott J Crichton
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Charlene Fabian
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, Medical Research Building, Falmer, Brighton, BN1 9PX, UK
| | - David R Butcher
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK
| | - Fiona C Dempsey
- Medannex Ltd, 1 Lochrin Square, 92-98 Fountainbridge, Edinburgh, Scotland, EH3 9QA, UK
| | - Christopher N Parris
- Anglia Ruskin University, School of Life Science, Faculty of Science and Engineering, East Road, Cambridge, CB1 1PT, UK.
| |
Collapse
|
17
|
Zheng Y, Jiang H, Yang N, Shen S, Huang D, Jia L, Ling J, Xu L, Li M, Yu K, Ren X, Cui Y, Lan X, Lin S, Lin X. Glioma-derived ANXA1 suppresses the immune response to TLR3 ligands by promoting an anti-inflammatory tumor microenvironment. Cell Mol Immunol 2024; 21:47-59. [PMID: 38049523 PMCID: PMC10757715 DOI: 10.1038/s41423-023-01110-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
A highly immunosuppressive tumor microenvironment (TME) and the presence of the blood‒brain barrier are the two major obstacles to eliciting an effective immune response in patients with high-grade glioma (HGG). Here, we tried to enhance the local innate immune response in relapsed HGG by intracranially injecting poly(I:C) to establish a robust antitumor immune response in this registered clinical trial (NCT03392545). During the follow-up, 12/27 (44.4%) patients who achieved tumor control concomitant with survival benefit were regarded as responders in our study. We found that the T-cell receptor (TCR) repertoire in the TME was reshaped after poly(I:C) treatment. Based on the RNA-seq analysis of tumor samples, the expression of annexin A1 (ANXA1) was significantly upregulated in the tumor cells of nonresponders, which was further validated at the protein level. In vitro and in vivo experiments showed that ANXA1 could induce the production of M2-like macrophages and microglia via its surface receptor formyl peptide receptor 1 (FPR1) to establish a Treg cell-driven immunosuppressive TME and suppress the antitumor immune response facilitated by poly(I:C). The ANXA1/FPR1 signaling axis can inhibit the innate immune response of glioma patients by promoting an anti-inflammatory and Treg-driven TME. Moreover, ANXA1 could serve as a reliable predictor of response to poly(I:C), with a notable predictive accuracy rate of 92.3%. In light of these notable findings, this study unveils a new perspective of immunotherapy for gliomas.
Collapse
Affiliation(s)
- Yu Zheng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haihui Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Naixue Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shaoping Shen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Daosheng Huang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Lemei Jia
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Ling
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Longchen Xu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Kefu Yu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China
| | - Xun Lan
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China. National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China.
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
18
|
Dai X, Hu Y, Jiang L, Lei L, Fu C, Wu S, Zhang X, Zhu L, Zhang F, Chen J, Zeng Q. Decreased oxidative stress response and oxidant detoxification of skin during aging. Mech Ageing Dev 2023; 216:111878. [PMID: 37827221 DOI: 10.1016/j.mad.2023.111878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Oxidative stress plays an important role in the skin aging process; however, the mechanisms are not fully elucidated. Especially the changes in various types of skin cells with aging and the key oxidative stress-related genes that play a regulatory role are not clear. In this study, single-cell RNA sequencing data and microarray transcriptome data were used to explore the changes in oxidative stress response and oxidant detoxification capacity of skin cells during aging and oxidative stress-related genes potentially involved in regulating skin aging were searched. The oxidative stress response and oxidant detoxification ability were weakened in the elderly compared with those of the young. Among the different types of skin cells, keratinocytes, melanocytes, vascular endothelial cells, fibroblasts, and lymphatic endothelial cells exhibited a stronger oxidative stress response and oxidant detoxification ability, while immune cells exhibited a weaker oxidative stress response and detoxification capacity. During aging, the oxidative stress response and oxidant detoxification capacity of keratinocytes, fibroblasts, macrophages, and vascular endothelial cells were significantly weakened. Annexin A1 (ANXA1) and Apolipoprotein E (APOE) may be key oxidative stress-related genes affecting skin aging.
Collapse
Affiliation(s)
- Xixia Dai
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Songjiang Wu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaolin Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lu Zhu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Fan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
19
|
Abd El-Salam M, El-Tanbouly G, Bastos J, Metwaly H. Suppression of VEGF and inflammatory cytokines, modulation of Annexin A1 and organ functions by galloylquinic acids in breast cancer model. Sci Rep 2023; 13:12268. [PMID: 37507468 PMCID: PMC10382581 DOI: 10.1038/s41598-023-37654-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
The ongoing development of novel drugs for breast cancer aims to improve therapeutic outcomes, reduce toxicities, and mitigate resistance to chemotherapeutic agents. Doxorubicin (Dox) is known for its significant side effects caused by non-specific cytotoxicity. In this study, we investigated the antitumor activity of galloylquinic acids (BF) and the beneficial role of their combination with Dox in an Ehrlich ascites carcinoma (EAC)-bearing mouse model, as well as their cytotoxic effect on MCF-7 cells. The EAC-mice were randomized into five experimental groups: normal saline, Dox (2 mg/kg, i.p), BF (150 mg/kg, orally), Dox and BF combined mixture, and a control group. Mice were subjected to a 14-day treatment regimen. Results showed that BF compounds exerted chemopreventive effects in EAC mice group by increasing mean survival time, decreasing tumor volume, inhibiting ascites tumor cell count, modulating body weight changes, and preventing multi-organ histopathological alterations. BF suppressed the increased levels of inflammatory mediators (IL-6 and TNF-α) and the angiogenic marker VEGF in the ascitic fluid. In addition, BF and their combination with Dox exhibited significant cytotoxic activity on MCF-7 cells by inhibiting cell viability and modulating Annexin A1 level. Moreover, BF treatments could revert oxidative stress, restore liver and kidney functions, and normalize blood cell counts.
Collapse
Affiliation(s)
- Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland.
| | - Ghada El-Tanbouly
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Jairo Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Heba Metwaly
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21500, Egypt.
| |
Collapse
|
20
|
Moreli JB, Santos MRD, Calderon IDMP, Hebeda CB, Farsky SHP, Bevilacqua E, Oliani SM. The Role of Annexin A1 in DNA Damage Response in Placental Cells: Impact on Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:10155. [PMID: 37373303 DOI: 10.3390/ijms241210155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The functions of annexin A1 (ANXA1), which is expressed on membranes and in cytoplasmic granules, have been fully described. Nonetheless, the role of this protein in protecting against DNA damage in the nucleus is still emerging and requires further investigation. Here, we investigated the involvement of ANXA1 in the DNA damage response in placental cells. Placenta was collected from ANXA1 knockout mice (AnxA1-/-) and pregnant women with gestational diabetes mellitus (GDM). The placental morphology and ANXA1 expression, which are related to the modulation of cellular response markers in the presence of DNA damage, were analyzed. The total area of AnxA1-/- placenta was smaller due to a reduced labyrinth zone, enhanced DNA damage, and impaired base excision repair (BER) enzymes, which resulted in the induction of apoptosis in the labyrinthine and junctional layers. The placentas of pregnant women with GDM showed reduced expression of AnxA1 in the villous compartment, increased DNA damage, apoptosis, and a reduction of enzymes involved in the BER pathway. Our translational data provide valuable insights into the possible involvement of ANXA1 in the response of placental cells to oxidative DNA damage and represent an advancement in investigations into the mechanisms involved in placental biology.
Collapse
Affiliation(s)
- Jusciele Brogin Moreli
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
- Faceres School of Medicine (FACERES), São José do Rio Preto 15090-305, Brazil
| | - Mayk Ricardo Dos Santos
- Department of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil
| | - Iracema de Mattos Paranhos Calderon
- Graduate Program in Gynecology, Obstetrics and Mastology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Cristina Bichels Hebeda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo 05508-000, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo 05508-000, Brazil
| | - Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
| | - Sonia Maria Oliani
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
- Department of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil
- Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto 15030-070, Brazil
| |
Collapse
|
21
|
Montero-Calle A, López-Janeiro Á, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R. In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 2023; 46:697-715. [PMID: 36745330 PMCID: PMC10205863 DOI: 10.1007/s13402-023-00778-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Irene Echevarría
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | | | - Victoria Heredia-Soto
- Translational Oncology, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pablo Argüeso
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
- Functional Proteomics Unit, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
22
|
Xie W, Zou S, Dong C, Yang C. SPI1-mediated autophagy of peripheral blood monocyte cells as a mechanism for sepsis based on single-cell RNA sequencing. Int Immunopharmacol 2023; 117:109909. [PMID: 37012859 DOI: 10.1016/j.intimp.2023.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Autophagy has been documented to participate in immune responses and inflammatory diseases, but the mechanistic actions of monocyte autophagy in sepsis remain largely unknown. This study intends to analyze the mechanism of autophagy of peripheral blood monocyte cells (PBMCs) in sepsis based on single-cell RNA sequencing (scRNA-seq). The scRNA-seq data of PBMC samples from sepsis patients were downloaded from the GEO database, followed by identification of cell marker genes, key pathways and key genes. The bioinformatics analysis showed that the PBMC samples of sepsis patients mainly contained 9 immune cell types, among which three types of monocytes showed significant changes in cell numbers in sepsis patients. Of note, the highest autophagy score was found in the intermediate monocytes. The Annexin signaling pathway was a key pathway for the communication between monocytes and other cells. More importantly, SPI1 was predicted as a key gene in the autophagy phenotype of intermediate monocytes, and SPI1 might suppress ANXA1 transcription. The high expression of SPI1 in sepsis was confirmed by RT-qPCR and Western blot analysis. Dual luciferase reporter gene assay verified that SPI1 could bind to the promoter region of ANXA1. Furthermore, it was found that SPI1 might affect monocyte autophagy in the mouse model of sepsis through regulation of ANXA1. In conclusion, we provide insight into the mechanism underlying the septic potential of SPI1, which enhances monocyte autophagy by inhibiting the transcription of ANXA1 in sepsis.
Collapse
Affiliation(s)
- Wenfeng Xie
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Sainan Zou
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Chengcheng Dong
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Chunhua Yang
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China.
| |
Collapse
|
23
|
Shi X, Wu Y, Tang L, Ni H, Xu Y. Downregulated annexin A1 expression correlates with poor prognosis, metastasis, and immunosuppressive microenvironment in Ewing's sarcoma. Aging (Albany NY) 2023; 15:2321-2346. [PMID: 36988561 PMCID: PMC10085606 DOI: 10.18632/aging.204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Ewing's sarcoma (ES) is a common bone malignancy in children and adolescents that severely affects the prognosis of patients. The aim of this study was to identify novel biomarkers and potential therapeutic targets for ES. METHODS Highly prognosis-related hub genes were identified by independent prognostic analysis in the GSE17679 dataset. We then performed survival analysis, Cox regression analysis and clinical correlation analysis on the key gene and validated them with the GSE63157, GSE45544 and GSE73166 datasets. Differentially expressed genes (DEGs) were screened based on the high and low expression of key gene, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were performed to explore the underlying mechanisms of ES, and significant module genes were established based on protein-protein interaction (PPI) networks. Furthermore, the correlations between module genes and the immune microenvironment were analyzed and the correlations between the key gene and immune infiltration levels in sarcoma were investigated using TIMER and TISIDB. Finally, the expression levels of these key genes in ES cell lines (RD-ES and A673 cells) were further validated by real-time quantitative PCR (RT-qPCR). CCK-8 and EdU assays were performed to assess the effect of ANXA1 knockdown on RD-ES cell proliferation. RESULTS ANXA1 was identified as a key gene for ES prognosis. The overall survival (OS) time of patients with low ANXA1 expression was shorter, and the expression level of ANXA1 in the metastatic group was significantly lower than that in the primary group (P<0.01). Additionally, the abundance of 12 immune cells in the ANXA1 low-expression group was significantly lower than that in the high-expression group (all P<0.05), which may be related to the inhibition of the immune microenvironment. A PPI network was constructed based on 96 DEGs to further identify the five ANXA1-related module genes (COL1A2, MMP9, VIM, S100A11 and S100A4). The expression levels of ANXA1, COL1A2, MMP9, VIM, S100A11 and S100A4 were significantly different between ES cell lines and mesenchymal stem cells after validation in two ES cell lines (all P<0.01). Among these genes, ANXA1, COL1A2, MMP9, VIM and S100A4 were significantly associated with the prognosis of ES patients (all P<0.05). Importantly, ANXA1 knockdown significantly promoted the proliferation of RD-ES cells, which may explain the susceptibility to ES metastasis in the ANXA1 low-expression group. CONCLUSIONS ANXA1 may serve as an independent prognostic biomarker for ES patients and is associated with metastasis and the immunosuppressive microenvironment in ES, which needs to be validated in further studies.
Collapse
Affiliation(s)
- Xiangwen Shi
- Kunming Medical University, Kunming, China
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| | - Yipeng Wu
- Kunming Medical University, Kunming, China
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| | - Linmeng Tang
- Bone and Joint Imaging Center, Department of Medical Imaging and Radiology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Haonan Ni
- Kunming Medical University, Kunming, China
| | - Yongqing Xu
- Laboratory of Yunnan Traumatology and Orthopedics Clinical Medical Center, Yunnan Orthopedics and Sports Rehabilitation Clinical Medical Research Center, Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| |
Collapse
|
24
|
Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan W, Lin L, Xiang T, Yang J, Zhao X, Xi Y, Ma Y, Cheng G, Lin D, Wu C. Epithelial cells activate fibroblasts to promote esophageal cancer development. Cancer Cell 2023; 41:903-918.e8. [PMID: 36963399 DOI: 10.1016/j.ccell.2023.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
Esophageal squamous-cell carcinoma (ESCC) develops through multistage epithelial cancer formation, i.e., from normal epithelium, low- and high-grade intraepithelial neoplasia to invasive carcinoma. However, how the precancerous lesions progress to carcinoma remains elusive. Here, we report a comprehensive single-cell RNA sequencing and spatial transcriptomic study of 79 multistage esophageal lesions from 29 patients with ESCC. We reveal a gradual and significant loss of ANXA1 expression in epithelial cells due to its transcription factor KLF4 suppression along the lesion progression. We demonstrate that ANXA1 is a ligand to formyl peptide receptor type 2 (FPR2) on fibroblasts that maintain fibroblast homeostasis. Loss of ANXA1 leads to uncontrolled transformation of normal fibroblasts into cancer-associated fibroblasts (CAFs), which can be enhanced by secreted TGF-β from malignant epithelial cells. Given the role of CAFs in cancer, our study underscores ANXA1/FPR2 signaling as an important crosstalk mechanism between epithelial cells and fibroblasts in promoting ESCC.
Collapse
Affiliation(s)
- Yamei Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenyi Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
25
|
Flores BCT, Chawla S, Ma N, Sanada C, Kujur PK, Yeung R, Bellon MB, Hukari K, Fowler B, Lynch M, Chinen LTD, Ramalingam N, Sengupta D, Jeffrey SS. Microfluidic live tracking and transcriptomics of cancer-immune cell doublets link intercellular proximity and gene regulation. Commun Biol 2022; 5:1231. [DOI: 10.1038/s42003-022-04205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractCell–cell communication and physical interactions play a vital role in cancer initiation, homeostasis, progression, and immune response. Here, we report a system that combines live capture of different cell types, co-incubation, time-lapse imaging, and gene expression profiling of doublets using a microfluidic integrated fluidic circuit that enables measurement of physical distances between cells and the associated transcriptional profiles due to cell–cell interactions. We track the temporal variations in natural killer—triple-negative breast cancer cell distances and compare them with terminal cellular transcriptome profiles. The results show the time-bound activities of regulatory modules and allude to the existence of transcriptional memory. Our experimental and bioinformatic approaches serve as a proof of concept for interrogating live-cell interactions at doublet resolution. Together, our findings highlight the use of our approach across different cancers and cell types.
Collapse
|
26
|
Wu C, Qiu T, Yuan W, Shi Y, Yao X, Jiang L, Zhang J, Yang G, Liu X, Bai J, Zhao D, Sun X. Annexin A1 inhibition facilitates NLRP3 inflammasome activation in arsenic-induced insulin resistance in rat liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103981. [PMID: 36182042 DOI: 10.1016/j.etap.2022.103981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Hepatic insulin resistance (IR) is the primary pathology of type 2 diabetes (T2D). The role of the NOD-like receptor protein 3 (NLRP3) inflammasome in arsenic-induced hepatic IR has been previously demonstrated. However, the mechanism of the arsenic-induced activation of the NLRP3 inflammasome is still unclear. Here, we demonstrate that NaAsO2 downregulated the mRNA and protein level of Annexin A1 (AnxA1), an anti-inflammatory factor, in rat livers and L-02 cells. Moreover, AnxA1 overexpression significantly alleviated arsenic-induced NLRP3 inflammasome activation and IR in L-02 cells. Importantly, Co-immunoprecipitation (Co-IP) results showed that AnxA1 1-190 peptide could bind to the domain encompassing amino acids 1-210 and 211-550 of NLRP3. In conclusion, our experiments demonstrated that arsenic exposure could activate the NLRP3 inflammasome and IR by inhibiting the AnxA1 activity. These findings suggest that AnxA1 may be a promising therapeutic target of arsenicosis.
Collapse
Affiliation(s)
- Chenbing Wu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Weizhuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Yan Shi
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, 116044, PR China.
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Jie Bai
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Danyi Zhao
- Department of Gastrointestinal Oncology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
27
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Jia Q, Hao RJL, Lu XJ, Sun SQ, Shao JJ, Su X, Huang QF. Identification of hub biomarkers and immune cell infiltration characteristics of polymyositis by bioinformatics analysis. Front Immunol 2022; 13:1002500. [PMID: 36225941 PMCID: PMC9548705 DOI: 10.3389/fimmu.2022.1002500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Polymyositis (PM) is an acquirable muscle disease with proximal muscle involvement of the extremities as the main manifestation; it is a category of idiopathic inflammatory myopathy. This study aimed to identify the key biomarkers of PM, while elucidating PM-associated immune cell infiltration and immune-related pathways. Methods The gene microarray data related to PM were downloaded from the Gene Expression Omnibus database. The analyses using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) networks were performed on differentially expressed genes (DEGs). The hub genes of PM were identified using weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) algorithm, and the diagnostic accuracy of hub markers for PM was assessed using the receiver operating characteristic curve. In addition, the level of infiltration of 28 immune cells in PM and their interrelationship with hub genes were analyzed using single-sample GSEA. Results A total of 420 DEGs were identified. The biological functions and signaling pathways closely associated with PM were inflammatory and immune processes. A series of four expression modules were obtained by WGCNA analysis, with the turquoise module having the highest correlation with PM; 196 crossover genes were obtained by combining DEGs. Subsequently, six hub genes were finally identified as the potential biomarkers of PM using LASSO algorithm and validation set verification analysis. In the immune cell infiltration analysis, the infiltration of T lymphocytes and subpopulations, dendritic cells, macrophages, and natural killer cells was more significant in the PM. Conclusion We identified the hub genes closely related to PM using WGCNA combined with LASSO algorithm, which helped clarify the molecular mechanism of PM development and might have great significance for finding new immunotherapeutic targets, and disease prevention and treatment.
Collapse
Affiliation(s)
- Qi Jia
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Rui-Jin-Lin Hao
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiao-Jian Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu-Qing Sun
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jun-Jie Shao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xing Su
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Qing-Feng Huang, ; Xing Su,
| | - Qing-Feng Huang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- *Correspondence: Qing-Feng Huang, ; Xing Su,
| |
Collapse
|
29
|
Pearanpan L, Nordin FJ, Siew EL, Kumolosasi E, Mohamad Hanif EA, Masre SF, Chua EW, Cheng HS, Rajab NF. A Cell-Based Systematic Review on the Role of Annexin A1 in Triple-Negative Breast Cancers. Int J Mol Sci 2022; 23:ijms23158256. [PMID: 35897832 PMCID: PMC9367890 DOI: 10.3390/ijms23158256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is often associated with a poorer prognosis and does not respond to hormonal therapy. Increasing evidence highlights the exploitability of Annexin A1 (AnxA1), a calcium dependent protein, as a precision medicine for TNBC. To systematically summarize the role of AnxA1 and its associated mechanisms in TNBC, we performed data mining using three main databases: PubMed, Scopus, and Ovid/Medline. The papers retrieved were based on two different sets of key words such as “Annexin A1” or “Lipocortin 1” and “Breast cancer” or “TNBC”. A total of 388 articles were identified, with 210 chosen for comprehensive screening and 13 papers that met inclusion criteria were included. Current evidence from cell culture studies showed that AnxA1 expression is correlated with NF-κB, which promotes migration by activating ERK phosphorylation. AnxaA1 also activates TGF-β signaling which upregulates MMP-9 and miR196a expression to enhance epithelial-mesenchymal transition and migratory capacity of TNBC cells. AnxA1 can steer the macrophage polarization toward the M2 phenotype to create a pro-tumor immune environment. Existing research suggests a potential role of AnxA1 in the metastasis and immune landscape of TNBC tumors. Preclinical and clinical experiments are warranted to investigate the feasibility and effectiveness of targeting AnxA1 in TNBC.
Collapse
Affiliation(s)
- Lishantini Pearanpan
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
| | - Fariza Juliana Nordin
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Ee Ling Siew
- ASASIpintar Program, Pusat Genius@Pintar Negara, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia;
- Biocompatibility and Toxicology Laboratory, Centre for Research and Instrumentation Management (CRIM), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Endang Kumolosasi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia; (E.K.); (E.W.C.)
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Siti Fathiah Masre
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Eng Wee Chua
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 50300, Malaysia; (E.K.); (E.W.C.)
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore;
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (L.P.); (F.J.N.)
- Biocompatibility and Toxicology Laboratory, Centre for Research and Instrumentation Management (CRIM), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
- Correspondence: ; Tel.: +60-3-8921-5555
| |
Collapse
|
30
|
Chen R, Chen C, Han N, Guo W, Deng H, Wang Y, Ding Y, Zhang M. Annexin-1 is an oncogene in glioblastoma and causes tumour immune escape through the indirect upregulation of interleukin-8. J Cell Mol Med 2022; 26:4343-4356. [PMID: 35770335 PMCID: PMC9344830 DOI: 10.1111/jcmm.17458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐1 (ANXA1) is widely reported to be deregulated in various cancers and is involved in tumorigenesis. However, its effects on glioblastoma (GBM) remain unclear. Using immunohistochemistry with tissue microarrays, we showed that ANXA1 was overexpressed in GBM, positively correlated with higher World Health Organization (WHO) grades of glioma, and negatively associated with poor survival. To further explore its role and the underlying molecular mechanism in GBM, we constructed ANXA1shRNA U87 and U251 cell lines for further experiments. ANXA1 downregulation suppressed GBM cell proliferation, migration, and invasion and enhanced their radiosensitivity. Furthermore, we determined that ANXA1 was involved in dendritic cell (DC) maturation in patients with GBM and that DC infiltration was inversely proportional to GBM prognosis. Considering that previous reports have shown that Interleukin‐8 (IL‐8) is associated with DC migration and maturation and is correlated with NF‐κB transcriptional regulation, we examined IL‐8 and p65 subunit expressions and p65 phosphorylation levels in GBM cells under an ANXA1 knockdown. These results suggest that ANXA1 significantly promotes IL‐8 production and p65 phosphorylation levels. We inferred that ANXA1 is a potential biomarker and a candidate therapeutic target for GBM treatment and may mediate tumour immune escape through NF‐kB (p65) activation and IL‐8 upregulation.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengqi Chen
- Department of Oncology, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanpeng Ding
- Department of Oncology, Zhongnan Hospital, Wuhan university, Wuhan, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus. Cells 2022; 11:cells11132057. [PMID: 35805141 PMCID: PMC9266233 DOI: 10.3390/cells11132057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The unbiased approaches of the last decade have enabled the collection of new data on the biology of annexin A1 (ANXA1) in a variety of scientific aspects, creating opportunities for new biomarkers and/or therapeutic purposes. ANXA1 is found in the plasma membrane, cytoplasm, and nucleus, being described at low levels in the nuclear and cytoplasmic compartments of placental cells related to gestational diabetic diseases, and its translocation from the cytoplasm to the nucleus has been associated with a response to DNA damage. The approaches presented here open pathways for reflection upon, and intrinsic clarification of, the modulating action of this protein in the response to genetic material damage, as well as its level of expression and cellular localization. The objective of this study is to arouse interest, with an emphasis on the mechanisms of nuclear translocation of ANXA1, which remain underexplored and may be beneficial in new inflammatory therapies.
Collapse
|
32
|
Zhang D, Wang W, Zhou H, Su L, Han X, Zhang X, Han W, Wang Y, Xue X. ANXA1: An Important Independent Prognostic Factor and Molecular Target in Glioma. Front Genet 2022; 13:851505. [PMID: 35711921 PMCID: PMC9193966 DOI: 10.3389/fgene.2022.851505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The expression, prognosis, and related mechanisms of ANXA1 are investigated in glioma, with the objective to find potential therapeutic molecular targets for glioma. Methods: We analyzed the gene expression of ANXA1 using glioma-related databases, including the Chinese Glioma Genome Atlas (CGGA) database, The Cancer Genome Atlas (TCGA) database, and the Gene Expression Omnibus (GEO) database. Moreover, we collected the sample tissues and corresponding paracancerous tissues of 23 glioma patients and then conducted a Western blot experiment to verify the expression and correlate survival of ANXA1. Moreover, we generated survival ROC curves, performing univariate and multivariate Cox analyses and the construction of the nomogram. Differential expression analysis was conducted by high and low grouping based on the median of the ANXA1 gene expression values. We conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Set Enrichment Analysis (GSEA) to explore possible mechanisms, and gene co-expression analysis was also performed. Results: The results showed that the ANXA1 expression level was higher in gliomas than in normal tissues, and a high expression level of ANXA1 in gliomas was associated with poorer prognosis. The independent prognosis analysis showed that the ANXA1 gene was an independent prognostic factor of glioma. In the analysis of KEGG and Gene Set Enrichment Analysis (GSEA), it is shown that ANXA1 may play an important role in glioma patients by affecting extracellular matrix (ECM)-receptor interaction and the focal adhesion signal pathway. The core genes, including COL1A1, COL1A2, FN1, ITGA1, and ITGB1, were screened for gene correlation and prognosis analysis. The expression level of the five genes was verified by qPCR in glioma. We concluded that these five core genes and ANXA1 could play a synergistic role in gliomas. Conclusion: The results indicated that a high expression level of ANXA1 leads to worse prognosis and ANXA1 is an independent prognostic factor and a potentially important target for the treatment of gliomas.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinyuan Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wei Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yu Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
33
|
Yan Z, Cheng X, Wang T, Hong X, Shao G, Fu C. Therapeutic potential for targeting Annexin A1 in fibrotic diseases. Genes Dis 2022; 9:1493-1505. [PMID: 36157506 PMCID: PMC9485289 DOI: 10.1016/j.gendis.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Annexin A1, a well-known endogenous anti-inflammatory mediator, plays a critical role in a variety of pathological processes. Fibrosis is described by a failure of tissue regeneration and contributes to the development of many diseases. Accumulating evidence supports that Annexin A1 participates in the progression of tissue fibrosis. However, the fundamental mechanisms by which Annexin A1 regulates fibrosis remain elusive, and even the functions of Annexin A1 in fibrotic diseases are still paradoxical. This review focuses on the roles of Annexin A1 in the development of fibrosis of lung, liver, heart, and other tissues, with emphasis on the therapy potential of Annexin A1 in fibrosis, and presents future research interests and directions in fibrotic diseases.
Collapse
|
34
|
Schmidinger B, Petri K, Lettl C, Li H, Namineni S, Ishikawa-Ankerhold H, Jiménez-Soto LF, Haas R. Helicobacter pylori binds human Annexins via Lipopolysaccharide to interfere with Toll-like Receptor 4 signaling. PLoS Pathog 2022; 18:e1010326. [PMID: 35176125 PMCID: PMC8890734 DOI: 10.1371/journal.ppat.1010326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 03/02/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori colonizes half of the global population and causes gastritis, peptic ulcer disease or gastric cancer. In this study, we were interested in human annexin (ANX), which comprises a protein family with diverse and partly unknown physiological functions, but with a potential role in microbial infections and possible involvement in gastric cancer. We demonstrate here for the first time that H. pylori is able to specifically bind ANXs. Binding studies with purified H. pylori LPS and specific H. pylori LPS mutant strains indicated binding of ANXA5 to lipid A, which was dependent on the lipid A phosphorylation status. Remarkably, ANXA5 binding almost completely inhibited LPS-mediated Toll-like receptor 4- (TLR4) signaling in a TLR4-specific reporter cell line. Furthermore, the interaction is relevant for gastric colonization, as a mouse-adapted H. pylori increased its ANXA5 binding capacity after gastric passage and its ANXA5 incubation in vitro interfered with TLR4 signaling. Moreover, both ANXA2 and ANXA5 levels were upregulated in H. pylori-infected human gastric tissue, and H. pylori can be found in close association with ANXs in the human stomach. Furthermore, an inhibitory effect of ANXA5 binding for CagA translocation could be confirmed. Taken together, our results highlight an adaptive ability of H. pylori to interact with the host cell factor ANX potentially dampening innate immune recognition. H. pylori is very well adapted to its natural habitat, the human gastric mucosa. For this purpose, the bacterium has evolved a number of highly specific virulence factors, such as the cag-type IV secretion system, vacuolating cytotoxin A (VacA) or secreted gamma-glutamyl transpeptidase. An important function of these bacterial factors is to manipulate the host immune response to enable a chronic H. pylori infection. The present work identifies a new player in this process. Here, we have discovered that H. pylori, as well as several other bacterial species, can bind human annexins (ANX), suggesting a more widespread phenomenon. We show that H. pylori specifically binds ANXA5 via lipid A. The interaction is strictly dependent on calcium and modulated by the phosphorylation status of lipid A. Notably, ANXA5 binding strongly inhibits LPS-mediated Toll-like receptor 4 (TLR4) signal transduction, suggesting that H. pylori exploits ANXs binding to avoid its recognition by this important receptor of the innate immune system. The study thus provides novel molecular and mechanistic insights into a further strategy of H. pylori to successfully evade recognition by the host.
Collapse
Affiliation(s)
- Barbara Schmidinger
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Kristina Petri
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Clara Lettl
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, Division of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sukumar Namineni
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, Faculty of Medicine, LMU Munich, Germany
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Germany
| | - Luisa Fernanda Jiménez-Soto
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
- German Center for Infection Research (DZIF), LMU Munich, Germany
- * E-mail:
| |
Collapse
|
35
|
Kelly L, McGrath S, Rodgers L, McCall K, Tulunay Virlan A, Dempsey F, Crichton S, Goodyear CS. Annexin-A1; the culprit or the solution? Immunology 2022; 166:2-16. [PMID: 35146757 PMCID: PMC9426623 DOI: 10.1111/imm.13455] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐A1 has a well‐defined anti‐inflammatory role in the innate immune system, but its function in adaptive immunity remains controversial. This glucocorticoid‐induced protein has been implicated in a range of inflammatory conditions and cancers, as well as being found to be overexpressed on the T cells of patients with autoimmune disease. Moreover, the formyl peptide family of receptors, through which annexin‐A1 primarily signals, has also been implicated in these diseases. In contrast, treatment with recombinant annexin‐A1 peptides resulted in suppression of inflammatory processes in murine models of inflammation. This review will focus on what is currently known about annexin‐A1 in health and disease and discuss the potential of this protein as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Lauren Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sarah McGrath
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Lewis Rodgers
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Kathryn McCall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Aysin Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Fiona Dempsey
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Scott Crichton
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
36
|
Kamble PR, Breed AA, Pawar A, Kasle G, Pathak BR. Prognostic utility of the ovarian cancer secretome: a systematic investigation. Arch Gynecol Obstet 2022; 306:639-662. [PMID: 35083554 DOI: 10.1007/s00404-021-06361-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ovarian cancer is usually detected at an advanced stage with frequent recurrence. The recurrence-free survival and overall survival is influenced by the age at diagnosis, tumor stage and histological subtype. Nonetheless, quantifiable prognostic biomarkers are needed for early identification of the high-risk patients and for personalized medicine. Several studies link tumor-specific dysregulated expression of certain proteins with ovarian cancer prognosis. However, careful investigation of presence of these prognostically relevant proteins in ovarian cancer secretome is lacking. OBJECTIVE To critically analyze the recent published data on prognostically relevant proteins for ovarian cancer and to carefully search how many of them are reported in the published ovarian cancer secretome datasets. DESIGN A search for relevant studies in the past 2 years was conducted in PubMed and a comprehensive list of proteins associated with the ovarian cancer prognosis was prepared. These were cross-referred to the published ovarian cancer secretome profiles. The proteins identified in the secretome were further shortlisted based on a scoring strategy employing stringent criteria. RESULTS A panel of seven promising secretory biomarkers associated with ovarian cancer prognosis is proposed. CONCLUSION Scanning the ovarian cancer secretome datasets provides the opportunity to identify if tumor-specific biomarkers could be tested as secretory biomarkers. Detecting their levels in the body fluid would be more advantageous than evaluating the expression in the tissue, since it could be monitored multiple times over the course of the disease to have a better judgment of the prognosis and response to therapy.
Collapse
Affiliation(s)
- Pradnya R Kamble
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Ananya A Breed
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Apoorva Pawar
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Grishma Kasle
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India
- Division of Biological Sciences, IISER, Kolkata, India
| | - Bhakti R Pathak
- Cellular and Structural Biology Division, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
37
|
Tadijan A, Humphries JD, Samaržija I, Stojanović N, Zha J, Čuljak K, Tomić M, Paradžik M, Nestić D, Kang H, Humphries MJ, Ambriović-Ristov A. The Tongue Squamous Carcinoma Cell Line Cal27 Primarily Employs Integrin α6β4-Containing Type II Hemidesmosomes for Adhesion Which Contribute to Anticancer Drug Sensitivity. Front Cell Dev Biol 2021; 9:786758. [PMID: 34977030 PMCID: PMC8716755 DOI: 10.3389/fcell.2021.786758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface glycoproteins used by cells to bind to the extracellular matrix (ECM) and regulate tumor cell proliferation, migration and survival. A causative relationship between integrin expression and resistance to anticancer drugs has been demonstrated in different tumors, including head and neck squamous cell carcinoma. Using a Cal27 tongue squamous cell carcinoma model, we have previously demonstrated that de novo expression of integrin αVβ3 confers resistance to several anticancer drugs (cisplatin, mitomycin C and doxorubicin) through a mechanism involving downregulation of active Src, increased cell migration and invasion. In the integrin αVβ3 expressing Cal27-derived cell clone 2B1, αVβ5 expression was also increased, but unrelated to drug resistance. To identify the integrin adhesion complex (IAC) components that contribute to the changes in Cal27 and 2B1 cell adhesion and anticancer drug resistance, we isolated IACs from both cell lines. Mass spectrometry (MS)-based proteomics analysis indicated that both cell lines preferentially, but not exclusively, use integrin α6β4, which is classically found in hemidesmosomes. The anticancer drug resistant cell clone 2B1 demonstrated an increased level of α6β4 accompanied with increased deposition of a laminin-332-containing ECM. Immunofluorescence and electron microscopy demonstrated the formation of type II hemidesmosomes by both cell types. Furthermore, suppression of α6β4 expression in both lines conferred resistance to anticancer drugs through a mechanism independent of αVβ3, which implies that the cell clone 2B1 would have been even more resistant had the upregulation of α6β4 not occurred. Taken together, our results identify a key role for α6β4-containing type II hemidesmosomes in regulating anticancer drug sensitivity.
Collapse
Affiliation(s)
- Ana Tadijan
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Junzhe Zha
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kristina Čuljak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marija Tomić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Nestić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
38
|
Zhang T, Yu S, Zhao S. ANXA9 as a novel prognostic biomarker associated with immune infiltrates in gastric cancer. PeerJ 2021; 9:e12605. [PMID: 35003923 PMCID: PMC8684324 DOI: 10.7717/peerj.12605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Gastric cancer (GC) is the most prevalent malignancy among the digestive system tumors. Increasing evidence has revealed that lower mRNA expression of ANXA9 is associated with a poor prognosis in colorectal cancer. However, the role of ANXA9 in GC remains largely unknown. Material and Methods The Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas databases were used to investigate the expression of ANXA9 in GC, which was then validated in the four Gene Expression Omnibus (GEO) datasets. The diagnostic value of ANXA9 for GC patients was demonstrated using a receiver operating characteristic (ROC) curve. The correlation between ANXA9 expression and clinicopathological parameters was analyzed in The Cancer Genome Atlas (TCGA) and UALCAN databases. The Kaplan-Meier (K-M) survival curve was used to elucidate the relationship between ANXA9 expression and the survival time of GC patients. We then performed a gene set enrichment analysis (GSEA) to explore the biological functions of ANXA9. The relationship of ANXA9 expression and cancer immune infiltrates was analyzed using the Tumor Immune Estimation Resource (TIMER). In addition, the potential mechanism of ANXA9 in GC was investigated by analyzing its related genes. Results ANXA9 was significantly up-regulated in GC tissues and showed obvious diagnostic value. The expression of ANXA9 was related to the age, gender, grade, TP53 mutation, and histological subtype of GC patients. We also found that ANXA9 expression was associated with immune-related biological function. ANXA9 expression was also correlated with the infiltration level of CD8+ T cells, neutrophils, and dendritic cells in GC. Additionally, copy number variation (VNV) of ANXA9 occurred in GC patients. Function enrichment analyses revealed that ANXA9 plays a role in the GC progression by interacting with its related genes. Conclusions Our results provide strong evidence of ANXA9 expression as a prognostic indicator related to immune responses in GC.
Collapse
|
39
|
The Pyrazolyl-Urea Gege3 Inhibits the Activity of ANXA1 in the Angiogenesis Induced by the Pancreatic Cancer Derived EVs. Biomolecules 2021; 11:biom11121758. [PMID: 34944403 PMCID: PMC8699007 DOI: 10.3390/biom11121758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
The pyrazolyl-urea Gege3 molecule has shown interesting antiangiogenic effects in the tumor contest. Here, we have studied the role of this compound as interfering with endothelial cells activation in response to the paracrine effects of annexin A1 (ANXA1), known to be involved in promoting tumor progression. ANXA1 has been analyzed in the extracellular environment once secreted through microvesicles (EVs) by pancreatic cancer (PC) cells. Particularly, Gege3 has been able to notably prevent the effects of Ac2-26, the ANXA1 mimetic peptide, and of PC-derived EVs on endothelial cells motility, angiogenesis, and calcium release. Furthermore, this compound also inhibited the translocation of ANXA1 to the plasma membrane, otherwise induced by the same ANXA1-dependent extracellular stimuli. Moreover, these effects have been mediated by the indirect inhibition of protein kinase Cα (PKCα), which generally promotes the phosphorylation of ANXA1 on serine 27. Indeed, by the subtraction of intracellular calcium levels, the pathway triggered by PKCα underwent a strong inhibition leading to the following impediment to the ANXA1 localization at the plasma membrane, as revealed by confocal and cytofluorimetry analysis. Thus, Gege3 appeared an attractive molecule able to prevent the paracrine effects of PC cells deriving ANXA1 in the tumor microenvironment.
Collapse
|
40
|
ANXA1 Contained in EVs Regulates Macrophage Polarization in Tumor Microenvironment and Promotes Pancreatic Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011018. [PMID: 34681678 PMCID: PMC8538745 DOI: 10.3390/ijms222011018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) is a dynamic system where nontumor and cancer cells intercommunicate through soluble factors and extracellular vesicles (EVs). The TME in pancreatic cancer (PC) is critical for its aggressiveness and the annexin A1 (ANXA1) has been identified as one of the oncogenic elements. Previously, we demonstrated that the autocrine/paracrine activities of extracellular ANXA1 depend on its presence in EVs. Here, we show that the complex ANXA1/EVs modulates the macrophage polarization further contributing to cancer progression. The EVs isolated from wild type (WT) and ANXA1 knock-out MIA PaCa-2 cells have been administrated to THP-1 macrophages finding that ANXA1 is crucial for the acquisition of a protumor M2 phenotype. The M2 macrophages activate endothelial cells and fibroblasts to induce angiogenesis and matrix degradation, respectively. We have also found a significantly increased presence of M2 macrophage in mice tumor and liver metastasis sections previously obtained by orthotopic xenografts with WT cells. Taken together, our data interestingly suggest the relevance of ANXA1 as potential diagnostic/prognostic and/or therapeutic PC marker.
Collapse
|
41
|
Chai Y, Xu L, He R, Zhong L, Wang Y. Identification of hub genes specific to pulmonary metastasis in osteosarcoma through integrated bioinformatics analysis. Technol Health Care 2021; 30:735-745. [PMID: 34542049 DOI: 10.3233/thc-213163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pulmonary metastasis is the most frequent cause of death in osteosarcoma (OS) patients. Recently, several bioinformatics studies specific to pulmonary metastatic osteosarcoma (PMOS) have been applied to identify genetic alterations. However, the interpretation and reliability of the results obtained were limited for the independent database analysis. OBJECTIVE The expression profiles and key pathways specific to PMOS remain to be comprehensively explored. Therefore, in our study, three original datasets of GEO database were selected. METHODS Initially, three microarray datasets (GSE14359, GSE14827, and GSE85537) were downloaded from the GEO database. Differentially expressed genes (DEGs) between PMOS and nonmetastatic osteosarcoma (NMOS) were identified and mined using DAVID. Subsequently, GO and KEGG pathway analyses were carried out for DEGs. Corresponding PPI network of DEGs was constructed based on the data collected from STRING datasets. The network was visualized with Cytoscape software, and ten hub genes were selected from the network. Finally, survival analysis of these hub genes also used the TARGET database. RESULTS In total, 569 upregulated and 1238 downregulated genes were filtered as DEGs between PMOS and NMOS. Based on the GO analysis result, these DEGs were significantly enriched in the anatomical structure development, extracellular matrix, biological adhesion, and cell adhesion terms. Based on the KEGG pathway analysis result, these DEGs were mainly enriched in the pathways in cancer, PI3K-Akt signaling, MAPK signaling, focal adhesion, cytokine-cytokine receptor interaction, and IL-17 signaling. Hub genes (ANXA1 and CXCL12) were significantly associated with overall survival time in OS patient. CONCLUSION Our results may provide new insight into pulmonary metastasis of OS. However, experimental studies remain necessary to elucidate the biological function and mechanism underlying PMOS.
Collapse
Affiliation(s)
- Yinan Chai
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lihan Xu
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Rui He
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liangjun Zhong
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Department of stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Araújo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR, Vecchi L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells 2021; 10:2245. [PMID: 34571894 PMCID: PMC8464935 DOI: 10.3390/cells10092245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023] Open
Abstract
Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of Annexin A1 and on its interaction with the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| |
Collapse
|
43
|
Zhu L, Shi Y, Xiong Y, Ba L, Li Q, Qiu M, Zou Z, Peng G. Emerging self-assembling peptide nanomaterial for anti-cancer therapy. J Biomater Appl 2021; 36:882-901. [PMID: 34180306 DOI: 10.1177/08853282211027882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently it is mainly focused on anti-tumor comprehensive treatments like finding target tumor cells or activating immune cells to inhibit tumor recurrence and metastasis. At present, chemotherapy and molecular-targeted drugs can inhibit tumor cell growth to a certain extent. However, multi-drug resistance and immune escape often make it difficult for new drugs to achieve expected effects. Peptide hydrogel nanoparticles is a new type of biological material with functional peptide chains as the core and self-assembling peptide (SAP) as the framework. It has a variety of significant biological functions, including effective local inflammation suppression and non-drug-resistant cell killing. Besides, it can induce immune activation more persistently in an adjuvant independent manner when compared with simple peptides. Thus, SAP nanomaterial has great potential in regulating cell physiological functions, drug delivery and sensitization, vaccine design and immunotherapy. Not only that, it is also a potential way to focus on some specific proteins and cells through peptides, which has already been examined in previous research. A full understanding of the function and application of SAP nanoparticles can provide a simple and practical strategy for the development of anti-tumor drugs and vaccine design, which contributes to the historical transition of peptide nanohydrogels from bench to bedside and brings as much survival benefits as possible to cancer patients.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ba
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Vickram A, Srikumar P, Srinivasan S, Jeyanthi P, Anbarasu K, Thanigaivel S, Nibedita D, Jenila Rani D, Rohini K. Seminal exosomes - An important biological marker for various disorders and syndrome in human reproduction. Saudi J Biol Sci 2021; 28:3607-3615. [PMID: 34121904 PMCID: PMC8176048 DOI: 10.1016/j.sjbs.2021.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Exosomes are nano-sized membrane vesicles, secreted by different types of cells into the body's biological fluids. They are found in abundance in semen as compared to other fluids. Exosomes contain a cargo of lipid molecules, proteins, phospholipids, cholesterol, mRNAs, and miRNAs. Each molecule of seminal exosomes (SE) has a potential role in male reproduction for childbirth. Many potential candidates are available within the seminal exosomes that can be used as diagnostic markers for various diseases or syndromes associated with male reproduction. Also these seminal exospmes play a major role in female reproductive tract for effective fertilization. AIM The aim of this review is to focus on the advancement of human seminal exosomal research and its various properties. METHODS We used many databases like Scopus, Google scholar, NCBI-NLM and other sources to filter the articles of interest published in exosomes. We used phrases like "Exosomes in human semen", "Composition of exosomes in human semen" and other relevant words to filter the best articles. RESULTS Seminal exosomes play a major role in sperm functions like cell-to-cell communication, motility of the sperm cells, maintaining survival capacity for the sperm in the female reproductive tract and spermatogenesis. Also, seminal exosomes are used as a carrier for many regulatory elements using small RNA molecules. miRNAs of the seminal exosomes can be used as a diagnostic marker for prostate cancer instead of prostate specific antigen (PSA). Epididymosomes can be used as a biomarker for reproductive diseases and male infertility. CONCLUSION Seminal exosomes could be used as biological markers for various reproductive disorders, male infertility diagnosis, and it can be used in anti-retroviral research for the identification of novel therapeutics for HIV-1 infection and transmission.
Collapse
Affiliation(s)
- A.S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - P.S. Srikumar
- Unit of Psychiatry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah,Malaysia
| | - S. Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - K. Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Dey Nibedita
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - D. Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Kedah, Malaysia
| |
Collapse
|
45
|
Xia Q, Mao M, Zeng Z, Luo Z, Zhao Y, Shi J, Li X. Inhibition of SENP6 restrains cerebral ischemia-reperfusion injury by regulating Annexin-A1 nuclear translocation-associated neuronal apoptosis. Am J Cancer Res 2021; 11:7450-7470. [PMID: 34158860 PMCID: PMC8210613 DOI: 10.7150/thno.60277] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Annexin-A1 (ANXA1) has previously been proposed to play a crucial role in neuronal apoptosis during ischemic stroke injury. Our recent study demonstrated that ANXA1 was modified by SUMOylation, and that this modification was greatly weakened after cerebral ischemia, but its effect on neuronal death and the underlying mechanism have not been fully elucidated. Methods: Mice subjected to middle cerebral artery occlusion were established as the animal model and primary cultured neurons treated with oxygen-glucose deprivation and reperfusion was established as the cell model of ischemic stroke. The Ni2+-NTA agarose affinity pull-down assay was carried out to determine the SUMOylation level of ANXA1. Co-immunoprecipitation assays was utilized to explore the protein interaction. Immunoblot analysis, quantitative real-time PCR, Luciferase reporter assay were performed to identify the regulatory mechanism. LDH release and TUNEL staining was performed to investigate the neuronal cytotoxicity and apoptosis, respectively. Results: In this study, we identified the deSUMOylating enzyme sentrin/SUMO-specific protease 6 (SENP6) as a negative regulator of ANXA1 SUMOylation. Notably, we found that SENP6-mediated deSUMOylation of ANXA1 induced its nuclear translocation and triggered neuronal apoptosis during cerebral ischemic injury. A mechanistic study demonstrated that SENP6-mediated deSUMOylation of ANXA1 promoted TRPM7- and PKC-dependent phosphorylation of ANXA1. Furthermore, blocking the deSUMOylation of ANXA1 mediated by SENP6 inhibited the transcriptional activity of p53, decreased Bid expression, suppressed caspase-3 pathway activation and reduced the apoptosis of primary neurons subjected to oxygen-glucose deprivation and reperfusion. More importantly, SENP6 inhibition by overexpression of a SENP6 catalytic mutant in neurons resulted in significant improvement in neurological function in the mouse model of ischemic stroke. Conclusions: Taken together, the results of this study identified a previously unidentified function of SENP6 in neuronal apoptosis and strongly indicated that SENP6 inhibition may provide therapeutic benefits for cerebral ischemia.
Collapse
|
46
|
Zhou C, Lin Z, Cao H, Chen Y, Li J, Zhuang X, Ma D, Ji L, Li W, Xu S, Pan B, Zheng L. Anxa1 in smooth muscle cells protects against acute aortic dissection. Cardiovasc Res 2021; 118:1564-1582. [PMID: 33757117 DOI: 10.1093/cvr/cvab109] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/21/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Acute aortic dissection (AAD) is a life-threatening disease with high morbidity and mortality. Previous studies have showed that vascular smooth muscle cell (VSMC) phenotype switching modulates vascular function and AAD progression. However, whether an endogenous signaling system that protects AAD progression exists, remains unknown. Our aim is to investigate the role of Anxa1 in VSMC phenotype switching and the pathogenesis of AAD. METHODS AND RESULTS We first assessed Anxa1 expression levels by immunohistochemical staining in control aorta and AAD tissue from mice. A strong increase of Anxa1 expression was seen in the mouse AAD tissues. In line with these findings, micro-CT scan results indicated that Anxa1 plays a role in the development of AAD in our murine model, with systemic deficiency of Anxa1 markedly progressing AAD. Conversely, administration of Anxa1 mimetic peptide, Ac2-26, rescued the AAD phenotype in Anxa1-/- mice. Transcriptomic studies revealed a novel role for Anxa1 in VSMC phenotype switching, with Anxa1 deficiency triggering the synthetic phenotype of VSMCs via down-regulation of the JunB/MYL9 pathway. The resultant VSMC synthetic phenotype rendered elevated inflammation and enhanced matrix metalloproteinases (MMPs) production, leading to augmented elastin degradation. VSMC-restricted deficiency of Anxa1 in mice phenocopied VSMC phenotype switching and the consequent exacerbation of AAD. Finally, our studies in human AAD aortic specimens recapitulated key findings in murine AAD, specifically that the decrease of Anxa1 is associated with VSMC phenotype switch, heightened inflammation, and enhanced MMP production in human aortas. CONCLUSIONS Our findings demonstrated that Anxa1 is a novel endogenous defender that prevents acute aortic dissection by inhibiting vascular smooth muscle cell phenotype switching, suggesting that Anxa1 signaling may be a potential target for AAD pharmacological therapy. TRANSLATIONAL PERSPECTIVE Our studies herein may lead to a paradigm shift for pharmacologic therapy towards acute aortic dissection. Through careful examination of the pathological changes that occur during AAD onset in experimental animal models, we demonstrated that VSMC phenotype switching plays a critical role in the development of AAD. Inhibition of VSMC phenotype switching and its attendant impacts on aortic function may be a viable approach for future treatment. Toward that end, our studies highlighted the protective benefit of Anxa1 and its mimetic peptide Ac2-26 in AAD through prevention of the switching of VSMC to a synthetic phenotype.
Collapse
Affiliation(s)
- Changping Zhou
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Huanhuan Cao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yue Chen
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Jingxuan Li
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Xiaofeng Zhuang
- FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Dong Ma
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New City, Tangshan 063210, Hebei, China; Department of Biochemistry and Molecular Biology, Hebei Medical University, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wei Li
- Peking University People's Hospital, Beijing, China
| | - Suowen Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.,Beijing Tiantan Hospital, The Capital Medical University; China National Clinical Research Center for Neurological Diseases; Advanced Innovation Center for Human Brain Protection, Beijing, 100050, China
| |
Collapse
|
47
|
Luo J, Wang S, Zhou Z, Zhao Y. Ad- and AAV8-mediated ABCA1 gene therapy in a murine model with retinal ischemia/reperfusion injuries. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:551-558. [PMID: 33665225 PMCID: PMC7890372 DOI: 10.1016/j.omtm.2021.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
The anti-inflammatory molecule annexin A1 (ANXA1) determines the ultimate fate of retinal ganglion cell (RGC) in glaucoma. Cytoplasmic and extracellular ANXA1 facilitate resolution of inflammation. However, the nuclear translocation of ANXA1 induces RGC apoptosis in a murine glaucoma model, and the maintenance of ANXA1 secreted in the extracellular environments remains unclear. In this study, we found that intravitreal injection of the recombinant adenovirus vector (Ad)-ATP-binding cassette transporter A1 (ABCA1; carrying full-length ABCA1) improved RGC survival in the ischemia reperfusion (IR) mice model. Upregulation of ABCA1 maintained ANXA1 cytoplasmic location and reduced ANXA1 nuclear translocation, which is due to the decreased binding of ANXA1 with importin β. Moreover, we found that amino acids 903 to 1,344 of ABCA1 interacted with ANXA1 and decreased its nuclear localization. Importantly, intravitreal injection of adenovirus-associated viral (AAV) vector AAV8-ABCA1 (carrying 903 to 1,344 fragments of ABCA1) maintained ANXA1 cytoplasmic location and improved RGC survival in the IR mice model. Thus, overexpression of ABCA1 protects against RGC apoptosis by partially blocking ANXA1 nuclear translocation. This study puts forth a potential gene treatment strategy to prevent RGC apoptosis in glaucoma.
Collapse
Affiliation(s)
- Jing Luo
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shengli Wang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhenlong Zhou
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
48
|
Hsa-miR-105-1 Regulates Cisplatin-Resistance in Ovarian Carcinoma Cells by Targeting ANXA9. ACTA ACUST UNITED AC 2021; 2021:6662486. [PMID: 33680718 PMCID: PMC7929659 DOI: 10.1155/2021/6662486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 01/29/2023]
Abstract
Purpose Cisplatin is one of the most effective drugs for treating ovarian carcinoma (OC), which is among the most lethal types of carcinoma. However, the chemoresistance to cisplatin that develops over time leads to a poor clinical outcome for many OC patients. Therefore, it is necessary to clearly understand the molecular mechanisms of chemoresistance. In this study, we examined how Hsa-miR-105-1 functions in cisplatin-resistant OC cells. Methods The levels of Hsa-miR-105-1 expression in cisplatin-sensitive and resistant OC cell lines were detected by qRT-PCR. The target gene of Hsa-miR-105-1 was predicted by using the TargetScan and Starbase databases and verified by the double luciferase reporter gene assay. The target gene of Hsa-miR-105-1 was identified as ANXA9, and ANXA9 expression was evaluated by qRT-PCR, western blotting, and immunofluorescence. To validate the function of Hsa-miR-105-1 in OC cells, we silenced or overexpressed Hsa-miR-105-1 in cisplatin-sensitive or resistant OC cell lines, respectively. Furthermore, the expression levels of several apoptosis-related proteins, including P53, P21, E2F1, Bcl-2, Bax, and caspase-3, were examined by western blot analysis. Results The levels of Hsa-miR-105-1 expression were abnormally downregulated in cisplatin-resistant OC cells, while ANXA9 expression was significantly upregulated in those cells. Treatment with an Hsa-miR-105-1 inhibitor promoted the expression of ANXA9 mRNA and protein, enhanced the resistance to cisplatin, and attenuated the cell apoptosis induced by cisplatin in cisplatin-sensitive OC cells. Moreover, treatment with Hsa-miR-105-1 mimics inhibited ANXA9 expression, which further increased the levels of P53, P21, and Bax expression and decreased the levels of E2F1 and Bcl-2 expression, finally resulting in an increased sensitivity to cisplatin in cisplatin-resistant OC cells. Conclusion We found that a downregulation of Hsa-miR-105-1 expression enhanced cisplatin-resistance, while an upregulation of Hsa-miR-105-1 restored the sensitivity of OC cells to cisplatin. The Hsa-miR-105-1/ANXA9 axis plays an important role in the cisplatin-resistance of OC cells.
Collapse
|
49
|
Annexin A1 Is Required for Efficient Tumor Initiation and Cancer Stem Cell Maintenance in a Model of Human Breast Cancer. Cancers (Basel) 2021; 13:cancers13051154. [PMID: 33800279 PMCID: PMC7962654 DOI: 10.3390/cancers13051154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) has a poor outcome compared to the other major breast cancer subtypes and new therapies are needed. We sought to clarify the functions of a ubiquitous protein, Annexin A1, in the development and progression of TNBC. We found that Annexin A1 expression correlated with poor patient prognosis in basal-like breast tumors and also in the basal like-2 subset of TNBCs. Stable knockdown of Annexin A1 attenuated the growth of SUM149 xenografts, which model basal-like 2 tumors. In a polyoma middle T antigen-driven allograft model of breast cancer, Annexin A1 depletion markedly delayed tumor formation, induced epithelial to mesenchymal transition and upregulated basal markers. Finally, loss of Annexin A1 resulted in the loss of a discrete CD24+/Sca1− population containing putative tumor-initiating cells. Collectively, our data demonstrate a novel cell-autonomous role for Annexin A1 in the promotion of tumor-forming capacity in certain TNBC tumors. Abstract Triple-negative breast cancer (TNBC) has a poor outcome compared to other breast cancer subtypes, and new therapies that target the molecular alterations driving tumor progression are needed. Annexin A1 is an abundant multi-functional Ca2+ binding and membrane-associated protein. Reported roles of Annexin A1 in breast cancer progression and metastasis are contradictory. Here, we sought to clarify the functions of Annexin A1 in the development and progression of TNBC. The association of Annexin A1 expression with patient prognosis in subtypes of TNBC was examined. Annexin A1 was stably knocked down in a panel of human and murine TNBC cell lines with high endogenous Annexin A1 expression that were then evaluated for orthotopic growth and spontaneous metastasis in vivo and for alterations in cell morphology in vitro. The impact of Annexin A1 knockdown on the expression of genes involved in mammary epithelial cell differentia tion and epithelial to mesenchymal transition was also determined. Annexin A1 mRNA levels correlated with poor patient prognosis in basal-like breast tumors and also in the basal-like 2 subset of TNBCs. Unexpectedly, loss of Annexin A1 expression had no effect on either primary tumor growth or spontaneous metastasis of MDA-MB-231_HM xenografts, but abrogated the growth rate of SUM149 orthotopic tumors. In an MMTV-PyMT driven allograft model of breast cancer, Annexin A1 depletion markedly delayed tumor formation in both immuno-competent and immuno-deficient mice and induced epithelial to mesenchymal transition and upregulation of basal markers. Finally, loss of Annexin A1 resulted in the loss of a discrete CD24+/Sca1− population containing putative tumor initiating cells. Collectively, our data demonstrate a novel cell-autonomous role for Annexin A1 in the promotion of tumor-forming capacity in a model of human breast cancer and suggest that some basal-like TNBCs may require high endogenous tumor cell Annexin A1 expression for continued growth.
Collapse
|
50
|
Yoneyama T, Hatakeyama S, Sutoh Yoneyama M, Yoshiya T, Uemura T, Ishizu T, Suzuki M, Hachinohe S, Ishiyama S, Nonaka M, Fukuda MN, Ohyama C. Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer 2021; 21:72. [PMID: 33446132 PMCID: PMC7809749 DOI: 10.1186/s12885-020-07760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background p-Boronophenylalanine (10BPA) is a powerful 10B drug used in current clinical trials of BNCT. For BNCT to be successful, a high (500 mg/kg) dose of 10BPA must be administered over a few hours. Here, we report BNCT efficacy after rapid, ultralow-dose administration of either tumor vasculature-specific annexin A1-targeting IFLLWQR (IF7)-conjugated 10BPA or borocaptate sodium (10BSH). Methods (1) IF7 conjugates of either 10B drugs intravenously injected into MBT2 bladder tumor-bearing mice and biodistribution of 10B in tumors and normal organs analyzed by prompt gamma-ray analysis. (2) Therapeutic effect of IF7-10B drug-mediated BNCT was assessed by either MBT2 bladder tumor bearing C3H/He mice and YTS-1 tumor bearing nude mice. Results Intravenous injection of IF7C conjugates of either 10B drugs into MBT2 bladder tumor-bearing mice promoted rapid 10B accumulation in tumor and suppressed tumor growth. Moreover, multiple treatments at ultralow (10–20 mg/kg) doses of IF7-10B drug-mediated BNCT significantly suppressed tumor growth in a mouse model of human YTS-1 bladder cancer, with increased Anxa1 expression in tumors and infiltration by CD8-positive lymphocytes. Conclusions We conclude that IF7 serves as an efficient 10B delivery vehicle by targeting tumor tissues via the tumor vasculature and could serve as a relevant vehicle for BNCT drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07760-x.
Collapse
Affiliation(s)
- Tohru Yoneyama
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Mihoko Sutoh Yoneyama
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, 90 Kozawa Yamazaki, Hirosaki, 036-8243, Japan
| | - Taku Yoshiya
- Peptide Institute Inc., 7-2-9 Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Tsuyoshi Uemura
- Peptide Institute Inc., 7-2-9 Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Takehiro Ishizu
- Peptide Institute Inc., 7-2-9 Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science (KURNS), Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Shingo Hachinohe
- Aomori Prefecture Quantum Science Center (QSC), 2-190 Omotedate, Obuchi, Rokkasho-mura, Kamikita-gun, 039-3212, Japan
| | - Shintaro Ishiyama
- Faculty of Science and Technology, Hirosaki University Graduate School of Science and Technology, 1-Bunkyo-cho, Hirosaki, 036-8562, Japan
| | - Motohiro Nonaka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Michiko N Fukuda
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|