1
|
Wang W, Ma L, Liu B, Ouyang L. The role of trained immunity in sepsis. Front Immunol 2024; 15:1449986. [PMID: 39221248 PMCID: PMC11363069 DOI: 10.3389/fimmu.2024.1449986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction syndrome caused by dysregulated host response to infection, characterized by a systemic inflammatory response to infection. The use of antibiotics, fluid resuscitation, and organ support therapy has limited prognostic benefit in patients with sepsis, and its incidence is not diminishing, which is attracting increased attention in medicine. Sepsis remains one of the most debilitating and expensive illnesses. One of the main reasons of septic mortality is now understood to be disruption of immune homeostasis. Immunotherapy is revolutionizing the treatment of illnesses in which dysregulated immune responses play a significant role. This "trained immunity", which is a potent defense against infection regardless of the type of bacteria, fungus, or virus, is attributed to the discovery that the innate immune cells possess immune memory via metabolic and epigenetic reprogramming. Here we reviewed the immunotherapy of innate immune cells in sepsis, the features of trained immunity, and the relationship between trained immunity and sepsis.
Collapse
Affiliation(s)
| | | | | | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
2
|
Quan W, Qin Y, Li J, Wang L, Song J, Xu J, Chen J. Causal role of myeloid cells in Parkinson's disease: Mendelian randomization study. Inflamm Res 2024; 73:809-818. [PMID: 38538756 DOI: 10.1007/s00011-024-01867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/30/2024] Open
Abstract
BACKGROUND Previous studies have observed elevated myeloid cells in the peripheral blood of patients with Parkinson's disease (PD), but the causal relationship between them remains to be elucidated. We investigated whether there is a causal relationship between different subtypes of peripheral blood myeloid cells and PD using Mendelian randomization (MR) combined with bioinformatics analysis. Exploring the etiology of PD from the perspective of genetics can remove confounding factors and provide a more reliable theoretical basis for elucidating the pathogenesis of PD. METHODS Comprehensive two-sample MR analysis and sensitivity analyses were conducted to explore the causal associations between 64 myeloid cell signatures and PD risk. The Venn diagram and protein-protein interaction network analysis of instrumental variables (IV) corresponding genes were used to further investigate the potential mechanism of myeloid cells influencing the pathogenesis of PD. RESULTS We investigated the impact of four immunophenotypes on the risk of PD, including Im MDSC% CD33dim HLA DR- CD66b- (relative count), CD33dim HLA DR+ CD11b+% CD33dim HLA DR+ (relative count), and CD11b on Mo MDSC (MFI) and CD11b on CD33br HLA DR+ CD14dim (MFI), while an immunophenotype's protective effect on PD was observed CD45 on Im MDSC (MFI). The results of bioinformatics analysis showed that CD33, NTRK2, PLD2, GRIK2 and RELN had protein interactions with the risk genes of PD. CONCLUSIONS Our study has demonstrated a close genetic correlation between different subtypes of myeloid cells and PD, providing guidance for early identification and immunotherapeutic development in patients with PD.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Padovani CM, Yin K. Immunosuppression in Sepsis: Biomarkers and Specialized Pro-Resolving Mediators. Biomedicines 2024; 12:175. [PMID: 38255280 PMCID: PMC10813323 DOI: 10.3390/biomedicines12010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Severe infection can lead to sepsis. In sepsis, the host mounts an inappropriately large inflammatory response in an attempt to clear the invading pathogen. This sustained high level of inflammation may cause tissue injury and organ failure. Later in sepsis, a paradoxical immunosuppression occurs, where the host is unable to clear the preexisting infection and is susceptible to secondary infections. A major issue with sepsis treatment is that it is difficult for physicians to ascertain which stage of sepsis the patient is in. Sepsis treatment will depend on the patient's immune status across the spectrum of the disease, and these immune statuses are nearly polar opposites in the early and late stages of sepsis. Furthermore, there is no approved treatment that can resolve inflammation without contributing to immunosuppression within the host. Here, we review the major mechanisms of sepsis-induced immunosuppression and the biomarkers of the immunosuppressive phase of sepsis. We focused on reviewing three main mechanisms of immunosuppression in sepsis. These are lymphocyte apoptosis, monocyte/macrophage exhaustion, and increased migration of myeloid-derived suppressor cells (MDSCs). The biomarkers of septic immunosuppression that we discuss include increased MDSC production/migration and IL-10 levels, decreased lymphocyte counts and HLA-DR expression, and increased GPR18 expression. We also review the literature on the use of specialized pro-resolving mediators (SPMs) in different models of infection and/or sepsis, as these compounds have been reported to resolve inflammation without being immunosuppressive. To obtain the necessary information, we searched the PubMed database using the keywords sepsis, lymphocyte apoptosis, macrophage exhaustion, MDSCs, biomarkers, and SPMs.
Collapse
Affiliation(s)
- Cristina M. Padovani
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, NJ 08084, USA;
| | | |
Collapse
|
4
|
Zhang W, Fang X, Gao C, Song C, He Y, Zhou T, Yang X, Shang Y, Xu J. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine Growth Factor Rev 2023; 69:90-103. [PMID: 35927154 DOI: 10.1016/j.cytogfr.2022.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis, a complicated immune response is initiated, which varies over time with sustained excessive inflammation and immunosuppression. Identifying a promising way to orchestrate sepsis-induced immunosuppression is a challenge. Myeloid-derived suppressor cells (MDSCs) comprise pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They play an important part in inhibiting innate and adaptive immune responses, and have emerged as part of the immune response in sepsis. MDSCs numbers are persistently high in sepsis patients, and associated with nosocomial infections and other adverse clinical outcomes. However, their characteristics and functional mechanisms during sepsis have not been addressed fully. Our review sheds light on the features and suppressive mechanism of MDSCs. We also review the potential applications of MDSCs as biomarkers and targets for clinical treatment of sepsis.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoying Song
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Novaes R, Costa TFR, Goundry AL, Verçoza BRF, Rodrigues JCF, Godinho JLP, Reis FCG, Morrot A, Lima APCA. Bone marrow granulocytes downregulate IL-1β and TNF production and the microbicidal activity of inflammatory macrophages. Biochem Cell Biol 2022; 100:246-265. [PMID: 35443139 DOI: 10.1139/bcb-2021-0460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophages play critical roles in inflammation and defense against pathogens, as well as in the return to tissue homeostasis. Macrophage subpopulations displaying antagonistic phenotypes are generally classified as proinflammatory M1, implicated in antipathogen and antitumoral activities, or as anti-inflammatory M2, associated with tissue repair. Granulocytic and monocytic myeloid-derived suppressor cells recruited from the bone marrow to tissues and phagocytosis of apoptotic neutrophils can attenuate macrophage microbicidal activity. Here, we showed that bone marrow neutrophils, but not thioglycollate-recruited neutrophils, directly suppress the responses of macrophages that were previously committed to an inflammatory phenotype. Cocultures of inflammatory macrophages with bone marrow CD11b+Ly6Ghi granulocytes led to reduced release of IL-1β, TNF-α, and IL-6 by macrophages after lipopolysaccharide stimulation. The suppressive activity was unrelated to granulocyte apoptosis or to secreted factors and required cell-to-cell contact. The suppressive effect was paralleled by reduction in the nuclear levels of the NF-κB p65 subunit, but not of the p50 subunit. Furthermore, bone marrow granulocytes decreased the phagocytic activity of macrophages and their capacity to kill intracellular Escherichia coli. Taken together, these results show that bone marrow granulocytes can function as suppressors of the proinflammatory activity and microbial-killing responses of macrophages.
Collapse
Affiliation(s)
- Renata Novaes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Tatiana F R Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Amy L Goundry
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Brunno R F Verçoza
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Brazil
| | - Juliany C F Rodrigues
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-Bio), Universidade Federal do Rio de Janeiro, Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Brazil
| | - Joseane Lima P Godinho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Flavia C G Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Centro de Pesquisa em Tuberculose, Universidade Federal do Rio de Janeiro and Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, Pavilhão 26, Manguinhos, Rio de Janeiro, Brazil
| | - Ana Paula C A Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| |
Collapse
|
6
|
Ruan WS, Feng MX, Xu J, Xu YG, Song CY, Lin LY, Li L, Lu YQ. Early Activation of Myeloid-Derived Suppressor Cells Participate in Sepsis-Induced Immune Suppression via PD-L1/PD-1 Axis. Front Immunol 2020; 11:1299. [PMID: 32719675 PMCID: PMC7347749 DOI: 10.3389/fimmu.2020.01299] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Myeloid derived suppressor cells (MDSCs) have been reported to keep elevating during sepsis. The current study was performed to investigate the immunosuppressive effect of MDSCs and their subsets with the underlying mechanisms. Methods: The immunosuppressive status was manifested by the apoptosis of splenocytes, quantity of T cells and PD-1 expression. The dynamics of quantity and PD-L1 level of MDSCs and the subsets were determined over time. The subset of MDSCs with high PD-L1 level was co-cultured with T cells to observe the suppressive effect. Results: Abdominal abscess was observed after 7 days post-sepsis. Five biomarkers related to organ functions were all significantly higher in the CLP group. The survival rate was consistent with the middle grade severity of sepsis model. Apoptosis of splenocytes increased over time during sepsis; CD4 + T cell decreased from day 1 post-sepsis; CD8+ T cells significantly reduced at day 7. The PD-1 expression in spleen was upregulated from an early stage of sepsis, and negatively related with the quantity of T cells. MDSCs were low at day 1 post-sepsis, but increased to a high level later; the dynamics of PMN-MDSC was similar to MDSCs. PD-L1 on MDSCs was highest at day 1 post-sepsis; PMN-MDSC was the main subset expressing PD-L1. The PMN-MDSC with high PD-L1 expression level extracted on day 1 after surgery from CLP mice significantly inhibited the proliferation of T cells. Conclusions: Sepsis-induced immunosuppression is initiated from a very early stage, a high expression level of PD-L1 on MDSCs and the main subset, PMN-MDSC might play a critical role suppressive role on T cells through PD-L1/PD-1 axis.
Collapse
Affiliation(s)
- Wei-Shuyi Ruan
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Meng-Xiao Feng
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Ying-Ge Xu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Cong-Ying Song
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Li-Ying Lin
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Li Li
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Geriatrics, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, Hangzhou, China
| |
Collapse
|
7
|
A novel methodology of the myeloid-derived suppressor cells (MDSCs) generation with splenic stroma feeder cells. Exp Cell Res 2020; 394:112119. [PMID: 32485182 DOI: 10.1016/j.yexcr.2020.112119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/17/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a significant obstacle for immunotherapy of cancer. It is of great clinical relevance to study the mechanism of MDSCs accumulation in mouse spleens and establish a stable method to obtain high-purity MDSCs in vitro for further research. Here, we established a new method for amplifying a large number of highly pure MDSCs in vitro. To mimic the microenvironment of MDSCs development in vivo, mouse splenic stroma feeder cells and serum-free medium containing granulocyte-macrophage colony stimulating factor (GM-CSF) were used to induce myeloid precursors in mouse bone marrow cells, which differentiate into MDSCs. Development and immunological functions of the cells were monitored both in vivo and in vitro. A total of 4 × 108 MDSCs could be obtained from the bone marrow from one mouse, the ratio of CD11b+Gr-1+ MDSCs could reach 93.8% ± 3.3% after nine days of culture in vitro. Cultured MDSCs maintained a similar immunophenotype with MDSCs found in tumor-bearing mice. Colony forming assay in vitro and in vivo demonstrated that these were myeloid precursor cells. These cells generated high levels of reactive oxygen species and arginase 1 to prevent proliferation of CD8+ T cells in vitro. These also increased regulatory T (Treg) cells in blood while promoting the growth of lymphoma in vivo. In addition, cultured MDSCs effectively inhibited acute graft-versus-host disease (aGVHD). Our findings suggest that mouse splenic stroma plays an important role in the generation of MDSCs and represent a preliminary mechanism for the accumulation of MDSCs in spleens, and thereby lay the foundation for basic research and the clinical application of MDSCs.
Collapse
|
8
|
Venet F, Demaret J, Gossez M, Monneret G. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci 2020; 1499:3-17. [PMID: 32202669 DOI: 10.1111/nyas.14333] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
On May 2017, the World Health Organization recognized sepsis as a global health priority. Sepsis profoundly perturbs immune homeostasis by initiating a complex response that varies over time, with the concomitant occurrence of pro- and anti-inflammatory mechanisms. Sepsis deeply impacts myeloid cell response. Different mechanisms are at play, such as apoptosis, endotoxin tolerance, metabolic failure, epigenetic reprogramming, and central regulation. This induces systemic effects on circulating immune cells and impacts progenitors locally in lymphoid organs. In the bone marrow, a progressive shift toward the release of immature myeloid cells (including myeloid-derived suppressor cells), at the expense of mature neutrophils, takes place. Circulating dendritic cell number remains dramatically low and monocytes/macrophages display an anti-inflammatory phenotype and reduced antigen presentation capacity. Intensity and persistence of these alterations are associated with increased risk of deleterious outcomes in patients. Thus, myeloid cells dysfunctions play a prominent role in the occurrence of sepsis-acquired immunodeficiency. For the most immunosuppressed patients, this paves the way for clinical trials evaluating immunoadjuvant molecules (granulocyte-macrophage colony-stimulating factor and interferon gamma) aimed at restoring homeostatic myeloid cell response. Our review offers a summary of sepsis-induced myeloid cell dysfunctions and current therapeutic strategies proposed to target these defects in patients.
Collapse
Affiliation(s)
- Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julie Demaret
- Institut d'Immunologie, Lille University and University Hospital (CHU), Lille, France
| | - Morgane Gossez
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
9
|
Xue Y, Xu Y, Liu X, Sun Z, Pan Y, Lu X, Liang H, Dou H, Hou Y. Ferumoxytol Attenuates the Function of MDSCs to Ameliorate LPS-Induced Immunosuppression in Sepsis. NANOSCALE RESEARCH LETTERS 2019; 14:379. [PMID: 31844996 PMCID: PMC6915194 DOI: 10.1186/s11671-019-3209-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/12/2019] [Indexed: 05/17/2023]
Abstract
Sepsis-induced immunosuppression is recognized as one of the main features responsible for therapeutic failures. Myeloid-derived suppressor cells (MDSCs), which are mainly characterized by their suppressive properties, have been reported to be expanded in sepsis. Ferumoxytol (FMT), an FDA-approved iron supplement, has been shown to possess immune-modulatory properties in tumors. However, it is unclear whether FMT alters the functions of MDSCs to reduce late-sepsis immunosuppression. Here, we showed an immunomodulatory effect of FMT on MDSCs to ameliorate lipopolysaccharide (LPS)-induced immunosuppression in the late stage of sepsis. Separation of cells with internalized FMT and detection of the intracellular iron content showed that MDSCs could uptake FMT. Low doses of FMT had no effects on the cell viability of MDSCs, but FMT inhibited the expansion of MDSCs in vitro. Moreover, FMT significantly downregulated the expression levels of Arg-1, S100A8, S100A9, and p47phox as well as ROS production in MDSCs. FMT decreased the percentage of granulocytic MDSCs (G-MDSCs) and promoted the differentiation of MDSCs into macrophages. Furthermore, FMT reduced white blood cell recruitment and alveolar wall thickening in the lungs and areas of necrosis in the liver as well as some biochemical markers of liver dysfunction. FMT decreased the percentage of G-MDSCs and monocytic MDSCs (M-MDSCs) in the spleens of LPS-induced septic mice. Of note, FMT reduced the T cell immunosuppressive functions of both G-MDSCs and M-MDSCs. Expectedly, FMT also significantly reduced Arg-1 and p47phox gene expression in splenic CD11b+Gr-1+ cells isolated from LPS-challenged mice. These data indicate that FMT decreased the immunosuppressive functions of MDSCs by decreasing Arg-1 and ROS production, suggesting that FMT may reduce long-term immunosuppression in the late stage of sepsis.
Collapse
Affiliation(s)
- Yaxian Xue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Zhiheng Sun
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Xia Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Huaping Liang
- The State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Army Medical University, Chongqing, 400042, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
10
|
Hu J, Zhang W, Liu Y, Yang Y, Tan C, Wei X, Wang Y, Tan S, Liu M, Liu K, Liu Y, Zhang H, Xiao X. LDK
378 inhibits the recruitment of myeloid‐derived suppressor cells to spleen via the p38–
GRK
2–
CCR
2 pathway in mice with sepsis. Immunol Cell Biol 2019; 97:902-915. [DOI: 10.1111/imcb.12289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Hu
- Department of Anesthesiology Xiangya Hospital Central South University Changsha Hunan China
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Wenqin Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Yanjuan Liu
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Yang Yang
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Chuyi Tan
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Xue Wei
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Yufang Wang
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Sipin Tan
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Meidong Liu
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Ke Liu
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Ying Liu
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Huali Zhang
- Department of Anesthesiology Xiangya Hospital Central South University Changsha Hunan China
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| | - Xianzhong Xiao
- Sepsis Translational Medicine Key Lab of Hunan Province Central South University Changsha Hunan China
- Department of Pathophysiology Xiangya School of Medicine Central South University Changsha Hunan China
| |
Collapse
|
11
|
Tsukamoto H, Kozakai S, Kobayashi Y, Takanashi R, Aoyagi T, Numasaki M, Ohta S, Tomioka Y. Impaired antigen-specific lymphocyte priming in mice after Toll-like receptor 4 activation via induction of monocytic myeloid-derived suppressor cells. Eur J Immunol 2019; 49:546-563. [PMID: 30671932 DOI: 10.1002/eji.201847805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022]
Abstract
In sepsis, the pathology involves a shift from a proinflammatory state toward an immunosuppressive phase. We previously showed that an agonistic anti-TLR4 antibody induced long-term endotoxin tolerance and suppressed antigen-specific secondary IgG production when primed prior to immunization with antigen. These findings led us to speculate that TLR4-induced innate tolerance due to primary infection causes an immunosuppressive pathology in sepsis. Therefore, the mechanism underlying impaired antigen-specific humoral immunity by the TLR4 antibody was investigated. We showed, in a mouse model, that primary antigen-specific IgG responses were impaired in TLR4 antibody-induced tolerized mice, which was the result of reduced numbers of antigen-specific GC B cells and plasma cells. Ovalbumin-specific CD4 and CD8 T-cell responses were impaired in TLR4 antibody-injected OT-I and -II transgenic mice ex vivo. Adoptive transfer studies demonstrated suppression of OVA-specific CD4 and CD8 T-cell responses by the TLR4 antibody in vivo. The TLR4 antibody induced Gr1+ CD11b+ myeloid-derived suppressor cell (MDSC) expansion with suppression of T-cell activation. Monocytic MDSCs were more suppressive and exhibited higher expression of PD-L1 and inducible nitric oxidase compared with granulocytic MDSCs. In conclusion, immune tolerance conferred by TLR4 activation induces the expansion of monocytic MDSCs, which impairs antigen-specific T-cell priming and IgG production.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Sao Kozakai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Yohei Kobayashi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Risako Takanashi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Takuya Aoyagi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| | - Muneo Numasaki
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Shoichiro Ohta
- Department of Medical Technology and Sciences School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Sendai, Japan
| |
Collapse
|
12
|
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol 2017; 14:121-137. [PMID: 29225343 DOI: 10.1038/nrneph.2017.165] [Citation(s) in RCA: 537] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction that is caused by a dysregulated host response to infection. Sepsis can induce acute kidney injury and multiple organ failures and represents the most common cause of death in the intensive care unit. Sepsis initiates a complex immune response that varies over time, with the concomitant occurrence of both pro-inflammatory and anti-inflammatory mechanisms. As a result, most patients with sepsis rapidly display signs of profound immunosuppression, which is associated with deleterious consequences. Scientific advances have highlighted the role of metabolic failure, epigenetic reprogramming, myeloid-derived suppressor cells, immature suppressive neutrophils and immune alterations in primary lymphoid organs (the thymus and bone marrow) in sepsis. An improved understanding of the mechanisms underlying this immunosuppression as well as of the similarities between sepsis-induced immunosuppression and immune defects in cancer or immunosenescence has led to novel therapeutic strategies aimed at stimulating immune function in patients with sepsis. Trials assessing the therapeutic benefit of IL-7, granulocyte-macrophage colony-stimulating factor (GM-CSF) and antibodies against programmed cell death protein 1 (PD1) and programmed cell death 1 ligand 1 (PDL1) for the treatment of sepsis are in progress. The reappraisal of sepsis pathophysiology has also resulted in a novel approach to the design of clinical trials evaluating sepsis treatments, based on an evaluation of the immune status and biomarker-based stratification of patients.
Collapse
Affiliation(s)
- Fabienne Venet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Immunology Department, Flow Division, 69003 Lyon, France.,Equipe d'Accueil 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, 69003 Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Immunology Department, Flow Division, 69003 Lyon, France.,Equipe d'Accueil 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, 69003 Lyon, France
| |
Collapse
|
13
|
The novel α-glucan YCP improves the survival rates and symptoms in septic mice by regulating myeloid-derived suppressor cells. Acta Pharmacol Sin 2017. [PMID: 28649127 DOI: 10.1038/aps.2017.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life-threatening health condition that is initially characterized by uncontrolled inflammation, followed by the development of persistent immunosuppression. YCP is a novel α-glucan purified from the mycelium of the marine fungus Phoma herbarum YS4108, which has displayed strong antitumor activity via enhancing host immune responses. In this study, we investigated whether YCP could influence the development of sepsis in a mouse model. Caecal ligation and puncture (CLP)-induced sepsis was established in mice that were treated with YCP (20 mg/kg, ip or iv) 2 h before, 4 and 24 h after the CLP procedure, and then every other day. YCP administration greatly improved the survival rate (from 39% to 72% on d 10 post-CLP) and ameliorated disease symptoms in the septic mice. Furthermore, YCP administration significantly decreased the percentage of myeloid-derived suppressor cells (MDSCs) in the lungs and livers, which were dramatically elevated during sepsis. In cultured BM-derived cells, addition of YCP (30, 100 μg/mL) significantly decreased the expansion of MDSCs; YCP dose-dependently decreased the phosphorylation of STAT3 and increased the expression of interferon regulatory factor-8 (IRF-8). When BM-derived MDSCs were co-cultured with T cells, YCP dose-dependently increased the production of arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS), and activated the NF-κB pathway. In addition, the effects of YCP on MDSCs appeared to be dependent on toll-like receptor (TLR) 4. These results reveal that YCP inhibits the expansion of MDSCs via STAT3 while enhancing their immunosuppressive function, partially through NF-κB. Our findings suggest that YCP protects mice against sepsis by regulating MDSCs. Thus, YCP may be a potential therapeutic agent for sepsis.
Collapse
|
14
|
Novel Use of All-Trans-Retinoic Acid in A Model of Lipopolysaccharide-Immunosuppression to Decrease the Generation of Myeloid-Derived Suppressor Cells by Reducing the Proliferation of CD34+ Precursor Cells. Shock 2017; 48:94-103. [DOI: 10.1097/shk.0000000000000812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Yang L, Guo C, Zhu J, Feng Y, Chen W, Feng Z, Wang D, Sun S, Lin W, Wang Y. Increased Levels of Pro-Inflammatory and Anti-Inflammatory Cellular Responses in Parkinson's Disease Patients: Search for a Disease Indicator. Med Sci Monit 2017. [PMID: 28624842 PMCID: PMC5484607 DOI: 10.12659/msm.904240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder and it arises when most of the dopaminergic neurons of substantia nigra region die. Several mechanisms have been postulated as the causative event in PD pathology, and neuroinflammation is most crucial among them. MATERIAL AND METHODS We analyzed T-helper 17 (Th17) cells and myeloid-derived suppressor cells (MDSCs) from 80 PD patients to assess inflammatory processes and to find a cost-effective means to evaluate PD prognosis. RESULTS We found significantly increased numbers of Th17 cells and MDSCs count in peripheral circulation in PD patients compared with controls (p<0.001). A positive correlation was found between Th17 cells and MDSCs in PD patients (r=0.421, p<0.05). CONCLUSIONS Our results show the effector role of Th17 cells and MDSCs in PD pathology and shows their utility as effective biomarkers for PD diagnosis.
Collapse
Affiliation(s)
- Likun Yang
- Department of Neurosurgery, No. 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Changfeng Guo
- Department of Emergency Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jie Zhu
- Department of Neurosurgery, No. 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Yi Feng
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Weiliang Chen
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Zhizhong Feng
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Dan Wang
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Shibai Sun
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Wei Lin
- Department of Neurosurgery, No 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| | - Yuhai Wang
- Department of Neurosurgery, No. 101 Hospital of Chinese PLA, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
16
|
Chen S, Liu Y, Niu Y, Xu Y, Zhou Q, Xu X, Wang J, Yu M. Increased abundance of myeloid-derived suppressor cells and Th17 cells in peripheral blood of newly-diagnosed Parkinson's disease patients. Neurosci Lett 2017; 648:21-25. [PMID: 28359932 DOI: 10.1016/j.neulet.2017.03.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/21/2017] [Accepted: 03/26/2017] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is often associated with corresponding neuroinflammation. In the present study, flow cytometry was used to detect T-helper 17 (Th17) cells and myeloid-derived suppressor cells (MDSCs) in 18 patients newly diagnosed with PD as well as 18 normal controls. Results showed that Th17 cells and MDSCs were significantly higher in peripheral blood of PD patients compared to controls (P<0.001). Furthermore, there was no correlation between Th17 cells and MDSCs in peripheral blood of PD patients. Our findings suggest that Th17 cells and MDSCs may be important factors related to the occurrence and progression of PD, as well as the development of PD-related neuroinflammation.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Yueqin Liu
- The Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Yuanyuan Niu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Yuhao Xu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Qianwen Zhou
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Xiujian Xu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Jia Wang
- Department of Immunology, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Ming Yu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|