1
|
Cai Q, Li Q, Zhong S, Chen M, Zhong L, Li S, Li H, Chen Y, Wu J. Ultrasound-targeted microbubble destruction rapidly improves left ventricular function in rats with ischemic cardiac dysfunction. Int J Cardiol 2024; 404:131943. [PMID: 38458386 DOI: 10.1016/j.ijcard.2024.131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Previous studies have demonstrated the efficacy of ultrasound-targeted microbubble destruction (UTMD) in the treatment of ischemic heart failure (HF). The purpose of this study was to explore the mechanism by which UTMD improves ischemic HF. METHODS An ischemic heart failure model was established using Sprague-Dawley rats. Rats were randomly divided into 7 groups: sham group, HF group, HF + MB group, HF + ultrasound (US) group, HF + UTMD group, HF + UTMD+LY294002 group, and HF + LY294002 group. Serum BNP level and echocardiographic parameters were measured to evaluate cardiac function. PI3K/Akt/eNOS signaling pathway protein levels were detected by immunohistochemistry (IHC) and western blotting. The concentrations of nitrous oxide (NO) and ATP were detected by ELISA, and hematoxylin and eosin (HE) staining was used to evaluate myocardial tissue. RESULTS UTMD rapidly improved ejection fraction (EF) (HF: 37.16 ± 1.21% vs. HF + UTMD: 46.31 ± 3.00%, P < 0.01) and fractional shortening (FS) (HF: 18.53 ± 0.58% vs. HF + UTMD: 24.05 ± 1.84%, P < 0.01) in rats with ischemic HF. UTMD activated the PI3K/AKT/eNOS signaling pathway (HF vs. HF + UTMD, P < 0.01) and promoted the release of NO and ATP (HF vs. HF + UTMD, both, P < 0.05). Inhibition of the PI3K/AKT/eNOS signaling pathway by LY294002 worsened EF (HF: 37.16 ± 1.21% vs. HF + LY294002: 32.73 ± 3.05%, P < 0.05), and the release of NO and ATP by UTMD (HF + UTMD vs. HF + UTMD+LY294002, P < 0.05). CONCLUSIONS UTMD can rapidly improve cardiac function in ischemic HF by activating the PI3K/Akt/eNOS signaling pathway and promoting the release of NO and ATP.
Collapse
Affiliation(s)
- Qianyun Cai
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenrong Zhong
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaona Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longhe Zhong
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shasha Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoqi Li
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanqi Chen
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Juefei Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Perera RH, Berg FM, Abenojar EC, Nittayacharn P, Kim Y, Wang X, Basilion JP, Exner A. Ultrasound-mediated drug-free theranostics for treatment of prostate cancer. Bioact Mater 2024; 35:45-55. [PMID: 38304914 PMCID: PMC10831121 DOI: 10.1016/j.bioactmat.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024] Open
Abstract
Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. Prior work demonstrates that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) results in enhanced cellular internalization and prolongs NB retention with persistent, cancer-cell specific acoustic activity. In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency unfocused therapeutic US (TUS) will lead to selective damage and induce a specific therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. We observed that the internalized NBs and cellular compartments were disrupted after the PSMA-NB + TUS (targeted NB therapy or TNT) application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.4 ± 9.3 %, p < 0.01) compared to controls. TNT treatment significantly inhibited the PSMA expressing tumor growth and increased median survival time by 103 %, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in an orthotopic rabbit PCa model. Results demonstrate that cavitation of PSMA-NBs internalized via receptor-mediated endocytosis into target PCa cells using unfocused ultrasound results in significant, tumor-specific bioeffects. The effects, while not lethal to PSMA-expressing cancer cells in vitro, result in significant in vivo reduction in tumor progression in two models of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.
Collapse
Affiliation(s)
| | - Felipe Matias Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Hospital Israelita Albert Einstein, São Paulo, SP, 05652-900, Brazil
| | - Eric Chua Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, 73170, Thailand
| | - Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Xinning Wang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - James Peter Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, OH, USA
| | - Agata Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106, OH, USA
| |
Collapse
|
3
|
Abstract
With the increasing insight into molecular mechanisms of cardiovascular disease, a promising solution involves directly delivering genes, cells, and chemicals to the infarcted myocardium or impaired endothelium. However, the limited delivery efficiency after administration fails to reach the therapeutic dose and the adverse off-target effect even causes serious safety concerns. Controlled drug release via external stimuli seems to be a promising method to overcome the drawbacks of conventional drug delivery systems (DDSs). Microbubbles and magnetic nanoparticles responding to ultrasound and magnetic fields respectively have been developed as an important component of novel DDSs. In particular, several attempts have also been made for the design and fabrication of dual-responsive DDS. This review presents the recent advances in the ultrasound and magnetic fields responsive DDSs in cardiovascular application, followed by their current problems and future reformation.
Collapse
|
4
|
Zhu Y, Wang Q, Lin H, Chen K, Zheng C, Chen L, Ma S, Liao W, Bin J, Liao Y. Characterizing a long-term chronic heart failure model by transcriptomic alterations and monitoring of cardiac remodeling. Aging (Albany NY) 2021; 13:13585-13614. [PMID: 33891565 PMCID: PMC8202904 DOI: 10.18632/aging.202879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022]
Abstract
The long-term characteristics of transcriptomic alterations and cardiac remodeling in chronic heart failure (CHF) induced by myocardial infarction (MI) in mice are not well elucidated. This study aimed to reveal the dynamic changes in the transcriptome and cardiac remodeling in post-MI mice over a long time period. Monitoring C57BL/6 mice with MI for 8 months showed that approximately 44% of mice died of cardiac rupture in the first 2 weeks and others survived to 8 months with left ventricular (LV) aneurysm. The transcriptomic profiling analysis of cardiac tissues showed that the Integrin and WNT pathways were activated at 8 months after MI while the metabolism-related pathways were inversely inhibited. Subsequent differential analysis at 1 and 8 months post-MI revealed significant enrichments in biological processes, including consistent regulation of metabolism-related pathways. Moreover, echocardiographic monitoring showed a progressive increase in LV dimensions and a decrease in the LV fractional shortening during the first 4 weeks, and these parameters progressed at a lower rate till 8 months. A similar trend was found in the invasive LV hemodynamics, cardiac morphological and histological analyses. These results suggested that mouse MI model is ideal for long-term studies, and transcriptomic findings may provide new CHF therapeutic targets.
Collapse
Affiliation(s)
- Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaitong Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Siyuan Ma
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
5
|
Zhong L, He X, Si X, Wang H, Li B, Hu Y, Li M, Chen X, Liao W, Liao Y, Bin J. SM22α (Smooth Muscle 22α) Prevents Aortic Aneurysm Formation by Inhibiting Smooth Muscle Cell Phenotypic Switching Through Suppressing Reactive Oxygen Species/NF-κB (Nuclear Factor-κB). Arterioscler Thromb Vasc Biol 2019; 39:e10-e25. [PMID: 30580562 DOI: 10.1161/atvbaha.118.311917] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective- Vascular smooth muscle cell phenotypic transition plays a critical role in the formation of abdominal aortic aneurysms (AAAs). SM22α (smooth muscle 22α) has a vital role in maintaining the smooth muscle cell phenotype and is downregulated in AAA. However, whether manipulation of the SM22α gene influences the pathogenesis of AAA is unclear. Here, we investigated whether SM22α prevents AAA formation and explored the underlying mechanisms. Approach and Results- In both human and animal AAA tissues, a smooth muscle cell phenotypic switch was confirmed, as manifested by the downregulation of SM22α and α-SMA (α-smooth muscle actin) proteins. The methylation level of the SM22α gene promoter was dramatically higher in mouse AAA tissues than in control tissues. SM22α knockdown in ApoE-/- (apolipoprotein E-deficient) mice treated with Ang II (angiotensin II) accelerated the formation of AAAs, as evidenced by a larger maximal aortic diameter and more medial elastin degradation than those found in control mice, whereas SM22α overexpression exerted opposite effects. Similar results were obtained in a calcium chloride-induced mouse AAA model. Mechanistically, SM22α deficiency significantly increased reactive oxygen species production and NF-κB (nuclear factor-κB) activation in AAA tissues, whereas SM22α overexpression produced opposite effects. NF-κB antagonist SN50 or antioxidant N-acetyl-L-cysteine partially abrogated the exacerbating effects of SM22α silencing on AAA formation. Conclusions- SM22α reduction in AAAs because of the SM22α promoter hypermethylation accelerates AAA formation through the reactive oxygen species/NF-κB pathway, and therapeutic approaches to increase SM22α expression are potentially beneficial for preventing AAA formation.
Collapse
Affiliation(s)
- Lintao Zhong
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - Xiang He
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - Xiaoyun Si
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - He Wang
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - Bing Li
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - Yinlan Hu
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - Mengsha Li
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - Xiaoqiang Chen
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China (W.L.)
| | - Yulin Liao
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| | - Jianping Bin
- From the Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (L.Z., X.H., X.S., H.W., B.L., Y.H., M.L., X.C., Y.L., J.B.)
| |
Collapse
|
6
|
Sun Y, Zhong L, He X, Wang S, Lai Y, Wu W, Song H, Chen Y, Yang Y, Liao W, Liao Y, Bin J. LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA. J Mol Cell Cardiol 2019; 131:66-81. [DOI: 10.1016/j.yjmcc.2019.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/14/2019] [Accepted: 04/07/2019] [Indexed: 10/27/2022]
|
7
|
Li X, Sun Y, Huang S, Chen Y, Chen X, Li M, Si X, He X, Zheng H, Zhong L, Yang Y, Liao W, Liao Y, Chen G, Bin J. Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. EBioMedicine 2018; 39:69-82. [PMID: 30545799 PMCID: PMC6355659 DOI: 10.1016/j.ebiom.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND We previously found that loss of lncRNA-AZIN2 splice variant (AZIN2-sv) increases cardiomyocyte (CM) proliferation and attenuates adverse ventricular remodelling post-myocardial infarction (MI). However, whether inhibition of AZIN2-sv can simultaneously induce angiogenesis and thus improve prognosis after MI is unclear. METHODS We used in situ hybridization and quantitative PCR to determine AZIN2-sv expression in endothelial cells. Knockdown and overexpression were performed to detect the role of AZIN2-sv in endothelial cell function, angiogenesis and prognosis after MI. RNA pulldown, RNA immunoprecipitation and luciferase reporter assays were used to determine the interaction with talin1 (Tln1) protein and miRNA-214 (miR-214). DNA pulldown and chromatin immunoprecipitation (ChIP) assays were used to study AZIN2-sv binding to upstream transcription factors. FINDINGS AZIN2-sv was enriched in cardiac endothelial cells. The loss of AZIN2-sv reduced endothelial cell apoptosis and promoted endothelial sprouting and capillary network formation in vitro. Moreover, in vivo, the loss of AZIN2-sv induced angiogenesis and improved cardiac function after MI. Mechanistically, AZIN2-sv reduced Tln1 and integrin β1 (ITGB1) protein levels to inhibit neovascularization. AZIN2-sv activated the ubiquitination-dependent degradation of Tln1 mediated by proteasome 26S subunit ATPase 5 (PSMC5). In addition, AZIN2-sv could bind to miR-214 and suppress the phosphatase and tensin homologue (PTEN)/Akt pathway to inhibit angiogenesis. With regard to the upstream mechanism, Bach1, a negative regulator of angiogenesis, bound to the promoter of AZIN2-sv and increased its expression. INTERPRETATION Bach1-activated AZIN2-sv could participate in angiogenesis by promoting the PSMC5-mediated ubiquitination-dependent degradation of Tln1 and blocking the miR-214/PTEN/Akt pathway. Inhibition of AZIN2-sv induced angiogenesis and myocardial regeneration simultaneously, thus, AZIN2-sv could be an ideal therapeutic target for improving myocardial repair after MI. FUND: National Natural Science Foundations of China.
Collapse
Affiliation(s)
- Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yili Sun
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqiang Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyun Si
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lintao Zhong
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Yang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China..
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China..
| |
Collapse
|
8
|
Li X, He X, Wang H, Li M, Huang S, Chen G, Jing Y, Wang S, Chen Y, Liao W, Liao Y, Bin J. Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovasc Res 2018; 114:1642-1655. [PMID: 29584819 PMCID: PMC6148334 DOI: 10.1093/cvr/cvy075] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/23/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Aims Long noncoding RNAs (lncRNAs) are critical regulators of cardiovascular lineage commitment and heart wall development, but their roles in regulating endogenous cardiac regeneration are unclear. The present study investigated the role of human-derived lncRNA in regulating endogenous cardiac regeneration as well as the underlying mechanisms. Methods and results We compared RNA sequencing data from human foetal and adult hearts and identified a novel lncRNA that was upregulated in adult hearts (Genesymbol NONHSAG000971/NONHSAT002258 or ENST00000497710.5), which was a splice variant of the AZIN2 gene (AZIN2-sv). We used quantitative PCR to confirm the increased expression of AZIN2-sv in adult rat hearts. Coexpression network analysis indicated that AZIN2-sv could regulate proliferation. Loss- and gain-of-function approaches demonstrated that AZIN2-sv negatively regulated endogenous cardiomyocyte proliferation in vitro and in vivo. Knockdown of AZIN2-sv attenuated ventricular remodelling and improved cardiac function after myocardial infarction. Phosphatase and tensin homolog (PTEN) was identified as a target of AZIN2-sv, their direct binding increased PTEN stability. Furthermore, AZIN2-sv acted as a microRNA-214 sponge to release PTEN, which blocked activation of the PI3 kinase/Akt pathway to inhibit cardiomyocyte proliferation. Conclusions The newly discovered AZIN2-sv suppressed endogenous cardiac regeneration by targeting the PTEN/Akt pathway. Thus, AZIN2-sv may be a novel therapeutic target for preventing and treating heart failure.
Collapse
Affiliation(s)
- Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Xiang He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - He Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Mengsha Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Guojun Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Yuanwen Jing
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Shifei Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| |
Collapse
|
9
|
Loss of long non-coding RNA CRRL promotes cardiomyocyte regeneration and improves cardiac repair by functioning as a competing endogenous RNA. J Mol Cell Cardiol 2018; 122:152-164. [PMID: 30125571 DOI: 10.1016/j.yjmcc.2018.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in the development of myocardial hypertrophy and may stimulate endogenous myocardial regeneration to prevent heart failure after myocardial infarction (MI). However, whether lncRNAs are involved in regulating myocardial regeneration after MI remains unclear. The present study aimed to identify human-derived lncRNAs that are involved in endogenous cardiomyocyte (CM) regeneration. By analyzing publicly available RNA-seq data of human fetal and normal adult cardiac tissues, we identified a novel human-derived adult upregulated lncRNA designated cardiomyocyte regeneration-related lncRNA (CRRL). Bioinformatics analysis indicated that CRRL is involved in the negative regulation of CM proliferation. First, we observed that the loss of CRRL attenuates post-MI remodeling and preserves cardiac function in adult rats. Through loss-of-function approaches, we found that CRRL knockdown promotes neonatal rat CM proliferation both in vivo and in vitro. Furthermore, we demonstrated that CRRL acts as a competing endogenous RNA (ceRNA) by directly binding to miR-199a-3p and thereby increasing the expression of Hopx, a target gene of miR-199a-3p and a critical negative regulatory factor of CM proliferation. Thus, CRRL suppresses cardiomyocyte regeneration by directly binding to miR-199a-3p, indicating that loss of CRRL facilitates myocardial regeneration and may be a new potential therapeutic strategy for heart failure.
Collapse
|
10
|
Shen S, Li Y, Xiao Y, Zhao Z, Zhang C, Wang J, Li H, Liu F, He N, Yuan Y, Lu Y, Guo S, Wang Y, Liao W, Liao Y, Chen Y, Bin J. Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion. Biomaterials 2018; 181:293-306. [PMID: 30096563 DOI: 10.1016/j.biomaterials.2018.07.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
Abstract
With the rapid development of cancer-targeted nanotechnology, a variety of nanoparticle-based drug delivery systems have clinically been employed in cancer therapy. However, multidrug resistance significantly impacts the therapeutic efficacy. Physical non-drug therapy has emerged as a new and promising strategy. This study aimed to determine whether novel folate-nanobubbles (F-NBs), combined with therapeutic ultrasound (US), could act as a safe and effective physical targeted cancer therapy. Using folate-conjugated N-palmitoyl chitosan (F-PLCS), we developed novel F-NBs and characterised their physicochemical properties, internalization mechanism, targeting ability, therapeutic effects, and killing mechanism. The results showed that the novel F-NBs selectively accumulated in FR-positive endothelial cells and tumour cells via FR coupled with clathrin- and caveolin-mediated endocytosis in vitro and in vivo. In addition, the F-NBs killed target cells by an intracellular explosion under US irradiation. Hoechst/PI staining demonstrated that apoptosis and necrosis accounted for a large proportion of cell death in vivo. F-NBs combined with US therapy significantly inhibited tumour growth and improved the overall survival of tumour-bearing mice. Under US irradiation, the novel F-NBs selectively killed FR-positive tumour cells in vitro and in vivo via intracellular explosion and therefore is a promising alternative for targeted cancer treatment.
Collapse
Affiliation(s)
- Shuxin Shen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ying Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yunbin Xiao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zonglei Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuanxi Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junfen Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hairui Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feng Liu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nvqin He
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Yuan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongkang Lu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengcun Guo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanmei Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Qian L, Thapa B, Hong J, Zhang Y, Zhu M, Chu M, Yao J, Xu D. The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis 2018; 10:1099-1111. [PMID: 29607187 DOI: 10.21037/jtd.2018.01.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple limitations for cardiac pharmacologic therapies like intolerance, individual variation in effectiveness, side effects, and high cost still remain, despite the recent progress in diagnosis and health support. Gene therapy is poised to be an attractive alternative in various ways for the future, refractory cardiac diseases being one aspect of it. As a novel therapy to deliver the objective gene to organs of living animals, ultrasound targeted microbubble destruction (UTMD) has therapeutic potential in cardiovascular disorders. UTMD, which binds microbubbles with DNA or RNA carriers into the shell and destroys the located microbubbles with low frequency and high mechanical index ultrasound can release target agents to specific organs. UTMD has the ability to transfect markedly through sonoporation, cavitation and other effects by way of intravenous injection that is minimally invasive and highly specific for gene deliverance. Here, we have summarized the present role of UTMD in pre-clinical studies of cardiac gene therapy which covers myocardial infarction, regeneration, ischaemia/reperfusion injury, hypertension, diabetic cardiomyopathy, adriamycin cardiomyopathy and some discussion for further studies.
Collapse
Affiliation(s)
- Lijun Qian
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Barsha Thapa
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanmei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Menglin Zhu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Chu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|