1
|
Li S, Huang Q, Yang Q, Peng X, Wu Q. MicroRNAs as promising therapeutic agents: A perspective from acupuncture. Pathol Res Pract 2023; 248:154652. [PMID: 37406378 DOI: 10.1016/j.prp.2023.154652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
MicroRNAs (miRNAs) are gaining recognition as potential therapeutic agents due to their small size, ability to target a wide range of genes, and significant role in disease progression. However, despite their promising potential, nearly half of the miRNA drugs developed for therapeutic purposes have been discontinued or put on hold, and none have advanced to phase III clinical trials. The development of miRNA therapeutics has faced obstacles such as difficulties in validating miRNA targets, conflicting evidence regarding competition and saturation effects, challenges in miRNA delivery, and determining appropriate dosages. These hurdles primarily arise from the intricate functional complexity of miRNAs. Acupuncture, a distinct, complementary therapy, offers a promising avenue to overcome these barriers, particularly by addressing the fundamental issue of preserving functional complexity through acupuncture regulatory networks. The acupuncture regulatory network consists of three main components: the acupoint network, the neuro-endocrine-immune (NEI) network, and the disease network. These networks represent the processes of information transformation, amplification, and conduction that occur during acupuncture. Notably, miRNAs serve as essential mediators and shared biological language within these interconnected networks. Harnessing the therapeutic potential of acupuncture-derived miRNAs can help reduce the time and economic resources required for miRNA drug development and alleviate the current developmental challenges miRNA therapeutics face. This review provides an interdisciplinary perspective by summarizing the interactions between miRNAs, their targets, and the three acupuncture regulatory networks mentioned earlier. The aim is to illuminate the challenges and opportunities in developing miRNA therapeutics. This review paper presents a comprehensive overview of miRNAs, their interactions with acupuncture regulatory networks, and their potential as therapeutic agents. By bridging the miRNA research and acupuncture fields, we aim to offer valuable insights into the obstacles and prospects of developing miRNA therapeutics.
Collapse
Affiliation(s)
- Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qianhui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qingqing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Xiaohua Peng
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
2
|
Research Progress on Exosomes and MicroRNAs in the Microenvironment of Postoperative Neurocognitive Disorders. Neurochem Res 2022; 47:3583-3597. [DOI: 10.1007/s11064-022-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 12/04/2022]
|
3
|
Chen Y, An Q, Yang ST, Chen YL, Tong L, Ji LL. MicroRNA-124 attenuates PTSD-like behaviors and reduces the level of inflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats following single-prolonged stress. Exp Neurol 2022; 356:114154. [PMID: 35753367 DOI: 10.1016/j.expneurol.2022.114154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND MicroRNA-124-3p (miR-124) plays an important role in neuroprotective functions in various neurological disorders, but whether miR-124 participates in the pathological progression of posttraumatic stress disorder (PTSD) remains poorly understood. METHODS In the present study, we assessed the level of neuroinflammation in the hippocampus of rats exposed to single-prolonged stress (SPS) by Western blot and immunofluorescence staining, while the effect of miR-124 on PTSD-like behaviors was evaluated by behavioral test. RESULTS Our results showed that the level of miR-124 in the hippocampus of rats exposed to SPS was downregulated and that the upregulation of miR-124 could alleviate the PTSD-like behaviors of SPS rats. This effect of miR-124 might be achieved through TNF receptor-associated Factor 6 (TRAF6), which is a target gene of miR-124 and plays an important role in the immune and inflammatory reaction by regulating nuclear factor kappa-B (NF-κB). Furthermore, we found that miR-124 not only decreased the level of proinflammatory cytokines but also increased the expression levels of synaptic proteins (PSD95 and synapsin I) and regulated the morphology of neurons. CONCLUSION These results suggested that miR-124 might attenuate PTSD-like behaviors and decrease the level of proinflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats exposed to SPS.
Collapse
Affiliation(s)
- Yao Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qi An
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shu-Ting Yang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yu-Lu Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Chen S, Xu D, Fan L, Fang Z, Wang X, Li M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front Mol Neurosci 2022; 14:797253. [PMID: 35069111 PMCID: PMC8780133 DOI: 10.3389/fnmol.2021.797253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders characterized by recurrent seizures. The mechanism of epilepsy remains unclear and previous studies suggest that N-methyl-D-aspartate receptors (NMDARs) play an important role in abnormal discharges, nerve conduction, neuron injury and inflammation, thereby they may participate in epileptogenesis. NMDARs belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian CNS. Despite numerous studies focusing on the role of NMDAR in epilepsy, the relationship appeared to be elusive. In this article, we reviewed the regulation of NMDAR and possible mechanisms of NMDAR in epilepsy and in respect of onset, development, and treatment, trying to provide more evidence for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Chen K, Yang LN, Lai C, Liu D, Zhu LQ. Role of Grina/Nmdara1 in the Central Nervous System Diseases. Curr Neuropharmacol 2021; 18:861-867. [PMID: 32124700 PMCID: PMC7569322 DOI: 10.2174/1570159x18666200303104235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/11/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Glutamate receptor, ionotropic, N-methyl-D-aspartate associated protein 1 (GRINA) is a member of the NMDA receptors (NMDARs) and is involved in several neurological diseases, which governs the key processes of neuronal cell death or the release of neurotransmitters. Upregulation of GRINA has been reported in multiple diseases in human beings, such as major depressive disorder (MDD) and schizophrenia (SCZ), with which the underlying mechanisms remain elusive. In this review, we provide a general overview of the expression and physiological function of GRINA in the central nervous system (CNS) diseases, including stroke, depression, epilepsy, SCZ, and Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Liu Nan Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Chuan Lai
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, People’s Republic of China
| |
Collapse
|
6
|
Real-time and rapid quantification of microRNAs in cells and tissues using target-recycled enzyme-free amplification strategy. Talanta 2020; 217:121016. [DOI: 10.1016/j.talanta.2020.121016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
|
7
|
Chen W, Bian H, Xie X, Yang X, Bi B, Li C, Zhang Y, Zhu Q, Song J, Qin C, Qi J. Negative feedback loop of ERK/CREB/miR-212-3p inhibits HBeAg-induced macrophage activation. J Cell Mol Med 2020; 24:10935-10945. [PMID: 32767729 PMCID: PMC7521245 DOI: 10.1111/jcmm.15723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
The activation of liver macrophages is closely related to liver injury after HBV infection. Our previous results demonstrated that HBeAg played a key role in inducing macrophage activation. As we all know, miRNAs are involved in the regulation of multiple immune cell functions. Meanwhile, we have shown that miR‐155 positively regulates HBeAg‐induced macrophage activation and accelerates liver injury. Subsequently, based on our previous miRNA sequencing results, we further evaluated the role of miR‐212‐3p called ‘neurimmiR’ in HBeAg‐induced macrophages in this study. First, miR‐212‐3p expression was significantly elevated in HBeAg‐treated macrophages. Meanwhile, we found up‐regulation of miR‐212‐3p significantly decreased the production of cytokines, whereas knockdown of miR‐212‐3p held the opposite effect by gains and losses of function. Mechanically, although MAPK signal pathway, including ERK, JNK and p38, was activated in HBeAg‐induced macrophages, only ERK promoted the expression of miR‐212‐3p via transcription factor CREB, which was able to bind to the promoter of miR‐212‐3p verified by ChIP assay. Moreover, we further indicated that up‐regulated miR‐212‐3p inhibited HBeAg‐induced inflammatory cytokine production through targeting MAPK1. In conclusion, miR‐212‐3p was augmented in HBeAg‐stimulated macrophages via ERK/CREB signal pathway and the elevated miR‐212‐3p suppressed inflammatory cytokine production induced by HBeAg through targeting MAPK1.
Collapse
Affiliation(s)
- Wenjun Chen
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Hongjun Bian
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyu Xie
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Xia Yang
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Benjun Bi
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunliu Li
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yuejuan Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Jing Song
- The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, China
| | - Chengyong Qin
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Jianni Qi
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| |
Collapse
|
8
|
Fritsche L, Teuber-Hanselmann S, Soub D, Harnisch K, Mairinger F, Junker A. MicroRNA profiles of MS gray matter lesions identify modulators of the synaptic protein synaptotagmin-7. Brain Pathol 2019; 30:524-540. [PMID: 31663645 PMCID: PMC8018161 DOI: 10.1111/bpa.12800] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
We established microRNA (miRNA) profiles in gray and white matter multiple sclerosis (MS) lesions and identified seven miRNAs which were significantly more upregulated in the gray matter lesions. Five of those seven miRNAs, miR‐330‐3p, miR‐4286, miR‐4488, let‐7e‐5p, miR‐432‐5p shared the common target synaptotagmin7 (Syt7). Immunohistochemistry and transcript analyses using nanostring technology revealed a maldistribution of Syt7, with Syt7 accumulation in neuronal soma and decreased expression in axonal structures. This maldistribution could be at least partially explained by an axonal Syt7 transport disturbance. Since Syt7 is a synapse‐associated molecule, this maldistribution could result in impairment of neuronal functions in MS patients. Thus, our results lead to the hypothesis that the overexpression of these five miRNAs in gray matter lesions is a cellular mechanism to reduce further endogenous neuronal Syt7 production. Therefore, miRNAs seem to play an important role as modulators of neuronal structures in MS.
Collapse
Affiliation(s)
- Lena Fritsche
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | | | - Daniel Soub
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Kim Harnisch
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Fabian Mairinger
- Institute of Pathology, University Hospital Essen, D-45147, Essen, Germany
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| |
Collapse
|
9
|
Ji Y, Wang D, Liu Y, Ma X, Lu H, Zhang B. Retracted
: MicroRNA‐132 attenuates LPS‐induced inflammatory injury by targeting TRAF6 in neuronal cell line HT‐22. J Cell Biochem 2018; 119:5528-5537. [DOI: 10.1002/jcb.26720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yang‐Fei Ji
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dan Wang
- Department of CardiologyZhengzhou Central HospitalZhengzhouChina
| | - Yan‐Ru Liu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xing‐Rong Ma
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong Lu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bo‐Ai Zhang
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|