1
|
Krishnamurthy G, Nguyen PT, Tran BN, Phan HT, Brennecke SP, Moses EK, Melton PE. Genomic variation associated with cardiovascular disease progression following preeclampsia: a systematic review. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1221222. [PMID: 38455895 PMCID: PMC10911037 DOI: 10.3389/fepid.2023.1221222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/14/2023] [Indexed: 03/09/2024]
Abstract
Background Women with a history of preeclampsia (PE) have been shown to have up to five times the risk of developing later-life cardiovascular disease (CVD). While PE and CVD are known to share clinical and molecular characteristics, there are limited studies investigating their shared genomics (genetics, epigenetics or transcriptomics) variation over time. Therefore, we sought to systematically review the literature to identify longitudinal studies focused on the genomic progression to CVD following PE. Methods A literature search of primary sources through PubMed, Scopus, Web of Science and Embase via OVID was performed. Studies published from January 1, 1980, to July 28, 2023, that investigated genomics in PE and CVD were eligible for inclusion. Included studies were screened based on Cochrane systematic review guidelines in conjunction with the PRISMA 2020 checklist. Eligible articles were further assessed for quality using the Newcastle-Ottawa scale. Results A total of 9,231 articles were screened, with 14 studies subjected to quality assessment. Following further evaluation, six studies were included for the final review. All six of these studies were heterogeneous in regard to CVD/risk factor as outcome, gene mapping approach, and in different targeted genes. The associated genes were RGS2, LPA, and AQP3, alongside microRNAs miR-122-5p, miR-126-3p, miR-146a-5p, and miR-206. Additionally, 12 differentially methylated regions potentially linked to later-life CVD following PE were identified. The only common variable across all six studies was the use of a case-control study design. Conclusions Our results provide critical insight into the heterogeneous nature of genomic studies investigating CVD following PE and highlight the urgent need for longitudinal studies to further investigate the genetic variation underlying the progression to CVD following PE.
Collapse
Affiliation(s)
- Gayathry Krishnamurthy
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Phuong Tram Nguyen
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Bao Ngoc Tran
- Wicking Dementia Research and Education Center, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Hoang T. Phan
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Shaun P. Brennecke
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, The Royal Women’s Hospital, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, The Royal Women’s Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric K. Moses
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Phillip E. Melton
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
- School of Global and Population Health, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
2
|
Study protocol for the sheMATTERS study (iMproving cArdiovascular healTh in new moThERS): a randomized behavioral trial assessing the effect of a self-efficacy enhancing breastfeeding intervention on postpartum blood pressure and breastfeeding continuation in women with hypertensive disorders of pregnancy. BMC Pregnancy Childbirth 2023; 23:68. [PMID: 36703104 PMCID: PMC9878496 DOI: 10.1186/s12884-022-05325-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/14/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Individuals with hypertensive disorders of pregnancy (HDP) have an elevated lifetime risk of chronic hypertension, metabolic syndrome, and premature cardiovascular disease. Because breastfeeding duration and exclusivity have been associated in observational studies with improved cardiovascular health, optimizing breastfeeding in those with HDP might be an unrealized cardio-prevention approach, in particular because individuals with HDP have more breastfeeding challenges. Breastfeeding supportive interventions targeting one's breastfeeding self-efficacy have been shown to improve breastfeeding rates. METHODS We designed an open-label, multi-center 1:1 randomized behavioral trial to test whether a previously validated self-efficacy enhancing breastfeeding intervention can improve breastfeeding duration and/or exclusivity, and lower postpartum blood pressure at 12 months. Randomization is computer-generated and stratified by site (four hospitals in Montreal, Quebec and one hospital in Kingston, Ontario; all in Canada). Included are breastfeeding participants with HDP (chronic/gestational hypertension or preeclampsia) who delivered a live singleton infant at > 34 weeks, speak English or French, and have no contraindications to breastfeeding. Informed and written consent is obtained at hospitalization for delivery or a re-admission with hypertension within 1 week of discharge. Participants assigned to the intervention group receive a breastfeeding self-efficacy-based intervention delivered by a trained lactation consultant in hospital, with continued reactive/proactive support by phone or text message for up to 6 months postpartum. Regardless of group assignment, participants are followed for self-reported outcomes, automated office blood pressure, and home blood pressure at several time points with end of follow-up at 12 months. DISCUSSION This study will assess whether an intensive nurse-led behavioral intervention can improve breastfeeding rates and, in turn, postpartum blood pressure - an early marker for atherosclerotic cardiovascular disease. If effective, this form of enhanced breastfeeding support, along with closer BP and metabolic surveillance, can be implemented broadly in individuals lactating after HDP. TRIAL REGISTRATION ClinicalTrials.gov, # NCT04580927 , registered on Oct 9, 2020.
Collapse
|
3
|
Bovee EM, Gulati M, Maas AH. Novel Cardiovascular Biomarkers Associated with Increased Cardiovascular Risk in Women With Prior Preeclampsia/HELLP Syndrome: A Narrative Review. Eur Cardiol 2021; 16:e36. [PMID: 34721670 PMCID: PMC8546910 DOI: 10.15420/ecr.2021.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Evidence has shown that women with a history of preeclampsia or haemolysis, elevated liver enzymes and low platelets (HELLP) syndrome have an increased risk of cardiovascular disease later in life. Recommendations for screening, prevention and management after such pregnancies are not yet defined. The identification of promising non-traditional cardiovascular biomarkers might be useful to predict which women are at greatest risk. Many studies are inconsistent and an overview of the most promising biomarkers is currently lacking. This narrative review provides an update of the current literature on circulating cardiovascular biomarkers that may be associated with an increased cardiovascular disease risk in women after previous preeclampsia/HELLP syndrome. Fifty-six studies on 53 biomarkers were included. From the summary of evidence, soluble fms-like tyrosine kinase-1, placental growth factor, interleukin (IL)-6, IL-6/IL-10 ratio, high-sensitivity cardiac troponin I, activin A, soluble human leukocyte antigen G, pregnancy-associated plasma protein A and norepinephrine show potential and are interesting candidate biomarkers to further explore. These biomarkers might be potentially eligible for cardiovascular risk stratification after preeclampsia/HELLP syndrome and may contribute to the development of adequate strategies for prevention of hypertension and adverse events in this population.
Collapse
Affiliation(s)
| | | | - Angela Hem Maas
- Department of Cardiology, Radboud University Medical Center Nijmegen, the Netherlands
| |
Collapse
|
4
|
Chen D, He B, Zheng P, Wang S, Zhao X, Liu J, Yang X, Cheng W. Identification of mRNA-, circRNA- and lncRNA- Associated ceRNA Networks and Potential Biomarkers for Preeclampsia From Umbilical Vein Endothelial Cells. Front Mol Biosci 2021; 8:652250. [PMID: 33959635 PMCID: PMC8093761 DOI: 10.3389/fmolb.2021.652250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
Objective The etiology and pathogenesis of preeclampsia (PE) remain unclear, and ideal biomarkers for the early detection of PE are scarce. The involvement of the competing endogenous RNA (ceRNA) hypothesis in PE is only partially understood. The present study aimed to delineate a regulatory network in PE comprised of messenger RNAs (mRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) via ceRNA profiles from human umbilical vein endothelial cells (HUVECs) to further reveal the pathogenesis of PE and potential biomarkers. Methods Differentially expressed mRNAs, circRNAs, and lncRNAs were detected in HUVECs from early onset preeclampsia (EOPE) cases (n = 4) and normal pregnancies (n = 4) by microarray analysis. Bioinformatics analysis was performed to systematically analyze the data, and a relevant ceRNA network was constructed. RNAs (ANGPT2, LIPG, hsa_circ_0025992, hsa_circ_0090396, hsa_circ_0066955, hsa_circ_0041203, hsa_circ_0018116, lnc-C17orf64-1:1, lnc-SLC27A2-2:1, and lnc-UEVLD-5:1) were validated by quantitative real-time PCR (qRT-PCR) in 10 pairs of HUVECs and placental tissues from PE patients and normal pregnancies. Furthermore, expression of hsa_circ_0025992 was detected in maternal peripheral blood samples from PE patients (n = 24) and normal pregnancies (n = 30) to confirm its potential as a novel biomarker. The receiver operating characteristic (ROC) curve was applied to analyze its diagnostic value. Results Compared with HUVECs from normal pregnancies, HUVECs from EOPE cases had 33 differentially expressed mRNAs (DEmRNAs), 272 DEcircRNAs, and 207 DElncRNAs. GO and KEGG analyses of the DERNAs revealed the biological processes and pathways involved in PE. Based on the microarray data and the predicted miRNAs, a ceRNA network was constructed with four mRNAs, 34 circRNAs, nine lncRNAs, and 99 miRNAs. GO and KEGG analyses of the network reinforced the crucial roles of metabolic disorders, the p53 and JAK/STAT signaling pathways in PE. In addition, ROC analysis indicated that hsa_circ_0025992 could be used as a novel biomarker for PE. Conclusion A novel ceRNA network was revealed in PE, and the potential of hsa_circ_0025992 to serve as a new biomarker was confirmed.
Collapse
Affiliation(s)
- Dan Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Biwei He
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Panchan Zheng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuying Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueya Zhao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyu Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xingyu Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Li Z, Zhou X, Gao W, Sun M, Chen H, Meng T. Circular RNA VRK1 facilitates pre-eclampsia progression via sponging miR-221-3P to regulate PTEN/Akt. J Cell Mol Med 2021; 26:1826-1841. [PMID: 33738906 PMCID: PMC8918405 DOI: 10.1111/jcmm.16454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pre‐eclampsia (PE) is a worldwide pregnancy‐related disorder. It is mainly characterized by defect migration and invasion of trophoblast cells. Recently, circular RNAs (circRNAs) have been believed to play a vital role in PE. The expression patterns and the biological functions of circRNAs in PE remain elusive. Here, we performed a circRNA microarray to identify putative PE‐related circRNAs. Bioinformatics analyses were used to screen the circRNAs which have potential relationships with pre‐eclampsia, and we identified a novel circRNA (circVRK1) that was up‐regulated in PE placenta tissues. By using HTR‐8/SVneo cells, circVRK1 knockdown significantly enhanced cell migration and invasion abilities, as well as epithelial‐mesenchymal transition (EMT). Mechanistically, we found that circVRK1 and PTEN could function as the ceRNAs to miR‐221‐3p. Overexpression of miR‐221‐3p promoted cell migration, invasion and EMT via regulating PTEN. The cotransfection of miR‐221‐3p inhibitor or PTEN reversed the effect from circVRK1 knockdown. Moreover, the circVRK1/miR‐221‐3p/PTEN axis greatly regulated Akt phosphorylation. In general, circVRK1 suppresses trophoblast cell migration, invasion and EMT, by acting as a ceRNA to miR‐221‐3p to regulate PTEN, and further inhibit PI3K/Akt activation. The purpose of this paper is to open wide insights to investigate the onset of PE and provide new potential therapeutic targets in PE.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China.,China Medical University, Shenyang, China
| | - Xinyi Zhou
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China.,China Medical University, Shenyang, China
| | - Wenyan Gao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Manni Sun
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Clinical Science Editorial 2020 - a year gone by and the year ahead. Clin Sci (Lond) 2020; 134:3233-3235. [PMID: 33313696 DOI: 10.1042/cs20201502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022]
Abstract
As this extraordinary year, blemished by COVID-19, comes to an end, I look back as Editor-in-Chief to the many great successes and new initiatives of Clinical Science. Despite the challenges we all faced during 2020, our journal has remained strong and vibrant. While we have all adapted to new working conditions, with life very different to what it was pre-COVID-19, the one thing that remains intact and secure is the communication of scientific discoveries through peer-reviewed journals. I am delighted to share with you some of the many achievements of our journal over the past year and to highlight some exciting new activities planned for 2021.
Collapse
|