1
|
Buday T, Brozmanova M, Jakusova J, Owesie AA, Ertl LS, Mokra D, Hanusrichterova J, Burjanivova T, Biringerova Z, Plevkova J. Impact of microbial diversity on inflammatory cytokines and respiratory pattern measured in whole-body plethysmography in guinea pig models. Respir Physiol Neurobiol 2025; 332:104384. [PMID: 39647679 DOI: 10.1016/j.resp.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE This study investigates the breathing patterns and immune status of guinea pigs raised under specific pathogen-free (SPF) conditions compared to conventionally bred (CON). METHODS Breathing pattern parameters were assessed using whole-body plethysmography (WBP) during quiet breathing and saline nebulisation. Blood and bronchoalveolar lavage fluid (BALF) were analysed for white blood cell, neutrophil and eosinophil counts, and cytokine levels (TNF-α, IL-1β, IL-4). RESULTS SPF guinea pigs exhibited higher tidal volume, expired volume, minute volume, and airflow parameters than CON guinea pigs. The immune analysis revealed lower white blood cell counts and IL-4 levels in SPF guinea pigs. These findings indicate that SPF guinea pigs have different respiratory and immune responses than CON guinea pigs. CONCLUSION The study highlights that the maturation processes affecting breathing pattern parameters in SPF guinea pigs differ significantly from those in CON guinea pigs. This suggests potential limitations of SPF animals in respiratory physiology research due to their different immune and respiratory responses.
Collapse
Affiliation(s)
- Tomas Buday
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Mariana Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Janka Jakusova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Abdullah Al Owesie
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Laura Sophie Ertl
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Juliana Hanusrichterova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Tatiana Burjanivova
- Department of Molecular Biology and Genetics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Zuzana Biringerova
- Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia; Centre for Medical Education Support, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
2
|
Guo J, Lin R, Liu J, Liu R, Chen S, Zhang Z, Yang Y, Wang H, Wang L, Yu S, Zhou C, Xiao L, Luo R, Yu J, Zeng L, Zhang X, Li Y, Wu H, Wang T, Li Y, Kumar M, Zhu P, Liu J. Capture primed pluripotency in guinea pig. Stem Cell Reports 2024:102388. [PMID: 39793577 DOI: 10.1016/j.stemcr.2024.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/13/2025] Open
Abstract
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency. Wingless/Integrated (WNT) signaling inhibition is also essential for their maintenance. GpEpiSCs express key pluripotency markers (OCT4, SOX2, NANOG) and share transcriptional similarities with human and mouse primed stem cells. While many genes are conserved between guinea pig and human primed stem cells, transcriptional analysis also reveals species-specific differences in pluripotency-related pathways. Epigenetic analysis highlights bivalent gene regulation, underscoring their developmental potential. This work demonstrates both the evolutionary conservation and divergence of primed pluripotent stem cells, providing a new tool for biomedical research and enhancing guinea pigs' utility in studying human diseases.
Collapse
Affiliation(s)
- Jing Guo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Runxia Lin
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jinpeng Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongrong Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongzheng Yang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haiyun Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Luqin Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Shengyong Yu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Chunhua Zhou
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Lizhan Xiao
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Rongping Luo
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Jinjin Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Pediatric Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lihua Zeng
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Zhang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Yusha Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Tao Wang
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yi Li
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Manish Kumar
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China.
| | - Ping Zhu
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China.
| |
Collapse
|
3
|
Jeon K, Lee J, Song M, Kim K, Jo M, Chang S, Song D, Park S, Kim H, Kim HB, Cho J. Evaluation of the nutrient digestibility at each age in dogs diet by in vitro and in vivo methods. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1273-1281. [PMID: 39691607 PMCID: PMC11647413 DOI: 10.5187/jast.2024.e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 12/19/2024]
Abstract
The objective of this study was to evaluate in vitro predictions of digestibility at each age (puppy, adult, and senior) in dogs of dry matter (DM), organic matter (OM), crude protein (CP), gross energy (GE), crude fiber (CF), and ether extract (EE) using dog diets. First, to determine the digestibility of dog diets using pepsin and pancreatin incubations, conduct the in vitro method. Later, 18 mixed-sex beagles were used in this experiment to compare in vivo digestibility. Beagles are divided into 3 groups according to their age and body weight: six puppies (under 1-year-old; 6.21 ± 0.56 kg), six adult dogs (2 to 7 years old; 8.16 ± 0.64 kg), and six senior dogs (over 8 years old; 6.95 ± 1.39 kg). Except for DM in puppies and adult dogs, in all cases, in vitro digestibility values were higher than in vivo digestibility values (p < 0.05). In puppies, there were strong relationships for DM and GE with r2 values of 0.95 and 0.84, respectively, between in vitro and in vivo digestibility. Also, in adult dogs, there were strong relationships for DM and GE with r2 values of 0.97 and 0.84, respectively, between in vitro and in vivo digestibility. However, in senior dogs, there was a lower relationship for DM, OM, CP, GE, CF, and EE with r2 values of 0.18, 0.42, 0.01, 0.02, 0.11, and 0.04, respectively, between in vitro and in vivo digestibility. In conclusion, in vitro, the prediction of nutrient digestibility of DM and GE in puppies and adult dogs seems to have significant potential for practical application. However, additional research is needed to compare senior dogs with the in vitro method.
Collapse
Affiliation(s)
- Kyeongho Jeon
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jihwan Lee
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kihyun Kim
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minseok Jo
- Central Research Institute, Woosung Feed Co., Ltd, Daejeon 34379, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyuck Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
4
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
5
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
6
|
Romanenko SA, Kliver SF, Serdyukova NA, Perelman PL, Trifonov VA, Seluanov A, Gorbunova V, Azpurua J, Pereira JC, Ferguson-Smith MA, Graphodatsky AS. Integration of fluorescence in situ hybridization and chromosome-length genome assemblies revealed synteny map for guinea pig, naked mole-rat, and human. Sci Rep 2023; 13:21055. [PMID: 38030702 PMCID: PMC10687270 DOI: 10.1038/s41598-023-46595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia.
| | - Sergei F Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Natalia A Serdyukova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jorge Azpurua
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Jorge C Pereira
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| |
Collapse
|
7
|
Rossi G, Liu KF, Kershaw H, Riddell D, Hyndman TH, Monks D, Musk GC. Biological Variation in Biochemistry Analytes in Laboratory Guinea Pigs ( Cavia porcellus). Vet Sci 2023; 10:621. [PMID: 37888573 PMCID: PMC10610888 DOI: 10.3390/vetsci10100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Biological variation (BV) describes the physiological random fluctuation around a homeostatic set point, which is a characteristic of all blood measurands (analytes). That variation may impact the clinical relevance of the changes that are observed in the serial results for an individual. Biological variation is represented mathematically by the coefficient of variation (CV) and occurs within each individual (CVI) and between individuals in a population (CVG). Biological variation data can be used to assess whether population-based reference or subject-based reference intervals should be used for the interpretation of laboratory results through the calculation of the index of individuality (IoI). This study aimed to determine the biological variations, calculate the IoI and reference change values (RCV) of clinical chemistry analytes in an outbred strain colony of Hartley guinea pigs (GPs), and set the quality specifications for clinical chemistry analytes. Blood was collected from 16 healthy adult laboratory colony GPs via jugular venipuncture at weekly intervals over six weeks. All the samples were frozen and analyzed in a single run. Analytical, CVI, and CVG biological variations, together with the IoI and RCV, were calculated for each measurand. Based on the estimated BV, the calculated IoI was low for glucose, so individual reference intervals (RCV) should be used. The majority of the measurands should be interpreted using both population-based and subject-based reference intervals as the IoIs were intermediate.
Collapse
Affiliation(s)
- Gabriele Rossi
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia; (K.-F.L.); (T.H.H.)
- Centre for Animal Production and Health, Murdoch University, Murdoch, WA 6150, Australia
| | - Kwei-Farn Liu
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia; (K.-F.L.); (T.H.H.)
| | - Helen Kershaw
- Animal Care Services, University of Western Australia, Crawley, WA 6009, Australia; (H.K.); (D.R.); (G.C.M.)
| | - Dayna Riddell
- Animal Care Services, University of Western Australia, Crawley, WA 6009, Australia; (H.K.); (D.R.); (G.C.M.)
| | - Timothy H. Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia; (K.-F.L.); (T.H.H.)
| | - Deborah Monks
- Brisbane Bird and Exotics Veterinary Service, Greenslopes, QLD 4120, Australia;
| | - Gabrielle C. Musk
- Animal Care Services, University of Western Australia, Crawley, WA 6009, Australia; (H.K.); (D.R.); (G.C.M.)
| |
Collapse
|
8
|
Woodrow JS, Sheats MK, Cooper B, Bayless R. Asthma: The Use of Animal Models and Their Translational Utility. Cells 2023; 12:cells12071091. [PMID: 37048164 PMCID: PMC10093022 DOI: 10.3390/cells12071091] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Asthma is characterized by chronic lower airway inflammation that results in airway remodeling, which can lead to a permanent decrease in lung function. The pathophysiology driving the development of asthma is complex and heterogenous. Animal models have been and continue to be essential for the discovery of molecular pathways driving the pathophysiology of asthma and novel therapeutic approaches. Animal models of asthma may be induced or naturally occurring. Species used to study asthma include mouse, rat, guinea pig, cat, dog, sheep, horse, and nonhuman primate. Some of the aspects to consider when evaluating any of these asthma models are cost, labor, reagent availability, regulatory burden, relevance to natural disease in humans, type of lower airway inflammation, biological samples available for testing, and ultimately whether the model can answer the research question(s). This review aims to discuss the animal models most available for asthma investigation, with an emphasis on describing the inciting antigen/allergen, inflammatory response induced, and its translation to human asthma.
Collapse
Affiliation(s)
- Jane Seymour Woodrow
- Department of Clinical Studies, New Bolton Center, College of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, USA
| | - M Katie Sheats
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Bethanie Cooper
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Rosemary Bayless
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
9
|
House Dust Mite and Cat Dander Extract Induce Asthma-Like Histopathology with an Increase of Mucosal Mast Cells in a Guinea Pig Model. J Immunol Res 2023; 2023:9393497. [PMID: 36761882 PMCID: PMC9904926 DOI: 10.1155/2023/9393497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Background Asthma is a chronic inflammatory disease with structural changes in the lungs defined as airway remodelling. Mast cell responses are important in asthma as they, upon activation, release mediators inducing bronchoconstriction, inflammatory cell recruitment, and often remodelling of the airways. As guinea pigs exhibit anatomical, physiological, and pharmacological features resembling human airways, including mast cell distribution and mediator release, we evaluated the effect of extracts from two common allergens, house dust mite (HDM) and cat dander (CDE), on histopathological changes and the composition of tryptase- and chymase-positive mast cells in the guinea pig lungs. Methods Guinea pigs were exposed intranasally to HDM or CDE for 4, 8, and 12 weeks, and airway histology was examined at each time point. Hematoxylin and eosin, Picro-Sirius Red, and Periodic Acid-Schiff staining were performed to evaluate airway inflammation, collagen deposition, and mucus-producing cells. In addition, Astra blue and immunostaining against tryptase and chymase were used to visualize mast cells. Results Repetitive administration of HDM or CDE led to the accumulation of inflammatory cells into the proximal and distal airways as well as increased airway smooth muscle mass. HDM exposure caused subepithelial collagen deposition and mucus cell hyperplasia at all three time points, whereas CDE exposure only caused these effects at 8 and 12 weeks. Both HDM and CDE induced a substantial increase in mast cells after 8 and 12 weeks of challenges. This increase was primarily due to mast cells expressing tryptase, but not chymase, thus indicating mucosal mast cells. Conclusions We here show that exposure to HDM and CDE elicits asthma-like histopathology in guinea pigs with infiltration of inflammatory cells, airway remodelling, and accumulation of primarily mucosal mast cells. The results together encourage the use of HDM and CDE allergens for the stimulation of a clinically relevant asthma model in guinea pigs.
Collapse
|
10
|
Franova S, Molitorisova M, Kalmanova L, Palencarova J, Joskova M, Smiesko L, Mazerik J, Sutovska M. The anti-asthmatic potential of Rho-kinase inhibitor hydroxyfasudil in the model of experimentally induced allergic airway inflammation. Eur J Pharmacol 2022; 938:175450. [PMID: 36473595 DOI: 10.1016/j.ejphar.2022.175450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This experimental study evaluated the anti-asthmatic potential of the Rho-kinase inhibitor hydroxyfasudil in the settings of allergen-induced allergen-induced experimental asthma. METHODS Chronic allergic airway inflammation was caused by 28 days-sensitisation of guinea pigs with ovalbumin (OVA). Hydroxyfasudil was administered intraperitoneally in two doses for the last two weeks (1 mg/kg b.w.; 10 mg/kg b.w.). The degree of allergic inflammation was determined based on concentrations of inflammatory Th2 cytokines (IL-4, IL-13), Th1 cytokines (TNF-α and IFN-γ) in the lung homogenate and leukocyte count in the bronchoalveolar lavage fluid (BALF). The markers of remodelling and fibrosis, the growth factors (TGF-β1, EGF), EGF receptor, collagen type III and V were estimated in lung homogenate. The changes in specific airway resistance (sRaw) were used as an in vivo bronchial hyperreactivity parameter. RESULTS Hydroxyfasudil administration at both doses significantly reduced sRaw after a week of therapy. We observed a decline of IL-13, TNF-α and IFN-γ in lung homogenate and a lower presence of lymphocytes in BALF after 14 days of hydroxyfasudil administration at both tested doses. Hydroxyfasudil 14 days-treatment at both doses effectively reduced the concentrations of TGF-β1, EGF receptors, collagen type III and V in BALF and modulated EGF levels. CONCLUSIONS These findings indicate that RhoA/Rho-kinase is involved in the pathophysiology of allergic airway inflammation and suggest that Rho-kinase inhibitor hydroxyfasudil has therapeutic potential for asthma management.
Collapse
Affiliation(s)
- Sona Franova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia.
| | - Miroslava Molitorisova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Lenka Kalmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Jarmila Palencarova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Marta Joskova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Lukas Smiesko
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Jozef Mazerik
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Martina Sutovska
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Pharmacology, Mala Hora 4C, 036 01, Martin, Slovakia
| |
Collapse
|
11
|
Liu J, Nie M, Dong C, Säfholm J, Pejler G, Nilsson G, Adner M. Monensin inhibits mast cell mediated airway contractions in human and guinea pig asthma models. Sci Rep 2022; 12:18924. [PMID: 36344588 PMCID: PMC9640546 DOI: 10.1038/s41598-022-23486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a common respiratory disease associated with airway hyperresponsiveness (AHR), airway inflammation and mast cell (MC) accumulation in the lung. Monensin, an ionophoric antibiotic, has been shown to induce apoptosis of human MCs. The aim of this study was to define the effect of monensin on MC responses, e.g., antigen induced bronchoconstriction, and on asthmatic features in models of allergic asthma. Tracheal segments from house dust mite (HDM) extract sensitized guinea pigs were isolated and exposed to monensin, followed by histological staining to quantify MCs. Both guinea pig tracheal and human bronchi were used for pharmacological studies in tissue bath systems to investigate the monensin effect on tissue viability and antigen induced bronchoconstriction. Further, an HDM-induced guinea pig asthma model was utilized to investigate the effect of monensin on AHR and airway inflammation. Monensin decreased MC number, caused MC death, and blocked the HDM or anti-IgE induced bronchoconstriction in guinea pig and human airways. In the guinea pig asthma model, HDM-induced AHR, airway inflammation and MC hyperplasia could be inhibited by repeated administration of monensin. This study indicates that monensin is an effective tool to reduce MC number and MCs are crucial for the development of asthma-like features.
Collapse
Affiliation(s)
- Jielu Liu
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Mu Nie
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Caijuan Dong
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Jesper Säfholm
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Gunnar Pejler
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Nilsson
- grid.24381.3c0000 0000 9241 5705Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden ,grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikael Adner
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| |
Collapse
|
12
|
Tang X, Rönnberg E, Säfholm J, Thulasingam M, Trauelsen M, Schwartz TW, Wheelock CE, Dahlén S, Nilsson G, Haeggström JZ. Activation of succinate receptor 1 boosts human mast cell reactivity and allergic bronchoconstriction. Allergy 2022; 77:2677-2687. [PMID: 35122266 PMCID: PMC9545225 DOI: 10.1111/all.15245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND SUCNR1 is a sensor of extracellular succinate, a Krebs cycle intermediate generated in excess during oxidative stress and has been linked to metabolic regulation and inflammation. While mast cells express SUCNR1, its role in mast cell reactivity and allergic conditions such as asthma remains to be elucidated. METHODS Cord blood-derived mast cells and human mast cell line LAD-2 challenged by SUCNR1 ligands were analyzed for the activation and mediator release. Effects on mast cell-dependent bronchoconstriction were assessed in guinea pig trachea and isolated human small bronchi challenged with antigen and anti-IgE, respectively. RESULTS SUCNR1 is abundantly expressed on human mast cells. Challenge with succinate, or the synthetic non-metabolite agonist cis-epoxysuccinate, renders mast cells hypersensitive to IgE-dependent activation, resulting in augmented degranulation and histamine release, de novo biosynthesis of eicosanoids and cytokine secretion. The succinate-potentiated mast cell reactivity was attenuated by SUCNR1 knockdown and selective SUCNR1 antagonists and could be tuned by pharmacologically targeting protein kinase C and extracellular signal-regulated kinase. Both succinate and cis-epoxysuccinate dose-dependently potentiated antigen-induced contraction in a mast cell-dependent guinea pig airway model, associated with increased generation of cysteinyl-leukotrienes and histamine in trachea. Similarly, cis-epoxysuccinate aggravated IgE-receptor-induced contraction of human bronchi, which was blocked by SUCNR1 antagonism. CONCLUSION SUCNR1 amplifies IgE-receptor-induced mast cell activation and allergic bronchoconstriction, suggesting a role for this pathway in aggravation of allergic asthma, thus linking metabolic perturbations to mast cell-dependent inflammation.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Elin Rönnberg
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet, and Karolinska University HospitalSolnaSweden
| | - Jesper Säfholm
- Unit of Experimental Asthma and Allergy ResearchInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Madhuranayaki Thulasingam
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Mette Trauelsen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Thue W. Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic ResearchUniversity of CopenhagenCopenhagenDenmark
| | - Craig E. Wheelock
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Sven‐Erik Dahlén
- Unit of Experimental Asthma and Allergy ResearchInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden,Department of Respiratory MedicineKarolinska University Hospital HuddingeStockholmSweden
| | - Gunnar Nilsson
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska Institutet, and Karolinska University HospitalSolnaSweden,Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - Jesper Z. Haeggström
- Division of Physiological Chemistry IIDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| |
Collapse
|
13
|
Optimization of Long-Acting Bronchodilator Dose Ratios Using Isolated Guinea Pig Tracheal Rings for Synergistic Combination Therapy in Asthma and COPD. Pharmaceuticals (Basel) 2022; 15:ph15080963. [PMID: 36015111 PMCID: PMC9416144 DOI: 10.3390/ph15080963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The co-administration of a long-acting β2-agonist (LABA), and a long-acting muscarinic antagonist (LAMA), has been shown to be beneficial in the management of non-communicable chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). The resulting relaxation of the airways can be synergistically enhanced, reducing symptoms and optimizing lung function. This provides an insight into more effective treatments. In this study, the LABAs formoterol fumarate dihydrate (FOR) and indacaterol maleate (IND) were each associated with tiotropium bromide monohydrate (TIO) to assess their synergistic potential. This was done using an appropriate ex vivo model of isolated perfused guinea pig tracheal rings, and pharmacological models of drug interaction. Among the dose ratios studied for both types of combination, a higher synergistic potential was highlighted for FOR/TIO 2:1 (w/w). This was done through three steps by using multiple additions of drugs to the organ baths based on a non-constant dose ratio and then on a constant dose ratio, and by a single addition to the organ baths of specific amounts of drugs. In this way, the synergistic improvement of the relaxant effect on the airways was confirmed, providing a basis for improving therapeutic approaches in asthma and COPD. The synergy found at this dose ratio should now be confirmed on a preclinical model of asthma and COPD by assessing lung function.
Collapse
|
14
|
Chung KF, McGarvey L, Song WJ, Chang AB, Lai K, Canning BJ, Birring SS, Smith JA, Mazzone SB. Cough hypersensitivity and chronic cough. Nat Rev Dis Primers 2022; 8:45. [PMID: 35773287 PMCID: PMC9244241 DOI: 10.1038/s41572-022-00370-w] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Chronic cough is globally prevalent across all age groups. This disorder is challenging to treat because many pulmonary and extrapulmonary conditions can present with chronic cough, and cough can also be present without any identifiable underlying cause or be refractory to therapies that improve associated conditions. Most patients with chronic cough have cough hypersensitivity, which is characterized by increased neural responsivity to a range of stimuli that affect the airways and lungs, and other tissues innervated by common nerve supplies. Cough hypersensitivity presents as excessive coughing often in response to relatively innocuous stimuli, causing significant psychophysical morbidity and affecting patients' quality of life. Understanding of the mechanisms that contribute to cough hypersensitivity and excessive coughing in different patient populations and across the lifespan is advancing and has contributed to the development of new therapies for chronic cough in adults. Owing to differences in the pathology, the organs involved and individual patient factors, treatment of chronic cough is progressing towards a personalized approach, and, in the future, novel ways to endotype patients with cough may prove valuable in management.
Collapse
Affiliation(s)
- Kian Fan Chung
- Experimental Studies Unit, National Heart & Lung Institute, Imperial College London, London, UK
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, UK
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Anne B Chang
- Australian Centre for Health Services Innovation, Queensland's University of Technology and Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, Queensland, Australia
- Division of Child Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Kefang Lai
- The First Affiliated Hospital of Guangzhou Medical University, National Center of Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | | | - Surinder S Birring
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jaclyn A Smith
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
The possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in guinea pigs. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study was aimed to evaluate the possibility of using anti-human monoclonal antibody CD3 as pan T-cell marker in the guinea pigs’ trachea and lung in early and late manifestations of the allergic inflammatory process.
Materials and methods.We have studied the distribution and quantitative changes of CD3-positive lymphocytes in trachea and lung of guinea pigs using histological, immunohistochemical, statistical methods in conditions of experimental inflammatory process.
Results. Our results revealed the applicability of anti-Human monoclonal antibody CD3 (Clone SP7, «DAKO», Denmark) cross-reaction with T-cells of guinea pigs’ tracheas and lungs. The most statistically significant elevation of the number of CD3-positive lymphocytes, in comparison with the control group (p*/**<0.05), observed in the experimental group III in the late stages of experimental inflammatory process. The elevation of the number of CD3-positive lymphocytes persists even after the termination of the allergen action, which indicates the continuation of the reaction of pulmonary local adaptive immunity to the allergen.
Conclusions. The results of our study may be useful in conditions of the deficiency of guinea pig-specific tests. The immunohistochemical assessment of guinea pigs’ trachea and lungs proved the possibility to use anti-Human monoclonal antibody CD3 as a panT-cell marker in guinea pigs. We demonstrated the activation of adaptive immune response (T-cells), represented by their immunohistochemical changes, predominantly in the late stages of experimental inflammatory process.
Collapse
|
16
|
Maccarana M, Liu J, Lampinen M, Rollman O, Adner M, Pejler G, Paivandy A. Monensin induces selective mast cell apoptosis through a secretory granule-mediated pathway. Allergy 2022; 77:1025-1028. [PMID: 34706101 DOI: 10.1111/all.15157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Marco Maccarana
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
| | - Jielu Liu
- Karolinska InstitutetThe Institute of Environmental Medicine – IMM Solna Sweden
| | - Maria Lampinen
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
| | - Ola Rollman
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Mikael Adner
- Karolinska InstitutetThe Institute of Environmental Medicine – IMM Solna Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
| |
Collapse
|
17
|
Canning BJ, Liu Q, Tao M, DeVita R, Perelman M, Hay DW, Dicpinigaitis PV, Liang J. Evidence for Alpha 7 Nicotinic Receptor Activation During the Cough Suppressing Effects Induced by Nicotine and Identification of ATA-101 as a Potential Novel Therapy for the Treatment of Chronic Cough. J Pharmacol Exp Ther 2022; 380:94-103. [PMID: 34782407 PMCID: PMC8969114 DOI: 10.1124/jpet.121.000641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023] Open
Abstract
Studies performed in healthy smokers have documented a diminished responsiveness to tussive challenges, and several lines of experimental evidence implicate nicotine as an antitussive component in both cigarette smoke and the vapors generated by electronic cigarettes (eCigs). We set out to identify the nicotinic receptor subtype involved in the antitussive actions of nicotine and to further evaluate the potential of nicotinic receptor-selective agonists as cough-suppressing therapeutics. We confirmed an antitussive effect of nicotine in guinea pigs. We additionally observed that the alpha-4 beta-2 (α 4 β 2)-selective agonist Tc-6683 was without effect on evoked cough responses in guinea pigs, while the α 7-selective agonist PHA 543613 dose-dependently inhibited evoked coughing. We subsequently describe the preclinical evidence in support of ATA-101, a potent and highly selective (α 7) selective nicotinic receptor agonist, as a potential candidate for antitussive therapy in humans. ATA-101, formerly known as Tc-5619, was orally bioavailable and moderately central nervous system (CNS) penetrant and dose-dependently inhibited coughing in guinea pigs evoked by citric acid and bradykinin. Comparing the effects of airway targeted administration versus systemic dosing and the effects of repeated dosing at various times prior to tussive challenge, our data suggest that the antitussive actions of ATA-101 require continued engagement of α 7 nicotinic receptors, likely in the CNS. Collectively, the data provide the preclinical rationale for α 7 nicotinic receptor engagement as a novel therapeutic strategy for cough suppression. The data also suggest that α 7 nicotinic acetylcholine receptor (nAChR) activation by nicotine may be permissive to nicotine delivery in a way that may promote addiction. SIGNIFICANCE STATEMENT: This study documents the antitussive actions of nicotine and identifies the α7 nicotinic receptor subtype as the target for nicotine during cough suppression described in humans. We additionally present evidence suggesting that ATA-101 and other α7 nicotinic receptor-selective agonists may be promising candidates for the treatment of chronic refractory cough.
Collapse
Affiliation(s)
- Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Qi Liu
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Mayuko Tao
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Robert DeVita
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Michael Perelman
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Douglas W Hay
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Peter V Dicpinigaitis
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| | - Jing Liang
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (B.J.C, Q.L.); Tokyo Medical and Dental University, Tokyo, Japan (M.T.); RJD Medicinal Chemistry Consulting LLC, Westfield, New Jersey (R.D.); Michael Perelman Consulting, Winter Park, Florida (M.P.); Hay Drug Discovery Consulting, Valley Forge, Pennsylvania (D.W.H.); Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York (P.V.D.); Apple Helix Bioventures, New York, New York (J.L.)
| |
Collapse
|
18
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Säfholm J, Abma W, Liu J, Balgoma D, Fauland A, Kolmert J, Wheelock CE, Adner M, Dahlén SE. Prostaglandin D 2 inhibits mediator release and antigen induced bronchoconstriction in the Guinea pig trachea by activation of DP 1 receptors. Eur J Pharmacol 2021; 907:174282. [PMID: 34175307 DOI: 10.1016/j.ejphar.2021.174282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanism by which cyclooxygenase (COX) inhibition increases antigen-induced responses in airways remains unknown. Male albino guinea pigs were sensitized to ovalbumin (OVA). Intact rings of the trachea were isolated and mounted in organ baths for either force measurements or lipid mediator release analysis by UPLC-MS/MS or EIA following relevant pharmacological interventions. First, challenge with OVA increased the release of all primary prostanoids (prostaglandin (PG) D2/E2/F2α/I2 and thromboxanes). This release was eliminated by unselective COX inhibition (indomethacin) whereas selective inhibition of COX-2 (lumiracoxib) did not inhibit release of PGD2 or thromboxanes. Additionally, the increased levels of leukotriene B4 and E4 after OVA were further amplified by unselective COX inhibition. Second, unselective inhibition of COX and selective inhibition of the prostaglandin D synthase (2-Phenyl-Pyrimidine-5-Carboxylic Acid (2,3-dihydro-indol-1-yl)-amide) amplified the antigen-induced bronchoconstriction which was reversed by exogenous PGD2. Third, a DP1 receptor agonist (BW 245c) concentration-dependently reduced the antigen-induced constriction as well as reducing released histamine and cysteinyl-leukotrienes, a response inhibited by the DP1 receptor antagonist (MK-524). In contrast, a DP2 receptor agonist (15(R)-15-methyl PGD2) failed to modulate the OVA-induced constriction. In the guinea pig trachea, endogenous PGD2 is generated via COX-1 and mediates an inhibitory effect of the antigen-induced bronchoconstriction via DP1 receptors inhibiting mast cell release of bronchoconstrictive mediators. Removal of this protective function by COX-inhibition results in increased release of mast cell mediators and enhanced bronchoconstriction.
Collapse
Affiliation(s)
- Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.
| | - Willem Abma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Jielu Liu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - David Balgoma
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden; Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Liu J, Kolmert J, Säfholm J, Johnsson A, Zurita J, Wheelock CE, Dahlén S, Nilsson G, Adner M. Distinct effects of antigen and compound 48/80 in the guinea pig trachea. Allergy 2021; 76:2270-2273. [PMID: 33619732 DOI: 10.1111/all.14789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Jielu Liu
- Experimental Asthma and Allergy Research UnitInstitute of Environmental Medicine (IMM)Karolinska Institutet Stockholm Sweden
| | - Johan Kolmert
- Experimental Asthma and Allergy Research UnitInstitute of Environmental Medicine (IMM)Karolinska Institutet Stockholm Sweden
| | - Jesper Säfholm
- Experimental Asthma and Allergy Research UnitInstitute of Environmental Medicine (IMM)Karolinska Institutet Stockholm Sweden
| | - Anna‐Karin Johnsson
- Experimental Asthma and Allergy Research UnitInstitute of Environmental Medicine (IMM)Karolinska Institutet Stockholm Sweden
| | - Javier Zurita
- Division of Physiological Chemistry 2 Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2 Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden
| | - Sven‐Erik Dahlén
- Experimental Asthma and Allergy Research UnitInstitute of Environmental Medicine (IMM)Karolinska Institutet Stockholm Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy Department of Medicine Karolinska Institutet and Karolinska University Hospital Stockholm Sweden
- Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research UnitInstitute of Environmental Medicine (IMM)Karolinska Institutet Stockholm Sweden
| |
Collapse
|
21
|
Tochitsky I, Jo S, Andrews N, Kotoda M, Doyle B, Shim J, Talbot S, Roberson D, Lee J, Haste L, Jordan SM, Levy BD, Bean BP, Woolf CJ. Inhibition of inflammatory pain and cough by a novel charged sodium channel blocker. Br J Pharmacol 2021; 178:3905-3923. [PMID: 33988876 DOI: 10.1111/bph.15531] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Many pain-triggering nociceptor neurons express TRPV1 or TRPA1, cation-selective channels with large pores that enable permeation of QX-314, a cationic analogue of lidocaine. Co-application of QX-314 with TRPV1 or TRPA1 activators can silence nociceptors. In this study, we describe BW-031, a novel more potent cationic sodium channel inhibitor, and test whether its application alone can inhibit pain associated with tissue inflammation and whether this strategy can also inhibit cough. EXPERIMENTAL APPROACH We tested the ability of BW-031 to inhibit pain in three models of tissue inflammation:- inflammation in rat paws produced by complete Freund's adjuvant or by surgical incision and a mouse ultraviolet (UV) burn model. We tested the ability of BW-031 to inhibit cough induced by inhalation of dilute citric acid in guinea pigs. KEY RESULTS BW-031 inhibited Nav 1.7 and Nav 1.1 channels with approximately sixfold greater potency than QX-314 when introduced inside cells. BW-031 inhibited inflammatory pain in all three models tested, producing more effective and longer-lasting inhibition of pain than QX-314 in the mouse UV burn model. BW-031 was effective in reducing cough counts by 78%-90% when applied intratracheally under isoflurane anaesthesia or by aerosol inhalation in guinea pigs with airway inflammation produced by ovalbumin sensitization. CONCLUSION AND IMPLICATIONS BW-031 is a novel cationic sodium channel inhibitor that can be applied locally as a single agent to inhibit inflammatory pain. BW-031 can also effectively inhibit cough in a guinea pig model of citric acid-induced cough, suggesting a new clinical approach to treating cough.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nick Andrews
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Masakazu Kotoda
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Benjamin Doyle
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sebastien Talbot
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Départément de Pharmacologie et Physiologie, Université de Montréal, Montreal, Canada
| | - David Roberson
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jinbo Lee
- Sage Partner International, Andover, Massachusetts, USA
| | - Louise Haste
- Pharmacology Department, Covance Inc., Huntingdon, UK
| | | | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Bahia PK, Taylor-Clark TE. Differential sensitivity of cinnamaldehyde-evoked calcium fluxes to ruthenium red in guinea pig and mouse trigeminal sensory neurons. BMC Res Notes 2021; 14:127. [PMID: 33827677 PMCID: PMC8028702 DOI: 10.1186/s13104-021-05539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/23/2021] [Indexed: 12/04/2022] Open
Abstract
Objective Transient receptor potential ankyrin 1 (TRPA1) is an excitatory ion channel expressed on a subset of sensory neurons. TRPA1 is activated by a host of noxious stimuli including pollutants, irritants, oxidative stress and inflammation, and is thought to play an important role in nociception and pain perception. TRPA1 is therefore a therapeutic target for diseases with nociceptive sensory signaling components. TRPA1 orthologs have been shown to have differential sensitivity to certain ligands. Cinnamaldehyde has previously been shown to activate sensory neurons via the selective gating of TRPA1. Here, we tested the sensitivity of cinnamaldehyde-evoked responses in mouse and guinea pig sensory neurons to the pore blocker ruthenium red (RuR). Results Cinnamaldehyde, the canonical TRPA1-selective agonist, caused robust calcium fluxes in trigeminal neurons dissociated from both mice and guinea pigs. RuR effectively inhibited cinnamaldehyde-evoked responses in mouse neurons at 30 nM, with complete block seen with 3 μM. In contrast, responses in guinea pig neurons were only partially inhibited by 3 μM RuR. We conclude that RuR has a decreased affinity for guinea pig TRPA1 compared to mouse TRPA1. This study provides further evidence of differences in ligand affinity for TRPA1 in animal models relevant for drug development.
Collapse
Affiliation(s)
- Parmvir K Bahia
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
23
|
Lundblad LKA, Robichaud A. Oscillometry of the respiratory system: a translational opportunity not to be missed. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1038-L1056. [PMID: 33822645 PMCID: PMC8203417 DOI: 10.1152/ajplung.00222.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Airway oscillometry has become the de facto standard for quality assessment of lung physiology in laboratory animals and has demonstrated its usefulness in understanding diseases of small airways. Nowadays, it is seeing extensive use in daily clinical practice and research; however, a question that remains unanswered is how well physiological findings in animals and humans correlate? Methodological and device differences are obvious between animal and human studies. However, all devices deliver an oscillated airflow test signal and output respiratory impedance. In addition, despite analysis differences, there are ways to interpret animal and human oscillometry data to allow suitable comparisons. The potential with oscillometry is its ability to reveal universal features of the respiratory system across species, making translational extrapolation likely to be predictive. This means that oscillometry can thus help determine if an animal model displays the same physiological characteristics as the human disease. Perhaps more importantly, it can also be useful to determine whether an intervention is effective as well as to understand if it affects the desired region of the respiratory system, e.g., the periphery of the lung. Finally, findings in humans can also inform preclinical scientists and give indications as to what type of physiological changes should be observed in animal models to make them relevant as models of human disease. The present article will attempt to demonstrate the potential of oscillometry in respiratory research, an area where the development of novel therapies is plagued with a failure rate higher than in other disease areas.
Collapse
Affiliation(s)
- Lennart K A Lundblad
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada.,THORASYS Thoracic Medical Systems Inc., Montreal, Quebec, Canada
| | - Annette Robichaud
- SCIREQ Scientific Respiratory Equipment Inc., Montreal, Quebec, Canada
| |
Collapse
|
24
|
Ramos-Ramírez P, Noreby M, Liu J, Ji J, Abdillahi SM, Olsson H, Dahlén SE, Nilsson G, Adner M. A new house dust mite-driven and mast cell-activated model of asthma in the guinea pig. Clin Exp Allergy 2020; 50:1184-1195. [PMID: 32691918 DOI: 10.1111/cea.13713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Animal models are extensively used to study underlying mechanisms in asthma. Guinea pigs share anatomical, pharmacological and physiological features with human airways and may enable the development of a pre-clinical in vivo model that closely resembles asthma. OBJECTIVES To develop an asthma model in guinea pigs using the allergen house dust mite (HDM). METHODS Guinea pigs were intranasally sensitized to HDM which was followed by HDM challenges once weekly for five weeks. Antigen-induced bronchoconstriction (AIB) was evaluated as alterations in Rn (Newtonian resistance), G (tissue damping) and H (tissue elastance) at the first challenge with forced oscillation technique (FOT), and changes in respiratory pattern upon each HDM challenge were assessed as enhanced pause (Penh) using whole-body plethysmography. Airway responsiveness to methacholine was measured one day after the last challenge by FOT. Inflammatory cells and cytokines were quantified in bronchoalveolar lavage fluid, and HDM-specific immunoglobulins were measured in serum by ELISA. Airway pathology was evaluated by conventional histology. RESULTS The first HDM challenge after the sensitization generated a marked increase in Rn and G, which was abolished by pharmacological inhibition of histamine, leukotrienes and prostanoids. Repeated weekly challenges of HDM caused increase of Penh and a marked increase in airway hyperresponsiveness for all three lung parameters (Rn , G and H) and eosinophilia. Levels of IgE, IgG1 , IgG2 and IL-13 were elevated in HDM-treated guinea pigs. HDM exposure induced infiltration of inflammatory cells into the airways with a pronounced increase of mast cells. Subepithelial collagen deposition, airway wall thickness and goblet cell hyperplasia were induced by repeated HDM challenge. CONCLUSION AND CLINICAL RELEVANCE Repeated intranasal HDM administration induces mast cell activation and hyperplasia together with an asthma-like pathophysiology in guinea pigs. This model may be suitable for mechanistic investigations of asthma, including evaluation of the role of mast cells.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Malin Noreby
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Jie Ji
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suado M Abdillahi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), AstraZeneca, Gothenburg, Sweden
| | - Sven-Erik Dahlén
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| |
Collapse
|