1
|
Wang Y, Qiu W, Kernodle S, Parker C, Padilla MA, Su J, Tomlinson AJ, Oldham S, Field J, Bernard E, Hornigold D, Rhodes CJ, Olson DP, Seeley RJ, Myers MG. Roles for Prlhr/GPR10 and Npffr2/GPR74 in feeding responses to PrRP. Mol Metab 2025; 92:102093. [PMID: 39755369 DOI: 10.1016/j.molmet.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE Several groups of neurons in the NTS suppress food intake, including Prlh-expressing neurons (NTSPrlh cells). Not only does the artificial activation of NTSPrlh cells decrease feeding, but also the expression of Prlh (which encodes the neuropeptide PrRP) and neurotransmission by NTSPrlh neurons contributes to the restraint of food intake and body weight, especially in animals fed a high fat diet (HFD). We set out to determine roles for putative PrRP receptors in the response to NTS PrRP and exogenous PrRP-related peptides. METHODS We used animals lacking PrRP receptors GPR10 and/or GPR74 (encoded by Prlhr and Npffr2, respectively) to determine roles for each in the restraint of food intake and body weight by the increased expression of Prlh in NTSPrlh neurons (NTSPrlhOX mice) and in response to the anorectic PrRP analog, p52. RESULTS Although Prlhr played a crucial role in the restraint of food intake and body weight in HFD-fed control animals, the combined absence of Prlhr and Npffr2 was required to abrogate the restraint of food intake in NTSPrlhOX mice. p52 suppressed feeding independently of both receptors, however. CONCLUSIONS Hence, each receptor can participate in the NTSPrlh-mediated suppression of food intake and body weight gain, while PrRP analog treatment can mediate its effects via distinct systems. While Prlhr plays a crucial role in the physiologic restraint of weight gain, the action of either receptor is capable of ameliorating obesity in response to enhanced NTSPrlh signaling.
Collapse
Affiliation(s)
- Yi Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Weiwei Qiu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Carly Parker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Jiaao Su
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephanie Oldham
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - Joss Field
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - Elise Bernard
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David Hornigold
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - Christopher J Rhodes
- Early Cardiovascular Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - David P Olson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Morgan A, Shekhar N, Strnadová V, Pirník Z, Haasová E, Kopecký J, Pačesová A, Železná B, Kuneš J, Bardová K, Maletínská L. Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice. Biosci Rep 2024; 44:BSR20241103. [PMID: 39440369 PMCID: PMC11499387 DOI: 10.1042/bsr20241103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.
Collapse
MESH Headings
- Animals
- Male
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Obesity/metabolism
- Obesity/genetics
- Female
- Mice, Knockout
- Mice
- Diet, High-Fat/adverse effects
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/deficiency
- Prediabetic State/metabolism
- Prediabetic State/genetics
- Energy Metabolism/genetics
- Insulin Resistance
- Mice, Inbred C57BL
- Sex Factors
- Adipose Tissue, White/metabolism
Collapse
Affiliation(s)
- Alena Morgan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Nivasini Shekhar
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Eliška Haasová
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Kristina Bardová
- Institute of Physiology of the Czech Academy of Sciences, 142 00 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| |
Collapse
|
3
|
Lee YJ, Kim J, Kwon YH. Long-Term Effects of Maternal Fat Consumption on the Brain Transcriptome of Obesogenic Diet-Fed Young Adult Mice Offspring. J Nutr 2024; 154:1532-1539. [PMID: 38484978 DOI: 10.1016/j.tjnut.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Substantial evidence has demonstrated that maternal high-fat (HF) consumption during gestation and lactation plays as a risk factor for neurodevelopmental alterations and subsequent neurological disorders. OBJECTIVE We investigated the regulatory mechanisms of maternal fat consumption on brain development and function in offspring at different ages. METHODS Mouse dams were fed either a control diet [low-fat (LF)] or an HF diet for 3 wk before mating and throughout pregnancy and lactation. Offspring were killed at postnatal day (PD) 21 (LF21 and HF21), and the rest were fed an HF diet for 12 wk until the killing at PD 105 (LF105 and HF105). The expression levels of genes and proteins in the brains of offspring were analyzed by microarray and immunoblotting, respectively. RESULTS Maternal dietary fat content, offspring age, and their interaction affected the expression levels of 1215, 10,453, and 2105 genes, respectively. The 67 differentially expressed genes (DEGs) between the HF21 and LF21 groups were enriched in several Gene Ontology terms related to nervous system development. Among 45 DEGs of the HF105/LF105 comparison, several genes associated with neurotransmitter action are detected. In addition, we observed increased activation of the AMP-dependent protein kinase-cAMP response element binding protein signaling pathway in HF105/LF105 comparison. However, maternal fat content did not change the protein levels of amyloid-β and tau hyperphosphorylation, the markers of neuropathogenesis. CONCLUSIONS Maternal HF feeding altered the expression of genes involved in the development and neurotransmitter system in the brains of PD 21 and HF diet-fed PD 105 offspring, respectively. Especially, the absence of overlap between DEGs at each comparison highlights the dynamic nature of alterations in gene expression in offspring of dams fed an HF diet. Further investigation on older adult offspring is necessary to elucidate the effects of maternal fat intake on the brain pathophysiology of offspring.
Collapse
Affiliation(s)
- Youn Ji Lee
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
4
|
Strnadová V, Morgan A, Škrlová M, Haasová E, Bardová K, Myšková A, Sýkora D, Kuneš J, Železná B, Maletínská L. Peripheral administration of lipidized NPAF and NPFF analogs does not influence central food intake regulation but induces anxiety-like behavior. Neuropeptides 2024; 104:102417. [PMID: 38422597 DOI: 10.1016/j.npep.2024.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
RF-amide peptides influence multiple physiological processes, including the regulation of appetite, stress responses, behavior, and reproductive and endocrine functions. In this study, we examined the roles of neuropeptide FF receptors (NPFFR1 and NPFFR2) by generating several lipidized analogs of neuropeptide AF (NPAF) and 1DMe, a stable analog of neuropeptide FF (NPFF). These analogs were administered peripherally for the first time to investigate their effects on food intake and other potential physiological outcomes. Lipidized NPAF and 1DMe analogs exhibited enhanced stability and increased pharmacokinetics. These analogs demonstrated preserved high affinity for NPFFR2 in the nanomolar range, while the binding affinity for NPFFR1 was tens of nanomoles. They activated the ERK and Akt signaling pathways in cells overexpressing the NPFFR1 and NPFFR2 receptors. Acute food intake in fasted mice decreased after the peripheral administration of oct-NPAF or oct-1DMe. However, this effect was not as pronounced as that observed after the injection of palm11-PrRP31, a potent anorexigenic compound used as a comparator that binds to GPR10 and the NPFFR2 receptor with high affinity. Neither oct-1DMe nor oct-NPAF decreased food intake or body weight in mice with diet-induced obesity during long-term treatment. In mice treated with oct-1DMe, we observed decreased activity in the central zone during the open field test and decreased activity in the open arms of the elevated plus maze. Furthermore, we observed a decrease in plasma noradrenaline levels and an increase in plasma corticosterone levels, as well as an increase in Crh expression in the hypothalamus. Moreover, neuronal activity in the hypothalamus was increased after treatment with oct-1DMe. In this study, we report that oct-1DMe did not have any long-term effects on the central regulation of food intake; however, it caused anxiety-like behavior.
Collapse
Affiliation(s)
- Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Alena Morgan
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Magdalena Škrlová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eliška Haasová
- Institute of Physiology, CAS, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; Institute of Physiology, CAS, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic.
| |
Collapse
|