1
|
Chan DC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025; 14:193-205. [PMID: 39754601 PMCID: PMC11744933 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis
Tin Chat Chan
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, South
Kensington, London SW7
2AZ, U.K.
| | - Hans C. Bernstein
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
- The
Arctic Centre for Sustainable Energy, UiT—The
Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
2
|
Ma S, Su T, Lu X, Qi Q. Bacterial genome reduction for optimal chassis of synthetic biology: a review. Crit Rev Biotechnol 2024; 44:660-673. [PMID: 37380345 DOI: 10.1080/07388551.2023.2208285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/30/2023]
Abstract
Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| |
Collapse
|
3
|
Sengupta A, Bandyopadhyay A, Sarkar D, Hendry JI, Schubert MG, Liu D, Church GM, Maranas CD, Pakrasi HB. Genome streamlining to improve performance of a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. mBio 2024; 15:e0353023. [PMID: 38358263 PMCID: PMC10936165 DOI: 10.1128/mbio.03530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Cyanobacteria are photosynthetic organisms that have garnered significant recognition as potential hosts for sustainable bioproduction. However, their complex regulatory networks pose significant challenges to major metabolic engineering efforts, thereby limiting their feasibility as production hosts. Genome streamlining has been demonstrated to be a successful approach for improving productivity and fitness in heterotrophs but is yet to be explored to its full potential in phototrophs. Here, we present the systematic reduction of the genome of the cyanobacterium exhibiting the fastest exponential growth, Synechococcus elongatus UTEX 2973. This work, the first of its kind in a photoautotroph, involved an iterative process using state-of-the-art genome-editing technology guided by experimental analysis and computational tools. CRISPR-Cas3 enabled large, progressive deletions of predicted dispensable regions and aided in the identification of essential genes. The large deletions were combined to obtain a strain with 55-kb genome reduction. The strains with streamlined genome showed improvement in growth (up to 23%) and productivity (by 22.7%) as compared to the wild type (WT). This streamlining strategy not only has the potential to develop cyanobacterial strains with improved growth and productivity traits but can also facilitate a better understanding of their genome-to-phenome relationships.IMPORTANCEGenome streamlining is an evolutionary strategy used by natural living systems to dispense unnecessary genes from their genome as a mechanism to adapt and evolve. While this strategy has been successfully borrowed to develop synthetic heterotrophic microbial systems with desired phenotype, it has not been extensively explored in photoautotrophs. Genome streamlining strategy incorporates both computational predictions to identify the dispensable regions and experimental validation using genome-editing tool, and in this study, we have employed a modified strategy with the goal to minimize the genome size to an extent that allows optimal cellular fitness under specified conditions. Our strategy has explored a novel genome-editing tool in photoautotrophs, which, unlike other existing tools, enables large, spontaneous optimal deletions from the genome. Our findings demonstrate the effectiveness of this modified strategy in obtaining strains with streamlined genome, exhibiting improved fitness and productivity.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Debolina Sarkar
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - John I. Hendry
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Max G. Schubert
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | | |
Collapse
|
4
|
Parvin T, Sadras SR. Advanced probiotics: bioengineering and their therapeutic application. Mol Biol Rep 2024; 51:361. [PMID: 38403783 DOI: 10.1007/s11033-024-09309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
The role of gut bacteria in human health has long been acknowledged and dysbiosis of the gut microbiota has been correlated with a variety of disorders. Synthetic biology has rapidly grown over the past few years offering a variety of biological applications such as harnessing the relationship between bacteria and human health. Lactic acid bacteria (LAB) are thought to be appropriate chassis organisms for genetic modification with potential biomedical applications. A thorough understanding of the molecular mechanisms behind their beneficial qualities is essential to assist the multifunctional medicinal sectors. Effective genome editing will aid in the creation of next-generation designer probiotics with enhanced resilience and specialized capabilities, furthering our knowledge of the molecular mechanisms behind the physiological impacts of probiotics and their interactions with the host and microbiota. The goal of this review is to provide a brief overview of the methods used to create modified probiotics with the scientific rationale behind gene editing technology, the mechanism of action of engineered probiotics along with their application to treat conditions like inflammatory bowel disease, cancer, bacterial infections, and various metabolic diseases. In addition, application concerns and future directions are also presented.
Collapse
Affiliation(s)
- Tamanna Parvin
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry, India.
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry, India
| |
Collapse
|
5
|
Recent advances in genetic tools for engineering probiotic lactic acid bacteria. Biosci Rep 2023; 43:232386. [PMID: 36597861 PMCID: PMC9842951 DOI: 10.1042/bsr20211299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Synthetic biology has grown exponentially in the last few years, with a variety of biological applications. One of the emerging applications of synthetic biology is to exploit the link between microorganisms, biologics, and human health. To exploit this link, it is critical to select effective synthetic biology tools for use in appropriate microorganisms that would address unmet needs in human health through the development of new game-changing applications and by complementing existing technological capabilities. Lactic acid bacteria (LAB) are considered appropriate chassis organisms that can be genetically engineered for therapeutic and industrial applications. Here, we have reviewed comprehensively various synthetic biology techniques for engineering probiotic LAB strains, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 mediated genome editing, homologous recombination, and recombineering. In addition, we also discussed heterologous protein expression systems used in engineering probiotic LAB. By combining computational biology with genetic engineering, there is a lot of potential to develop next-generation synthetic LAB with capabilities to address bottlenecks in industrial scale-up and complex biologics production. Recently, we started working on Lactochassis project where we aim to develop next generation synthetic LAB for biomedical application.
Collapse
|
6
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
7
|
Ma S, Su T, Liu J, Wang Q, Liang Q, Lu X, Qi Q. Random genome reduction coupled with polyhydroxybutyrate biosynthesis to facilitate its accumulation in Escherichia coli. Front Bioeng Biotechnol 2022; 10:978211. [PMID: 36105609 PMCID: PMC9465206 DOI: 10.3389/fbioe.2022.978211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Genome reduction has been emerged as a powerful tool to construct ideal chassis for synthetic biology. Random genome reduction couple genomic deletion with growth and has the potential to construct optimum genome for a given environment. Recently, we developed a transposon-mediated random deletion (TMRD) method that allows the random and continuous reduction of Escherichia coli genome. Here, to prove its ability in constructing optimal cell factories, we coupled polyhydroxybutyrate (PHB) accumulation with random genome reduction and proceeded to reduce the E. coli genome. Five mutants showed high biomass and PHB yields were selected from 18 candidates after ten rounds of genome reduction. And eight or nine genomic fragments (totally 230.1–270.0 Kb) were deleted in their genomes, encompassing 4.95%–5.82% of the parental MG1655 genome. Most mutants displayed better growth, glucose utilization, protein expression, and significant increase of electroporation efficiency compared with MG1655. The PHB content and concentration enhanced up to 13.3%–37.2% and 60.2%–102.9% when batch fermentation was performed in M9-glucose medium using the five mutants. Particularly, in mutant H16, lacking 5.28% of its genome, the increase of biomass and PHB concentration were more than 50% and 100% compared with MG1655, respectively. This work expands the strategy for creating streamlined chassis to improve the production of high value-added products.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuemei Lu
- *Correspondence: Xuemei Lu, ; Qingsheng Qi,
| | | |
Collapse
|
8
|
Shaw D, Miravet‐Verde S, Piñero‐Lambea C, Serrano L, Lluch‐Senar M. LoxTnSeq: random transposon insertions combined with cre/lox recombination and counterselection to generate large random genome reductions. Microb Biotechnol 2021; 14:2403-2419. [PMID: 33325626 PMCID: PMC8601177 DOI: 10.1111/1751-7915.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The removal of unwanted genetic material is a key aspect in many synthetic biology efforts and often requires preliminary knowledge of which genomic regions are dispensable. Typically, these efforts are guided by transposon mutagenesis studies, coupled to deepsequencing (TnSeq) to identify insertion points and gene essentiality. However, epistatic interactions can cause unforeseen changes in essentiality after the deletion of a gene, leading to the redundancy of these essentiality maps. Here, we present LoxTnSeq, a new methodology to generate and catalogue libraries of genome reduction mutants. LoxTnSeq combines random integration of lox sites by transposon mutagenesis, and the generation of mutants via Cre recombinase, catalogued via deep sequencing. When LoxTnSeq was applied to the naturally genome reduced bacterium Mycoplasma pneumoniae, we obtained a mutant pool containing 285 unique deletions. These deletions spanned from > 50 bp to 28 Kb, which represents 21% of the total genome. LoxTnSeq also highlighted large regions of non-essential genes that could be removed simultaneously, and other non-essential regions that could not, providing a guide for future genome reductions.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Samuel Miravet‐Verde
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Present address:
Pulmobiotics ltdDr. Aiguader 88Barcelona08003Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Universitat Pompeu Fabra (UPF)Barcelona08002Spain
- ICREAPg. Lluís Companys 23Barcelona08010Spain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del Vallès08195Spain
| |
Collapse
|
9
|
Yu H, Khokhlatchev AV, Chew C, Illendula A, Conaway M, Dryden K, Maeda DLNF, Rajasekaran V, Kester M, Zeichner SL. Minicells from Highly Genome Reduced Escherichia coli: Cytoplasmic and Surface Expression of Recombinant Proteins and Incorporation in the Minicells. ACS Synth Biol 2021; 10:2465-2477. [PMID: 34516078 DOI: 10.1021/acssynbio.1c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minicells, small cells lacking a chromosome, produced by bacteria with mutated min genes, which control cell division septum placement, have many potential uses. Minicells have contributed to basic bacterial physiology studies and can enable new biotechnological applications, including drug delivery and vaccines. Genome-reduced bacteria are another informative area of investigation. Investigators identified that with even almost 30% of the E. coli genome deleted, the bacteria still live. In biotechnology and synthetic biology, genome-reduced bacteria offer certain advantages. With genome-reduced bacteria, more recombinant genes can be placed into genome-reduced chromosomes and fewer cell resources are devoted to purposes apart from biotechnological goals. Here, we show that these two technologies can be combined: min mutants can be made in genome-reduced E. coli. The minC minD mutant genome-reduced E. coli produce minicells that concentrate engineered recombinant proteins within these spherical delivery systems. We expressed recombinant GFP protein in the cytoplasm of genome-reduced bacteria and showed that it is concentrated within the minicells. We also expressed proteins on the surfaces of minicells made from genome-reduced bacteria using a recombinant Gram-negative AIDA-I autotransporter expression cassette. Some autotransporters, like AIDA-I, are concentrated at the bacterial poles, where minicells bud. Recombinant proteins expressed on surfaces of the genome-reduced bacteria are concentrated on the minicells. Minicells made from genome-reduced bacteria may enable useful biotechnological innovations, such as drug delivery vehicles and vaccine immunogens.
Collapse
Affiliation(s)
- Hanna Yu
- Department of Pediatrics and Child Health Research Institute, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Andrei V. Khokhlatchev
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Claude Chew
- School of Medicine ORCA, Flow Cytometry Core Facility, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Anuradha Illendula
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mark Conaway
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Kelly Dryden
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, Virginia 22903, United States
| | | | - Vignesh Rajasekaran
- Department of Pediatrics and Child Health Research Institute, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22903, United States
- Director, nanoSTAR Institute, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Steven L. Zeichner
- Department of Pediatrics and Child Health Research Institute, University of Virginia, Charlottesville, Virginia 22903, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
10
|
Li J, Zhao H, Zheng L, An W. Advances in Synthetic Biology and Biosafety Governance. Front Bioeng Biotechnol 2021; 9:598087. [PMID: 33996776 PMCID: PMC8120004 DOI: 10.3389/fbioe.2021.598087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/17/2021] [Indexed: 11/22/2022] Open
Abstract
Tremendous advances in the field of synthetic biology have been witnessed in multiple areas including life sciences, industrial development, and environmental bio-remediation. However, due to the limitations of human understanding in the code of life, any possible intended or unintended uses of synthetic biology, and other unknown reasons, the development and application of this technology has raised concerns over biosafety, biosecurity, and even cyberbiosecurity that they may expose public health and the environment to unknown hazards. Over the past decades, some countries in Europe, America, and Asia have enacted laws and regulations to control the application of synthetic biology techniques in basic and applied research and this has resulted in some benefits. The outbreak of the COVID-19 caused by novel coronavirus SARS-CoV-2 and various speculations about the origin of this virus have attracted more attention on bio-risk concerns of synthetic biology because of its potential power and uncertainty in the synthesis and engineering of living organisms. Therefore, it is crucial to scrutinize the control measures put in place to ensure appropriate use, promote the development of synthetic biology, and strengthen the governance of pathogen-related research, although the true origin of coronavirus remains hotly debated and unresolved. This article reviews the recent progress made in the field of synthetic biology and combs laws and regulations in governing bio-risk issues. We emphasize the urgent need for legislative and regulatory constraints and oversight to address the biological risks of synthetic biology.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huimiao Zhao
- College of Humanities and Law, Beijing University of Chemical Technology, Beijing, China
| | - Lanxin Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenlin An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
11
|
Simons M. Synthetic biology as a technoscience: The case of minimal genomes and essential genes. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 85:127-136. [PMID: 33966767 DOI: 10.1016/j.shpsa.2020.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
This article examines how minimal genome research mobilizes philosophical concepts such as minimality and essentiality. Following a historical approach the article aims to uncover what function this terminology plays and which problems are raised by them. Specifically, four historical moments are examined, linked to the work of Harold J. Morowitz, Mitsuhiro Itaya, Eugene Koonin and Arcady Mushegian, and J. Craig Venter. What this survey shows is a historical shift away from historical questions about life or descriptive questions about specific organisms towards questions that explore biological possibilities: what are possible forms of minimal genomes, regardless of whether they exist in nature? Moreover, it highlights a fundamental ambiguity at work in minimal genome research between a universality claim and a standardization claim: does a minimal genome refer to the minimal gene set for any organism whatsoever? Or does it refer rather to a gene set that will provide stable, robust and predictable behaviour, suited for biotechnological applications? Two diagnoses are proposed for this ambiguity: a philosophical diagnosis of how minimal genome research either misunderstands the ontology of biological entities or philosophically misarticulates scientific practice. Secondly, a historical diagnosis that suggests that this ambiguity is part of a broader shift towards technoscience.
Collapse
Affiliation(s)
- Massimiliano Simons
- Ghent University, Department of Philosophy and Moral Sciences, Blandijnberg 2, BE-9000, Ghent, Belgium.
| |
Collapse
|
12
|
Kurasawa H, Ohno T, Arai R, Aizawa Y. A guideline and challenges toward the minimization of bacterial and eukaryotic genomes. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coisb.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Noack S, Baumgart M. Communities of Niche-Optimized Strains: Small-Genome Organism Consortia in Bioproduction. Trends Biotechnol 2019; 37:126-139. [DOI: 10.1016/j.tibtech.2018.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022]
|
14
|
Yan P, Wu Y, Yang L, Wang Z, Chen T. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose. Biotechnol Lett 2017; 40:393-398. [PMID: 29236191 DOI: 10.1007/s10529-017-2481-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/13/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To investigate the capacity of a genome-reduced Bacillus subtilis strain as chassis cell for acetoin production from xylose. RESULTS To endow the genome-reduced Bacillus subtilis strain BSK814 with the ability to utilize xylose, we inserted a native xyl operon into its genome and deleted the araR gene. The resulting strain BSK814A2 produced 2.94 g acetoin/l from 10 g xylose/l, which was 39% higher than control strain BSK19A2. The deletion of the bdhA and acoA genes further improved xylose utilization efficiency and increased acetoin production to 3.71 g/l in BSK814A4. Finally, BSK814A4 produced up to 23.3 g acetoin/l from 50 g xylose/l, with a yield of 0.46 g/g xylose. Both the titer and yield were 39% higher than those of control strain BSK19A4. CONCLUSIONS As a chassis cell, genome-reduced B. subtilis showed significantly improved capacity for the production of the overflow product acetoin from xylose compared with wild-type strain.
Collapse
Affiliation(s)
- Panpan Yan
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuanqing Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Li Yang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,College of life Science, Shihezi University, Shihezi, 832000, People's Republic of China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|