1
|
Sanders JD, Owen ON, Tran BH, Mosqueira JL, Marty MT. Coupling Online Size Exclusion Chromatography with Charge Detection-Mass Spectrometry Using Hadamard Transform Multiplexing. Anal Chem 2024; 96:16743-16749. [PMID: 39393347 DOI: 10.1021/acs.analchem.4c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Charge detection mass spectrometry (CD-MS) is a powerful technique for the analysis of large, heterogeneous biomolecules. By directly measuring the charge states of individual ions, CD-MS can measure the masses from spectra where conventional deconvolution approaches fail due to the lack of isotopic resolution or distinguishable charge states. However, CD-MS is inherently slow because hundreds or thousands of spectra need to be collected to produce adequate ion statistics. The slower speed of CD-MS complicates efforts to couple it with online separation techniques, which limit the number of spectra that can be acquired during a chromatographic peak. Here, we present the application of Hadamard transform multiplexing to online size exclusion chromatography (SEC) coupled with Orbitrap CD-MS, with a goal of using SEC for separating complex mixtures prior to CD-MS analysis. We developed a microcontroller to deliver pulsed injections from a large sample loop onto a SEC for online CD-MS analysis. Data showed a series of peaks spaced according to the pseudorandom injection sequence, which were demultiplexed with a Hadamard transform algorithm. The demultiplexed data revealed improved CD-MS signals while preserving retention time information. This multiplexing approach provides a general solution to the inherent incompatibilities of online separations and CD-MS detection that will enable a range of applications.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - October N Owen
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Brian H Tran
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey L Mosqueira
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Sanders JD, Owen ON, Tran BH, Juetten KJ, Marty MT. UniChromCD for Demultiplexing Time-Resolved Charge Detection-Mass Spectrometry Data. Anal Chem 2024; 96:15014-15022. [PMID: 39225436 DOI: 10.1021/acs.analchem.4c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Charge detection mass spectrometry (CD-MS) enables characterization of large, heterogeneous analytes through the analysis of individual ion signals. Because hundreds to thousands of scans must be acquired to produce adequate ion statistics, CD-MS generally requires long analysis times. The slow acquisition speed of CD-MS complicates efforts to couple it with time-dispersive techniques, such as chromatography and ion mobility, because it is not always possible to acquire enough scans from a single sample injection to generate sufficient ion statistics. Multiplexing methods based on Hadamard and Fourier transforms offer an attractive solution to this problem by improving the duty cycle of the separation while preserving retention/drift time information. However, integrating multiplexing with CD-MS data processing is complex. Here, we present UniChromCD, a new module in the open-source UniDec package that incorporates CD-MS time-domain data processing with demultiplexing tools. Following a detailed description of the algorithm, we demonstrate its capabilities using two multiplexed CD-MS workflows: Hadamard-transform size-exclusion chromatography and Fourier-transform ion mobility. Overall, UniChromCD provides a user-friendly interface for analysis and visualization of time-resolved CD-MS data.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - October N Owen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Brian H Tran
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Malarvannan M, Ravichandiran V, Paul D. Advances in analytical technologies for emerging drug modalities and their separation challenges in LC-MS systems. J Chromatogr A 2024; 1732:465226. [PMID: 39111181 DOI: 10.1016/j.chroma.2024.465226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The last few years have seen a rise in the identification and development of bio-therapeutics through the use of cutting-edge delivery methods or bio-formulations, which has created bio-analytical difficulties. Every year, new bio-pharmaceutical product innovations come out, but the analytical development of these products is challenging. Quantifying the products and components of conjugated molecular structures is essential for preclinical and clinical research in order to guide therapeutic development, given their intrinsic complexity. Furthermore, a significant amount of information is needed for the measurement of these unique modalities by LC-MS techniques. Numerous LC-MS based methods have been developed, including AEX-HPLC-MS, RP-IP-LCMS, HILIC-MS, LCHRMS, Microflow-LC-MS, ASMS, Hybrid LBA/LC-MS, and more. However, these methods continue to face problems, prompting the development of alternative approaches. Therefore, developing bio-molecules that are this complicated and, low in concentration requires a skilled LC-MS based approach and knowledgeable personnel. This review covers general novel modalities classifications, sample preparation techniques, current status and bio-analytical strategies for analyzing various novel modalities, including gene bio-therapeutics, oligonucleotides, antibody-drug conjugates, monoclonal antibodies and PROTACs. It also covers how these strategies have been used in the past and how they are being used now to address challenges in the development of LC-MS based methods, as well as improvement strategies, current advancements and recent developed methods. We additionally covered on the benefits and drawbacks of different LC-MS based techniques for the examination of bio-pharmaceutical products and the future perspectives.
Collapse
Affiliation(s)
- M Malarvannan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India.
| |
Collapse
|
4
|
Szyszka TN, Andreas MP, Lie F, Miller LM, Adamson LSR, Fatehi F, Twarock R, Draper BE, Jarrold MF, Giessen TW, Lau YH. Point mutation in a virus-like capsid drives symmetry reduction to form tetrahedral cages. Proc Natl Acad Sci U S A 2024; 121:e2321260121. [PMID: 38722807 PMCID: PMC11098114 DOI: 10.1073/pnas.2321260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Protein capsids are a widespread form of compartmentalization in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximizes the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of unique symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryoelectron microscopy, we determine the structures of a precedented 60-mer icosahedral assembly and an unexpected 36-mer tetrahedron that features significant geometric rearrangements around a new interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple-point mutation to various amino acids and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent a unique example of tetrahedral geometry when surveying all characterized encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in the protein sequence.
Collapse
Affiliation(s)
- Taylor N. Szyszka
- School of Chemistry, The University of Sydney, Camperdown, NSW2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW2006, Australia
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| | - Felicia Lie
- School of Chemistry, The University of Sydney, Camperdown, NSW2006, Australia
| | - Lohra M. Miller
- Chemistry Department, Indiana University, Bloomington, IN47405
| | | | - Farzad Fatehi
- Department of Mathematics, University of York, YorkYO10 5DD, United Kingdom
- York Cross-Disciplinary Centre for Systems Analysis, University of York, YorkYO10 5DD, United Kingdom
| | - Reidun Twarock
- Department of Mathematics, University of York, YorkYO10 5DD, United Kingdom
- York Cross-Disciplinary Centre for Systems Analysis, University of York, YorkYO10 5DD, United Kingdom
- Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| | | | | | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW2006, Australia
| |
Collapse
|
5
|
Hrabovsky D, Argence B, Lesage D, Colomby P, Surugue M, Cole RB. Charge Detection Mass Spectrometry for Megadalton Polymer Characterization and Measurement of Electrospray-Generated Charged Droplet Dynamics with a New "Direct Visualization of the Rayleigh Limit" Approach to Aid in m/ z Calibration. Anal Chem 2024; 96:6986-6994. [PMID: 38652037 DOI: 10.1021/acs.analchem.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A charge detector has been constructed and mounted inside the vacuum housing of a commercial mass spectrometer (Micromass-Waters Quattro I, Waters Corp., Manchester, UK). The in-house built single-pass charge detector is composed of a designed, complete electronics system that includes a low-noise charge amplifier. Communication to the data acquisition system was enabled, and analog and digital filters were devised, followed by their tuning and programming. Data treatment scripts for data analysis and plotting were automated, and the assembled system was calibrated and tested. The instrument has an acquisition speed of ∼200 detection events/s, and it permits detection down to ∼510 charges (= three times RMS noise) for a single measured particle. The charge detector was employed to determine the oligomer distribution of a megadalton polymer, polyethylene glycol (PEG). The PEG size distribution exhibits a maximum at ∼ m/z 5910 with the oligomeric population mass distribution peaking near 4.45 MDa. In studies of methanol droplet dynamics, "charge vs time-of-flight" plots enabled clear visualization of the zone near the Rayleigh limit to droplet charging. The highest population of methanol droplets near the Rayleigh limit carried 5000-7000 charges. This corresponds to droplet weights of 10-20 GDa, with the high-end tail extending above 70 GDa. This visualization of the most highly charged droplets (that bear numbers of charges near those defined by the Rayleigh equation) was exploited as a calibration aid for our charge detector, which lacks a means of precisely defining ion energy. A maximum m/z error of -12.3% was calculated for the method, i.e., less than the potential error in assigning the true level of charging of the most highly charged droplets relative to the Rayleigh limit. With these limitations in mind, the introduced method will provide a new means for aiding the calibration of m/z values in charge detectors.
Collapse
Affiliation(s)
- David Hrabovsky
- Institut Parisien de Chimie Moléculaire, UMR 8232, Sorbonne Université-Faculté des Sciences et Ingénierie, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Bérengère Argence
- Institut Parisien de Chimie Moléculaire, UMR 8232, Sorbonne Université-Faculté des Sciences et Ingénierie, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Denis Lesage
- Institut Parisien de Chimie Moléculaire, UMR 8232, Sorbonne Université-Faculté des Sciences et Ingénierie, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Philippe Colomby
- Institut Parisien de Chimie Moléculaire, UMR 8232, Sorbonne Université-Faculté des Sciences et Ingénierie, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Michel Surugue
- Institut Parisien de Chimie Moléculaire, UMR 8232, Sorbonne Université-Faculté des Sciences et Ingénierie, 4 Place Jussieu, Paris 75252, Cedex 05, France
| | - Richard B Cole
- Institut Parisien de Chimie Moléculaire, UMR 8232, Sorbonne Université-Faculté des Sciences et Ingénierie, 4 Place Jussieu, Paris 75252, Cedex 05, France
| |
Collapse
|
6
|
Williams JD, Pu F, Sawicki JW, Elsen NL. Ultra-high-throughput mass spectrometry in drug discovery: fundamentals and recent advances. Expert Opin Drug Discov 2024; 19:291-301. [PMID: 38111363 DOI: 10.1080/17460441.2023.2293153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Ultra-high-throughput mass spectrometry, uHT-MS, is a technology that utilizes ionization and sample delivery technologies optimized to enable sampling from well plates at > 1 sample per second. These technologies do not need a chromatographic separation step and can be utilized in a wide variety of assays to detect a broad range of analytes including small molecules, lipids, and proteins. AREAS COVERED This manuscript provides a brief historical review of high-throughput mass spectrometry and the recently developed technologies that have enabled uHT-MS. The report also provides examples and references on how uHT-MS has been used in biochemical and chemical assays, nuisance compound profiling, protein analysis and high throughput experimentation for chemical synthesis. EXPERT OPINION The fast analysis time provided by uHT-MS is transforming how biochemical and chemical assays are performed in drug discovery. The potential to associate phenotypic responses produced by 1000's of compound treatments with changes in endogenous metabolite and lipid signals is becoming feasible. With the augmentation of simple, fast, high-throughput sample preparation, the scope of uHT-MS usage will increase. However, it likely will not supplant LC-MS for analyses that require low detection limits from complex matrices or characterization of complex biotherapeutics such as antibody-drug conjugates.
Collapse
Affiliation(s)
| | - Fan Pu
- Abbvie Discovery Research, North Chicago, IL, USA
| | | | | |
Collapse
|
7
|
Szyszka TN, Andreas MP, Lie F, Miller LM, Adamson LSR, Fatehi F, Twarock R, Draper BE, Jarrold MF, Giessen TW, Lau YH. Point mutation in a virus-like capsid drives symmetry reduction to form tetrahedral cages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579038. [PMID: 38370832 PMCID: PMC10871247 DOI: 10.1101/2024.02.05.579038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein capsids are a widespread form of compartmentalisation in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximises the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of novel symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryo-EM, we determine the structures of a precedented 60-mer icosahedral assembly and an unprecedented 36-mer tetrahedron that features significant geometric rearrangements around a novel interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple point mutation to various amino acids, and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent the first example of tetrahedral geometry across all characterised encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in protein sequence.
Collapse
Affiliation(s)
- Taylor N Szyszka
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Felicia Lie
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lohra M Miller
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Lachlan S R Adamson
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Reidun Twarock
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Benjamin E Draper
- Megadalton Solutions Inc., 3750 E Bluebird Ln, Bloomington, IN 47401, USA
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
8
|
Troxell B, Jaslow SL, Tsai IW, Sullivan C, Draper BE, Jarrold MF, Lindsey K, Blue L. Partial genome content within rAAVs impacts performance in a cell assay-dependent manner. Mol Ther Methods Clin Dev 2023; 30:288-302. [PMID: 37583716 PMCID: PMC10423999 DOI: 10.1016/j.omtm.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) deliver DNA to numerous cell types. However, packaging of partial genomes into the rAAV capsid is of concern. Although empty rAAV capsids are studied, there is little information regarding the impact of partial DNA content on rAAV performance in controlled studies. To address this, we tested vectors containing varying levels of partial, self-complementary EGFP genomes. Density gradient cesium chloride ultracentrifugation was used to isolate three distinct rAAV populations: (1) a lighter fraction, (2) a moderate fraction, and (3) a heavy fraction. Alkaline gels, Illumina Mi-Seq, size exclusion chromatography with multi-angle light scattering (SEC-MALS), and charge detection mass spectrometry (CD-MS) were used to characterize the genome of each population and ddPCR to quantify residual DNA molecules. Live-cell imaging and EGFP ELISA assays demonstrated reduced expression following transduction with the light fraction compared with the moderate and heavy fractions. However, PCR-based assays showed that the light density delivered EGFP DNA to cells as efficiently as the moderate and heavy fractions. Mi-Seq data revealed an underrepresentation of the promoter region for EGFP, suggesting that expression of EGFP was reduced because of lack of regulatory control. This work demonstrates that rAAVs containing partial genomes contribute to the DNA signal but have reduced vector performance.
Collapse
Affiliation(s)
- Bryan Troxell
- StrideBio Analytical Development and Quality Control, 5 Laboratory Drive, Suite 1200, Research Triangle Park, NC 27709, USA
- AjaxBio, LLC, Holly Springs, NC 27540, USA
| | - Sarah L. Jaslow
- StrideBio Analytical Development and Quality Control, 5 Laboratory Drive, Suite 1200, Research Triangle Park, NC 27709, USA
| | - I-Wei Tsai
- StrideBio Analytical Development and Quality Control, 5 Laboratory Drive, Suite 1200, Research Triangle Park, NC 27709, USA
| | - Chelsea Sullivan
- StrideBio Analytical Development and Quality Control, 5 Laboratory Drive, Suite 1200, Research Triangle Park, NC 27709, USA
| | - Benjamin E. Draper
- Megadalton Solutions, Inc., 3750 E. Bluebird Ln., Bloomington, IN 47401, USA
| | - Martin F. Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Kate Lindsey
- StrideBio Analytical Development and Quality Control, 5 Laboratory Drive, Suite 1200, Research Triangle Park, NC 27709, USA
| | - Levi Blue
- StrideBio Analytical Development and Quality Control, 5 Laboratory Drive, Suite 1200, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Anthony AJ, Gautam AKS, Miller LM, Ma Y, Hardwick AG, Sharma A, Ghatak S, Matouschek A, Jarrold MF, Clemmer DE. CDMS Analysis of Intact 19S, 20S, 26S, and 30S Proteasomes: Evidence for Higher-Order 20S Assemblies at a Low pH†. Anal Chem 2023; 95:12209-12215. [PMID: 37552619 PMCID: PMC10916762 DOI: 10.1021/acs.analchem.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.
Collapse
Affiliation(s)
- Adam J Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, University of Texas, Austin Texas 78712, United States
| | - Lohra M Miller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Yiran Ma
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Anya G Hardwick
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Anu Sharma
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, University of Texas, Austin Texas 78712, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| |
Collapse
|
10
|
Britt HM, Beveridge R, Calabrese AN. A special issue of Essays in Biochemistry on structural mass spectrometry. Essays Biochem 2023; 67:147-149. [PMID: 36988080 PMCID: PMC10070473 DOI: 10.1042/ebc20230006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
Mass spectrometry (MS) is now established as an analytical tool to interrogate the structure and dynamics of proteins and their assemblies. An array of MS-based technologies has been developed, with each providing unique information pertaining to protein structure, and forming the heart of integrative structural biology studies. This special issue includes a collection of review articles that discuss both established and emerging structural MS methodologies, along with examples of how these technologies are being deployed to interrogate protein structure and function. Combined, this collection highlights the immense potential of the structural MS toolkit in the study of molecular mechanisms underpinning cellular homeostasis and disease.
Collapse
Affiliation(s)
- Hannah M Britt
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
- The Kavli Institute for Nanoscience Discovery, Sherrington Road, Oxford OX1 3QU, U.K
| | - Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|