1
|
Santana FS, Perfetti M, Briganti M, Sacco F, Poneti G, Ravera E, Soares JF, Sessoli R. A dysprosium single molecule magnet outperforming current pseudocontact shift agents. Chem Sci 2022; 13:5860-5871. [PMID: 35685802 PMCID: PMC9132026 DOI: 10.1039/d2sc01619b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 12/19/2022] Open
Abstract
A common criterion for designing performant single molecule magnets and pseudocontact shift tags is a large magnetic anisotropy. In this article we present a dysprosium complex chemically designed to exhibit strong easy-axis type magnetic anisotropy that is preserved in dichloromethane solution at room temperature. Our detailed theoretical and experimental studies on the magnetic properties allowed explaining several features typical of highly performant SMMs. Moreover, the NMR characterization shows remarkably large chemical shifts, outperforming the current state-of-the art PCS tags.
Collapse
Affiliation(s)
- Francielli S Santana
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
| | - Mauro Perfetti
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Research Unit Firenze, INSTM I-50019 Sesto Fiorentino Firenze Italy
| | - Matteo Briganti
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
| | - Francesca Sacco
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia - Cidade Universitária Avenida Athos da Silveira Ramos, 149 21941-909 Rio de Janeiro Brazil
| | - Enrico Ravera
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine Via Luigi Sacconi 6, Sesto Fiorentino 50019 Italy
| | - Jaísa F Soares
- Departamento de Química, Universidade Federal do Paraná, Centro Politécnico 81530-900 Curitiba PR Brazil
| | - Roberta Sessoli
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13, Sesto Fiorentino 50019 Italy
- Research Unit Firenze, INSTM I-50019 Sesto Fiorentino Firenze Italy
| |
Collapse
|
2
|
Lang L, Ravera E, Parigi G, Luchinat C, Neese F. Theoretical analysis of the long-distance limit of NMR chemical shieldings. J Chem Phys 2022; 156:154115. [PMID: 35459319 DOI: 10.1063/5.0088162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
After some years of controversy, it was recently demonstrated how to obtain the correct long-distance limit [point-dipole approximation (PDA)] of pseudo-contact nuclear magnetic resonance chemical shifts from rigorous first-principles quantum mechanics [Lang et al., J. Phys. Chem. Lett. 11, 8735 (2020)]. This result confirmed the classical Kurland-McGarvey theory. In the present contribution, we elaborate on these results. In particular, we provide a detailed derivation of the PDA both from the Van den Heuvel-Soncini equation for the chemical shielding tensor and from a spin Hamiltonian approximation. Furthermore, we discuss in detail the PDA within the approximate density functional theory and Hartree-Fock theories. In our previous work, we assumed a relatively crude effective nuclear charge approximation for the spin-orbit coupling operator. Here, we overcome this assumption by demonstrating that the derivation is also possible within the fully relativistic Dirac equation and even without the assumption of a specific form for the Hamiltonian. Crucial ingredients for the general derivation are a Hamiltonian that respects gauge invariance, the multipolar gauge, and functional derivatives of the Hamiltonian, where it is possible to identify the first functional derivative with the electron number current density operator. The present work forms an important foundation for future extensions of the Kurland-McGarvey theory beyond the PDA, including induced magnetic quadrupole and higher moments to describe the magnetic hyperfine field.
Collapse
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Ott JC, Suturina EA, Kuprov I, Nehrkorn J, Schnegg A, Enders M, Gade LH. Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts. Angew Chem Int Ed Engl 2021; 60:22856-22864. [PMID: 34351041 PMCID: PMC8518043 DOI: 10.1002/anie.202107944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/27/2022]
Abstract
We report an experimental observation of 31 P NMR resonances shifted by over 10 000 ppm (meaning percent range, and a new record for solutions), and similar 1 H chemical shifts, in an intermediate-spin square planar ferrous complex [tBu (PNP)Fe-H], where PNP is a carbazole-based pincer ligand. Using a combination of electronic structure theory, nuclear magnetic resonance, magnetometry, and terahertz electron paramagnetic resonance, the influence of magnetic anisotropy and zero-field splitting on the paramagnetic shift and relaxation enhancement is investigated. Detailed spin dynamics simulations indicate that, even with relatively slow electron spin relaxation (T1 ≈10-11 s), it remains possible to observe NMR signals of directly metal-bonded atoms because pronounced rhombicity in the electron zero-field splitting reduces nuclear paramagnetic relaxation enhancement.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | | | - Ilya Kuprov
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Joscha Nehrkorn
- EPR Research GroupMPI for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim RuhrGermany
| | - Alexander Schnegg
- EPR Research GroupMPI for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim RuhrGermany
| | - Markus Enders
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | - Lutz H. Gade
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| |
Collapse
|
4
|
Ott JC, Suturina EA, Kuprov I, Nehrkorn J, Schnegg A, Enders M, Gade LH. Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | | | - Ilya Kuprov
- School of Chemistry University of Southampton Southampton SO17 1BJ UK
| | - Joscha Nehrkorn
- EPR Research Group MPI for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim Ruhr Germany
| | - Alexander Schnegg
- EPR Research Group MPI for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim Ruhr Germany
| | - Markus Enders
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| |
Collapse
|
5
|
Lang L, Ravera E, Parigi G, Luchinat C, Neese F. Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory. J Phys Chem Lett 2020; 11:8735-8744. [PMID: 32930598 PMCID: PMC7584370 DOI: 10.1021/acs.jpclett.0c02462] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
A recently popularized approach for the calculation of pseudocontact shifts (PCSs) based on first-principles quantum chemistry (QC) leads to different results than the classic "semiempirical" equation involving the susceptibility tensor. Studies that attempted a comparison of theory and experiment led to conflicting conclusions with respect to the preferred theoretical approach. In this Letter, we show that after inclusion of previously neglected terms in the full Hamiltonian, one can deduce the semiempirical equations from a rigorous QC-based treatment. It also turns out that in the long-distance limit, one can approximate the complete A tensor in terms of the g tensor. By means of Kohn-Sham density functional theory calculations, we numerically confirm the long-distance expression for the A tensor and the theoretically predicted scaling behavior of the different terms. Our derivation suggests a computational strategy in which one calculates the susceptibility tensor and inserts it into the classic equation for the PCS.
Collapse
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), via Sacconi
6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|
7
|
Li W, Adlung M, Zhang Q, Wickleder C, Schmedt auf der Günne J. A Guide to Brighter Phosphors-Linking Luminescence Properties to Doping Homogeneity Probed by NMR. Chemphyschem 2019; 20:3245-3250. [PMID: 31589801 PMCID: PMC6916297 DOI: 10.1002/cphc.201900790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/19/2019] [Indexed: 12/03/2022]
Abstract
Crystalline powders of Ln3+ doped LaPO4 (Ln=Nd, Gd, Dy, Ho, Er, Tm, Yb) have been synthesized to serve in a case study for linking doping homogeneity as determined by NMR to luminescent properties. Samples obtained via different synthesis methods act as examples of homo- and inhomogeneous doping. The sample quality was verified by X-ray diffraction. The homogeneously doped samples show improved luminescent properties in terms of brightness and lifetime which is consistent with the interpretation that, NMR visibility curves probe the distribution of paramagnetic dopants on a similar length scale as necessary for an efficient energy transfer in crystalline phosphors i. e. between sensitizers and activators, and to killer sites. Thus "NMR homogeneity" as observed by visibility curves may serve as a tool to optimize luminescent materials.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Chemistry and Biology ChemistryUniversity of SiegenAdolf-Reichwein-Str. 257076SiegenGermany
| | - Matthias Adlung
- Department of Chemistry and Biology ChemistryUniversity of SiegenAdolf-Reichwein-Str. 257076SiegenGermany
| | - Qianyun Zhang
- Department of Chemistry and Biology ChemistryUniversity of SiegenAdolf-Reichwein-Str. 257076SiegenGermany
| | - Claudia Wickleder
- Department of Chemistry and Biology ChemistryUniversity of SiegenAdolf-Reichwein-Str. 257076SiegenGermany
| | - Jörn Schmedt auf der Günne
- Department of Chemistry and Biology ChemistryUniversity of SiegenAdolf-Reichwein-Str. 257076SiegenGermany
| |
Collapse
|
8
|
Parigi G, Ravera E, Luchinat C. Magnetic susceptibility and paramagnetism-based NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:211-236. [PMID: 31779881 DOI: 10.1016/j.pnmrs.2019.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/18/2023]
Abstract
The magnetic interactions between the nuclear magnetic moment and the magnetic moment of unpaired electron(s) depend on the structure and dynamics of the molecules where the paramagnetic center is located and of their partners. The long-range nature of the magnetic interactions is thus a reporter of invaluable information for structural biology studies, when other techniques often do not provide enough data for the atomic-level characterization of the system. This precious information explains the flourishing of paramagnetism-assisted NMR studies in recent years. Many paramagnetic effects are related to the magnetic susceptibility of the paramagnetic metal. Although these effects have been known for more than half a century, different theoretical models and new approaches have been proposed in the last decade. In this review, we have summarized the consequences for NMR spectroscopy of magnetic interactions between nuclear and electron magnetic moments, and thus of the presence of a magnetic susceptibility due to metals, and we do so using a unified notation.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|