1
|
Zhang X, Huang Q, Guo Z, Cai F, Kang Q, Bai L. Acarbose glycosylation by AcbE for the production of acarstatins with enhanced α-amylase inhibitory activity. Synth Syst Biotechnol 2024; 9:359-368. [PMID: 38559426 PMCID: PMC10981011 DOI: 10.1016/j.synbio.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Acarbose is a potent glycosidase inhibitor widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). Various acarbose analogs have been identified while exploring compounds with improved pharmacological properties. In this study, we found that AcbE from Actinoplanes sp. SE50/110 catalyzes the production of acarbose analogs that exhibit significantly improved inhibitory activity towards α-amylase than acarbose. Recombinant AcbE mainly catalyzed the formation of two new compounds, namely acarstatins A and B, using acarbose as substrate. Using high-resolution mass spectrometry, nuclear magnetic resonance, and glycosidase hydrolysis, we elucidated their chemical structures as O-α-d-maltosyl-(1 → 4)-acarbose and O-α-d-maltotriosyl-(1 → 4)-acarbose, respectively. Acarstatins A and B exhibited 1584- and 1478-fold greater inhibitory activity towards human salivary α-amylase than acarbose. Furthermore, both acarstatins A and B exhibited complete resistance to microbiome-derived acarbose kinase 1-mediated phosphorylation and partial resistance to acarbose-preferred glucosidase-mediated hydrolysis. Therefore, acarstatins A and B have great potential as candidate therapeutic agents for T2DM.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qungang Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyue Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feifei Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- College of Life Science, Tarim University, Alar, 843300, China
| |
Collapse
|
2
|
Tanoeyadi S, Tsunoda T, Ito T, Philmus B, Mahmud T. Acarbose May Function as a Competitive Exclusion Agent for the Producing Bacteria. ACS Chem Biol 2023; 18:367-376. [PMID: 36648321 PMCID: PMC9957957 DOI: 10.1021/acschembio.2c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acarbose is a well-known microbial specialized metabolite used clinically to treat type 2 diabetes. This natural pseudo-oligosaccharide (PsOS) shows potent inhibitory activity toward various glycosyl hydrolases, including α-glucosidases and α-amylases. While acarbose and other PsOSs are produced by many different bacteria, their ecological or biological role in microbial communities is still an open question. Here, we show that several PsOS-producing actinobacteria, i.e., Actinoplanes sp. SE50/110 (acarbose producer), Streptomyces glaucescens GLA.O (acarbose producer), and Streptomyces dimorphogenes ATCC 31484 (trestatin producer), can grow in the presence of acarbose, while the growth of the non-PsOS-producing organism Streptomyces coelicolor M1152 was suppressed when starch is the main source of energy. Further investigations using recombinant α-amylases from S. coelicolor M1152 and the PsOS-producing actinobacteria revealed that the S. coelicolor α-amylase was inhibited by acarbose, whereas those from the PsOS-producing bacteria were not inhibited by acarbose. Bioinformatic and protein modeling studies suggested that a point mutation in the α-amylases of the PsOS-producing actinobacteria is responsible for the resistance of those enzymes toward acarbose. Converting the acarbose-resistant α-amylase AcbE to its A304H variant diminished its acarbose-resistance property. Taken together, the results suggest that acarbose is used by the producing bacteria as a competitive exclusion agent to suppress the growth of other microorganisms in their natural environment, while the producing organisms equip themselves with α-amylase variants that are resistant to acarbose.
Collapse
Affiliation(s)
- Samuel Tanoeyadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Takuya Ito
- Laboratory of Natural Medicines, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nisikiorikita, Tondabayashi 584-8540 (Japan)
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| |
Collapse
|
3
|
Tsunoda T, Asamizu S, Mahmud T. Biochemical Characterization of GacI, a Bifunctional Glycosyltransferase-Phosphatase Enzyme Involved in Acarbose Biosynthesis in Streptomyces glaucescens GLA.O. Biochemistry 2022; 61:2628-2635. [PMID: 36288494 PMCID: PMC9669214 DOI: 10.1021/acs.biochem.2c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acarbose, a pseudotetrasaccharide produced by several strains of Actinoplanes and Streptomyces, is an α-glucosidase inhibitor clinically used to control type II diabetes. Bioinformatic analysis of the biosynthetic gene clusters of acarbose in Actinoplanes sp. SE50/110 (the acb cluster) and Streptomyces glaucescens GLA.O (the gac cluster) revealed their distinct genetic organizations and presumably biosynthetic pathways. However, to date, only the acarbose pathway in the SE50/110 strain has been extensively studied. Here, we report that GacI, one of the proteins that appear to be different between the two pathways, is a bifunctional glycosyltransferase family 5 (GT5)-phosphatase (PP) enzyme that functions at two different steps in acarbose biosynthesis in S. glaucescens GLA.O. In the acb pathway, the GT and the PP reactions are performed by two different enzymes. Truncated GacI proteins having only the GT or the PP domain showed comparable catalytic activity with the full-length GacI, indicating that domain separation does not significantly affect their respective catalytic activity. GacI, which is widely distributed in many Streptomyces, represents the first example of naturally occurring GT5-PP bifunctional enzymes biochemically characterized.
Collapse
Affiliation(s)
- Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Shumpei Asamizu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331-3507 (USA)
| |
Collapse
|
4
|
Tsunoda T, Samadi A, Burade S, Mahmud T. Complete biosynthetic pathway to the antidiabetic drug acarbose. Nat Commun 2022; 13:3455. [PMID: 35705566 PMCID: PMC9200736 DOI: 10.1038/s41467-022-31232-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/30/2022] [Indexed: 11/11/2022] Open
Abstract
Acarbose is a bacterial-derived α-glucosidase inhibitor clinically used to treat patients with type 2 diabetes. As type 2 diabetes is on the rise worldwide, the market demand for acarbose has also increased. Despite its significant therapeutic importance, how it is made in nature is not completely understood. Here, we report the complete biosynthetic pathway to acarbose and its structural components, GDP-valienol and O-4-amino-(4,6-dideoxy-α-D-glucopyranosyl)-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose. GDP-valienol is derived from valienol 7-phosphate, catalyzed by three cyclitol modifying enzymes, whereas O-4-amino-(4,6-dideoxy-α-D-glucopyranosyl)-(1→4)-O-α-D-glucopyranosyl-(1→4)-D-glucopyranose is produced from dTDP-4-amino-4,6-dideoxy-D-glucose and maltose by the glycosyltransferase AcbI. The final assembly process is catalyzed by a pseudoglycosyltransferase enzyme, AcbS, which is a homologue of AcbI but catalyzes the formation of a non-glycosidic C-N bond. This study clarifies all previously unknown steps in acarbose biosynthesis and establishes a complete pathway to this high value pharmaceutical. The market demand for acarbose, a drug used for treatment of patients affected by type-2 diabetes, has increased. In this article, the authors report the acarbose complete biosynthetic pathway, clarifying previously unknown steps and identifying a pseudoglycosyltransferase enzyme, AcbS, a homologue of AcbI that catalyzes the formation of a non-glycosidic C-N bond.
Collapse
Affiliation(s)
- Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Arash Samadi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Sachin Burade
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA.
| |
Collapse
|
5
|
Ju Z, Zhou W, Alharbi HA, Howell DC, Mahmud T. Modulation of Specialized Metabolite Production in Genetically Engineered Streptomyces pactum. ACS Chem Biol 2021; 16:2641-2650. [PMID: 34723462 PMCID: PMC8604789 DOI: 10.1021/acschembio.1c00718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Filamentous soil bacteria are known to produce diverse specialized metabolites. Despite having enormous potential as a source of pharmaceuticals, they often produce bioactive metabolites at low titers. Here, we show that inactivation of the pactamycin, NFAT-133, and conglobatin biosynthetic pathways in Streptomyces pactum ATCC 27456 significantly increases the production of the mitochondrial electron transport inhibitors piericidins. Similarly, inactivation of the pactamycin, NFAT-133, and piericidin pathways significantly increases the production of the heat-shock protein (Hsp) 90 inhibitor conglobatin. In addition, four new conglobatin analogues (B2, B3, F1, and F2) with altered polyketide backbones, together with the known analogue conglobatin B1, were identified in this mutant, indicating that the conglobatin biosynthetic machinery is promiscuous toward different substrates. Among the new conglobatin analogues, conglobatin F2 showed enhanced antitumor activity against HeLa and NCI-H460 cancer cell lines compared to conglobatin. Conglobatin F2 also inhibits colony formation of HeLa cells in a dose-dependent manner. Molecular modeling studies suggest that the new conglobatins bind to human Hsp90 and disrupt Hsp90/Cdc37 chaperone/co-chaperone interactions in the same manner as conglobatin. The study also showed that genes that are involved in piericidin biosynthesis are clustered in two different loci located distantly in the S. pactum genome.
Collapse
Affiliation(s)
- Zhiran Ju
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| | - Hattan A Alharbi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| | - Daniel C Howell
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507 United States
| |
Collapse
|
6
|
Sagandira CR, Khasipo AZ, Sagandira MB, Watts P. An overview of the synthetic routes to essential oral anti-diabetes drugs. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Identification of α-Glucosidase Inhibitors from Ipomoea alba by Affinity-Directed Fractionation-Mass Spectrometry. REVISTA BRASILEIRA DE FARMACOGNOSIA 2020. [DOI: 10.1007/s43450-020-00068-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
A severe leakage of intermediates to shunt products in acarbose biosynthesis. Nat Commun 2020; 11:1468. [PMID: 32193369 PMCID: PMC7081202 DOI: 10.1038/s41467-020-15234-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/23/2020] [Indexed: 11/08/2022] Open
Abstract
The α-glucosidase inhibitor acarbose, produced by Actinoplanes sp. SE50/110, is a well-known drug for the treatment of type 2 diabetes mellitus. However, the largely unexplored biosynthetic mechanism of this compound has impeded further titer improvement. Herein, we uncover that 1-epi-valienol and valienol, accumulated in the fermentation broth at a strikingly high molar ratio to acarbose, are shunt products that are not directly involved in acarbose biosynthesis. Additionally, we find that inefficient biosynthesis of the amino-deoxyhexose moiety plays a role in the formation of these shunt products. Therefore, strategies to minimize the flux to the shunt products and to maximize the supply of the amino-deoxyhexose moiety are implemented, which increase the acarbose titer by 1.2-fold to 7.4 g L−1. This work provides insights into the biosynthesis of the C7-cyclitol moiety and highlights the importance of assessing shunt product accumulation when seeking to improve the titer of microbial pharmaceutical products. Biosynthetic mechanism for the type 2 diabetes treatment drug acarbose is not fully revealed. Here, the authors show that shunt pathways and inefficient amino-deoxyhexose biosynthesis lead to 1-epi-valienol and valienol accumulation, and minimizing the flux to these shunt products can increase acarbose titer in Actinoplanes species.
Collapse
|
9
|
Metabolic bioengineering: glycans and glycoconjugates. Emerg Top Life Sci 2018; 2:333-335. [PMID: 33525786 DOI: 10.1042/etls20180091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022]
Abstract
The application of metabolic engineering to the production of glycans and glycoconjugates is the subject of this of Emerging Topics in Life Science. The lack of availability of these complex carbohydrate or saccharide structures has severely limited the development of the field of glycobiology. This issue contains eight articles from respected scientists in the field that cover this new and emerging field.
Collapse
|