2
|
Korsunska A, Repasky M, Zuccato M, Fajgenbaum DC. A model for crowdsourcing high-impact research questions for Castleman disease and other rare diseases. Orphanet J Rare Dis 2023; 18:75. [PMID: 37041585 PMCID: PMC10091676 DOI: 10.1186/s13023-023-02678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND There are approximately 10,000 rare diseases that affect around 30,000,000 individuals in the U.S.A., most of which do not have an FDA-approved treatment. This fact highlights the failure of traditional research approaches to overcome the unique challenges of developing rare disease treatments. The Castleman Disease Collaborative Network was founded in 2012 to advance research and treatments for Castleman disease, a rare and deadly disease that involves the immune system attacking the body's vital organs for an unknown cause. It has spearheaded a novel strategy for advancing biomedical research, the Collaborative Network Approach. This approach consists of eight steps, one of which is to identify and prioritize high-impact research questions through crowdsourcing ideas from the entire community of stakeholders: patients, loved ones, physicians, and researchers. Rather than hoping that the right researcher will apply for the right research project at the right time, crowdsourcing high-priority research projects into a research strategy ensures that the most high-impact, patient-centered studies are prioritized. The Castleman Disease Collaborative Network launched an initiative in 2021 to systematically generate this list of community-directed studies to focus Castleman disease research efforts. RESULTS The Castleman Disease Collaborative Network was able to successfully create a patient-centered research agenda through engaging the entire community of stakeholders. The community contributed important questions about Castleman disease, which were prioritized and reviewed by our Scientific Advisory Board, and the result was a finalized list of studies that address these prioritized questions. We were also able to generate a best practices list which can serve as a model that can be utilized for other rare diseases. CONCLUSION Creating a patient-centered research agenda through crowdsourcing research ideas from the community is one of the most important ways that the Castleman Disease Collaborative Network operationalizes its commitment to keeping patients at the center of research and we hope that by sharing these insights we can assist other rare disease organizations to pursue a patient-centric approach.
Collapse
Affiliation(s)
- Ania Korsunska
- Syracuse University, 343 Hinds Hall, Syracuse, NY, 13244, USA.
- Castleman Disease Collaborative Network, 3535 Market Street, Suite 700, Philadelphia, PA, 19104, USA.
| | - Mileva Repasky
- Castleman Disease Collaborative Network, 3535 Market Street, Suite 700, Philadelphia, PA, 19104, USA
| | - Mary Zuccato
- Castleman Disease Collaborative Network, 3535 Market Street, Suite 700, Philadelphia, PA, 19104, USA
| | - David C Fajgenbaum
- Castleman Disease Collaborative Network, 3535 Market Street, Suite 700, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Raskin J, Pasquini TLS, Bose S, Tallis D, Schmitt J. Congenital Hyperinsulinism International: A Community Focused on Improving the Lives of People Living With Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2022; 13:886552. [PMID: 35573986 PMCID: PMC9097272 DOI: 10.3389/fendo.2022.886552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Congenital hyperinsulinism (HI) is a rare disease affecting newborns. HI causes severe hypoglycemia due to the overproduction of insulin. The signs and symptoms of hypoglycemia in HI babies is often not discovered until brain damage has already occurred. Prolonged hypoglycemia from HI can even lead to death. Disease management is often complex with a high burden on caregivers. Treatment options are extremely limited and often require long hospital stays to devise. Cascading from suboptimal treatments and diagnostic practices are a host of other problems and challenges that many with HI and their families experience including continued fear of hypoglycemia and feeding problems. The aim of this paper is (1) to describe the current challenges of living with HI including diagnosis and disease management told from the perspective of people who live with the condition (2), to provide family stories of life with HI, and (3) to share how a rare disease patient organization, Congenital Hyperinsulinism International (CHI) is working to improve the lives of HI patients and their families. CHI is a United States based nonprofit organization with a global focus. The paper communicates the programs the patient advocacy organization has put into place to support HI families through its virtual and in-person gatherings. The organization also helps individuals access diagnostics, medical experts, and treatments. CHI also raises awareness of HI to improve patient outcomes with information about HI and prolonged hypoglycemia in twenty-three languages. CHI drives innovation for new and better treatments by funding research pilot grants, conducting research through the HI Global Registry, and providing patient experience expertise to researchers developing new treatments. The organization is also the sponsor of the CHI Collaborative Research Network which brings medical and scientific experts together for the development of a patient-focused prioritized research agenda.
Collapse
|
4
|
Cheff DM, Muotri AR, Stockwell BR, Schmidt EE, Ran Q, Kartha RV, Johnson SC, Mittal P, Arnér ESJ, Wigby KM, Hall MD, Ramesh SK. Development of therapies for rare genetic disorders of GPX4: roadmap and opportunities. Orphanet J Rare Dis 2021; 16:446. [PMID: 34688299 PMCID: PMC8542321 DOI: 10.1186/s13023-021-02048-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/19/2021] [Indexed: 01/14/2023] Open
Abstract
Background Extremely rare progressive diseases like Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) can be neonatally lethal and therefore go undiagnosed or are difficult to treat. Recent sequencing efforts have linked this disease to mutations in GPX4, with consequences in the resulting enzyme, glutathione peroxidase 4. This offers potential diagnostic and therapeutic avenues for those suffering from this disease, though the steps toward these treatments is often convoluted, expensive, and time-consuming. Main body The CureGPX4 organization was developed to promote awareness of GPX4-related diseases like SSMD, as well as support research that could lead to essential therapeutics for patients. We provide an overview of the 21 published SSMD cases and have compiled additional sequencing data for four previously unpublished individuals to illustrate the genetic component of SSMD, and the role of sequencing data in diagnosis. We outline in detail the steps CureGPX4 has taken to reach milestones of team creation, disease understanding, drug repurposing, and design of future studies. Conclusion The primary aim of this review is to provide a roadmap for therapy development for rare, ultra-rare, and difficult to diagnose diseases, as well as increase awareness of the genetic component of SSMD. This work will offer a better understanding of GPx4-related diseases, and help guide researchers, clinicians, and patients interested in other rare diseases find a path towards treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02048-0.
Collapse
Affiliation(s)
- Dorian M Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.,Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Alysson R Muotri
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA.,Department of Chemistry, Columbia University, New York, NY, USA
| | - Edward E Schmidt
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Qitao Ran
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, San Antonio, TX, USA.,Research and Development Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Reena V Kartha
- Department of Experimental and Clinical Pharmacology, Center for Orphan Drug Research, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Simon C Johnson
- Department of Neurology, University of Washington, Seattle, WA, USA.,Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.,Department of Selenoprotein Research, National Institute of Oncology, Budapest, 1521, Hungary
| | - Kristen M Wigby
- Department of Pediatrics, Division of Genetics, San Diego and Rady Children's Hospital-San Diego, University of California, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|