1
|
Rojas Cabrera JM, Oesterle TS, Rusheen AE, Goyal A, Scheitler KM, Mandybur I, Blaha CD, Bennet KE, Heien ML, Jang DP, Lee KH, Oh Y, Shin H. Techniques for Measurement of Serotonin: Implications in Neuropsychiatric Disorders and Advances in Absolute Value Recording Methods. ACS Chem Neurosci 2023; 14:4264-4273. [PMID: 38019166 PMCID: PMC10739614 DOI: 10.1021/acschemneuro.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter in the peripheral, enteric, and central nervous systems (CNS). Within the CNS, serotonin is principally involved in mood regulation and reward-seeking behaviors. It is a critical regulator in CNS pathologies such as major depressive disorder, addiction, and schizophrenia. Consequently, in vivo serotonin measurements within the CNS have emerged as one of many promising approaches to investigating the pathogenesis, progression, and treatment of these and other neuropsychiatric conditions. These techniques vary in methods, ranging from analyte sampling with microdialysis to voltammetry. Provided this diversity in approach, inherent differences between techniques are inevitable. These include biosensor size, temporal/spatial resolution, and absolute value measurement capabilities, all of which must be considered to fit the prospective researcher's needs. In this review, we summarize currently available methods for the measurement of serotonin, including novel voltammetric absolute value measurement techniques. We also detail serotonin's role in various neuropsychiatric conditions, highlighting the role of phasic and tonic serotonergic neuronal firing within each where relevant. Lastly, we briefly review the present clinical application of these techniques and discuss the potential of a closed-loop monitoring and neuromodulation system utilizing deep brain stimulation (DBS).
Collapse
Affiliation(s)
- Juan M. Rojas Cabrera
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Tyler S. Oesterle
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902, United States
- Robert
D. and Patricia K. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Aaron E. Rusheen
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Abhinav Goyal
- Medical
Scientist Training Program, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kristen M. Scheitler
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Ian Mandybur
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Charles D. Blaha
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Kevin E. Bennet
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Division
of Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Dong Pyo Jang
- Department
of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Kendall H. Lee
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Yoonbae Oh
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Hojin Shin
- Department
of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55902, United States
- Department
of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, United States
| |
Collapse
|
2
|
Paul J, Moniruzzaman M, Kim J. Framing of Poly(arylene-ethynylene) around Carbon Nanotubes and Iodine Doping for the Electrochemical Detection of Dopamine. BIOSENSORS 2023; 13:308. [PMID: 36979520 PMCID: PMC10046453 DOI: 10.3390/bios13030308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/01/2023]
Abstract
Dopamine (DA), an organic biomolecule that acts as both a hormone and a neurotransmitter, is essential in regulating emotions and metabolism in living organisms. The accurate determination of DA is important because it indicates early signs of serious neurological disorders. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have received considerable attention in recent years as promising porous materials with an unrivaled degree of tunability for electrochemical biosensing applications. This study adopted a solvothermal strategy for the synthesis of a conjugated microporous poly(arylene ethynylene)-4 (CMP-4) network using the Sonagashira-Hagihara cross-coupling reaction. To increase the crystallinity and electrical conductivity of the material, CMP-4 was enveloped around carbon nanotubes (CNTs), followed by iodine doping. When used as an electrochemical probe, the as-synthesized material (I2-CMP-CNT-4) exhibited excellent selectivity and sensitivity to dopamine in the phosphate-buffered solution. The detection limits of the electrochemical sensor were 1 and 1.7 μM based on cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
Collapse
Affiliation(s)
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
UPLC-MS/MS assay for the simultaneous determination of catecholamines and their metabolites at low pg/mg in rat/mouse striatum. J Pharm Biomed Anal 2022; 213:114697. [DOI: 10.1016/j.jpba.2022.114697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 12/23/2022]
|
4
|
De-Miguel FF, Leon-Pinzon C, Torres-Platas SG, Del-Pozo V, Hernández-Mendoza GA, Aguirre-Olivas D, Méndez B, Moore S, Sánchez-Sugía C, García-Aguilera MA, Martínez-Valencia A, Ramírez-Santiago G, Rubí JM. Extrasynaptic Communication. Front Mol Neurosci 2021; 14:638858. [PMID: 33994942 PMCID: PMC8119753 DOI: 10.3389/fnmol.2021.638858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Streams of action potentials or long depolarizations evoke a massive exocytosis of transmitters and peptides from the surface of dendrites, axons and cell bodies of different neuron types. Such mode of exocytosis is known as extrasynaptic for occurring without utilization of synaptic structures. Most transmitters and all peptides can be released extrasynaptically. Neurons may discharge their contents with relative independence from the axon, soma and dendrites. Extrasynaptic exocytosis takes fractions of a second in varicosities or minutes in the soma or dendrites, but its effects last from seconds to hours. Unlike synaptic exocytosis, which is well localized, extrasynaptic exocytosis is diffuse and affects neuronal circuits, glia and blood vessels. Molecules that are liberated may reach extrasynaptic receptors microns away. The coupling between excitation and exocytosis follows a multistep mechanism, different from that at synapses, but similar to that for the release of hormones. The steps from excitation to exocytosis have been studied step by step for the vital transmitter serotonin in leech Retzius neurons. The events leading to serotonin exocytosis occur similarly for the release of other transmitters and peptides in central and peripheral neurons. Extrasynaptic exocytosis occurs commonly onto glial cells, which react by releasing the same or other transmitters. In the last section, we discuss how illumination of the retina evokes extrasynaptic release of dopamine and ATP. Dopamine contributes to light-adaptation; ATP activates glia, which mediates an increase in blood flow and oxygenation. A proper understanding of the workings of the nervous system requires the understanding of extrasynaptic communication.
Collapse
Affiliation(s)
- Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City, Mexico
| | - Carolina Leon-Pinzon
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Susana G Torres-Platas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Vanessa Del-Pozo
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | | | - Dilia Aguirre-Olivas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Bruno Méndez
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Sharlen Moore
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Celeste Sánchez-Sugía
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | | | | | | | - J Miguel Rubí
- Facultat de Fisica, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Affiliation(s)
- Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi China
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| |
Collapse
|
6
|
Dinarvand M, Elizarova S, Daniel J, Kruss S. Imaging of Monoamine Neurotransmitters with Fluorescent Nanoscale Sensors. Chempluschem 2020; 85:1465-1480. [DOI: 10.1002/cplu.202000248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Meshkat Dinarvand
- Institute of Physical ChemistryGöttingen University Tammannstrasse 2 37077 Göttingen Germany
| | - Sofia Elizarova
- Department of Molecular NeurobiologyMax Planck Institute of Experimental Medicine 37077 Göttingen Germany
| | - James Daniel
- Department of Molecular NeurobiologyMax Planck Institute of Experimental Medicine 37077 Göttingen Germany
| | - Sebastian Kruss
- Institute of Physical ChemistryGöttingen University Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
7
|
Hernández-Mendoza GA, Aguirre-Olivas D, González-Gutiérrez M, Leal HJ, Qureshi N, Treviño-Palacios CG, Peón J, De-Miguel FF. Fluorescence of serotonin in the visible spectrum upon multiphotonic photoconversion. BIOMEDICAL OPTICS EXPRESS 2020; 11:1432-1448. [PMID: 32206420 PMCID: PMC7075609 DOI: 10.1364/boe.380412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 06/01/2023]
Abstract
The vital molecule serotonin modulates the functioning of the nervous system. The chemical characteristics of serotonin provide multiple advantages for its study in living or fixed tissue. Serotonin has the capacity to emit fluorescence directly and indirectly through chemical intermediates in response to mono- and multiphoton excitation. However, the fluorescent emissions are multifactorial and their dependence on the concentration, excitation wavelength and laser intensity still need a comprehensive study. Here we studied the fluorescence of serotonin excited multiphotonically with near-infrared light. Experiments were conducted in a custom-made multiphoton microscope coupled to a monochromator and a photomultiplier that collected the emissions. We show that the responses of serotonin to multiphoton stimulation are highly non-linear. The well-known violet emission having a 340 nm peak was accompanied by two other emissions in the visible spectrum. The best excitor wavelength to produce both emissions was 700 nm. A green emission with a ∼ 500 nm peak was similar to a previously described fluorescence in response to longer excitation wavelengths. A new blue emission with a ∼ 405 nm peak was originated from the photoconversion of serotonin to a relatively stable product. Such a reaction could be reproduced by irradiation of serotonin with high laser power for 30 minutes. The absorbance of the new compound expanded from ∼ 315 to ∼ 360 nm. Excitation of the irradiated solution monophotonically with 350 nm or biphotonically with 700 nm similarly generated the 405 nm blue emission. Our data are presented quantitatively through the design of a single geometric chart that combines the intensity of each emission in response to the serotonin concentration, excitation wavelengths and laser intensity. The autofluorescence of serotonin in addition to the formation of the two compounds emitting in the visible spectrum provides diverse possibilities for the quantitative study of the dynamics of serotonin in living tissue.
Collapse
Affiliation(s)
- Guillermo A. Hernández-Mendoza
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, 04510, D. F., Mexico
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Dilia Aguirre-Olivas
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, 04510, D. F., Mexico
| | - Mario González-Gutiérrez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Héctor J. Leal
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Naser Qureshi
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Carlos G. Treviño-Palacios
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, 72840 Tonantzintla, Puebla, Mexico
| | - Jorge Peón
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Francisco F. De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, 04510, D. F., Mexico
| |
Collapse
|