1
|
Spichak S, Bastiaanssen TFS, Berding K, Vlckova K, Clarke G, Dinan TG, Cryan JF. Mining microbes for mental health: Determining the role of microbial metabolic pathways in human brain health and disease. Neurosci Biobehav Rev 2021; 125:698-761. [PMID: 33675857 DOI: 10.1016/j.neubiorev.2021.02.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.
Collapse
Affiliation(s)
- Simon Spichak
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kirsten Berding
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Klara Vlckova
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Sarathy J, Detloff SJ, Ao M, Khan N, French S, Sirajuddin H, Nair T, Rao MC. The Yin and Yang of bile acid action on tight junctions in a model colonic epithelium. Physiol Rep 2018; 5:e13294. [PMID: 28554966 PMCID: PMC5449568 DOI: 10.14814/phy2.13294] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal epithelial barrier loss due to tight junction (TJ) dysfunction and bile acid‐induced diarrhea are common in patients with inflammatory diseases. Although excess colonic bile acids are known to alter mucosal permeability, few studies have compared the effects of specific bile acids on TJ function. We report that the primary bile acid, chenodeoxycholic acid (CDCA), and its 7α‐dehydroxylated derivative, lithocholic acid (LCA) have opposite effects on epithelial integrity in human colonic T84 cells. CDCA decreased transepithelial barrier resistance (pore) and increased paracellular 10 kDa dextran permeability (leak), effects that were enhanced by proinflammatory cytokines (PiC [ng/mL]: TNFα[10] + IL‐1ß[10] + IFNγ[30]). CDCA reversed the cation selectivity of the monolayer and decreased intercellular adhesion. In contrast, LCA alone did not alter any of these parameters, but attenuated the effects of CDCA ± PiC on paracellular permeability. CDCA, but not PiC, decreased occludin and not claudin‐2 protein expression; CDCA also decreased occludin localization. LCA ± CDCA had no effects on occludin or claudin expression/localization. While PiC and CDCA increased IL‐8 production, LCA reduced both basal and PiC ± CDCA‐induced IL‐8 production. TNFα + IL1ß increased IFNγ, which was enhanced by CDCA and attenuated by LCA. CDCA±PiC increased production of reactive oxygen species (ROS) that was attenuated by LCA. Finally, scavenging ROS attenuated CDCA's leak, but not pore actions, and LCA enhanced this effect. Thus, in T84 cells, CDCA plays a role in the inflammatory response causing barrier dysfunction, while LCA restores barrier integrity. Understanding the interplay of LCA, CDCA, and PiC could lead to innovative therapeutic strategies for inflammatory and diarrheal diseases.
Collapse
Affiliation(s)
- Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Sally Jo Detloff
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nabihah Khan
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Sydney French
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Hafsa Sirajuddin
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Tanushree Nair
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Wang JS, Yu BP, Hu LD, Zhang LJ, Tian TT. Rectal instillation of deoxycholic acid solution enhances visceral hypersensitivity and up-regulates c-fos mRNA expression in the spinal dorsal horn in rats. Shijie Huaren Xiaohua Zazhi 2011; 19:2629-2636. [DOI: 10.11569/wcjd.v19.i25.2629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of rectal instillation of deoxycholic acid solution (DAS) on colorectal visceral sensitivity and the expression of c-fos mRNA in the spinal dorsal horn in rats.
METHODS: Rat models were established by giving a rectal perfusion of DSA for 3 days. Rectal distention test was performed to examine rectal sensitivity using AWR score and pressure threshold before and after treatment (1, 2, 3 and 4 wk). The distal colon was used for myeloperoxidase (MPO) assay, and histological examination and mast cell counting were performed after treatment. L5-S2 dorsal root ganglia (DRG) were taken to examine the expression of c-fos mRNA by RT-PCR.
RESULTS: The AWR score of the experiment group was increased in response to noxious intensities of CRD (60 mmHg) compared to the control group (1 wk: 3.54 ± 0.17 vs 3.31 ± 0.23, 2 wk: 3.58 ± 0.17 vs 2.96 ± 0.44, 3 wk: 3.53 ± 0.14 vs 3.07 ± 0.30, 4 wk: 3.60 ± 0.13 vs 3.03 ± 0.33, all P < 0.05), but not to innocuous intensities. DCA treatment significantly decreased pressure threshold of visceral perception at each time point after rectal perfusion in both groups (all P < 0.05). MPO activity was increased at weeks 2 and 3 (0.39 ± 0.12 vs 0.12 ± 0.05, 0.40 ± 0.08 vs 0.12 ± 0.05, both P < 0.05), but not at week 1 and week 4. The levels of c-fos mRNA and mast cell number were significantly increased at week 1 in the experimental group compared to the control group (c-fos mRNA: 0.74 ± 0.04 vs 0.68 ± 0.02; mast cell number: 4.20 ± 1.87 vs 1.10 ± 0.74, both P < 0.05).
CONCLUSION: Repetitive colorectal instillation of DCA induces mild, transient colonic inflammation, results in persistent visceral hyperalgesia and referred pain, and increases spinal c-fos mRNA expression in rats.
Collapse
|
4
|
Wang W, Jia H, Zhang H, Chen Q, Zhang T, Bai Y, Yuan Z. Abnormal innervation patterns in the anorectum of ETU-induced fetal rats with anorectal malformations. Neurosci Lett 2011; 495:88-92. [DOI: 10.1016/j.neulet.2011.02.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 02/15/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
5
|
Abstract
Bile acids have secretory, motility and antimicrobial effects in the intestine. In patients with bile acid malabsorption the amount of primary bile acids in the colon is increased compared to healthy controls. Deoxycholic acid is affecting the intestinal smooth muscle activity. Chenodeoxycholic acid has the highest potency to affect intestinal secretion. Litocholic acid has little effect in the lumen of intestine compared to both deoxycholic acid and chenodeoxycholic acid. There is no firm evidence that clinically relevant concentrations of bile acids induce colon cancer. Alterations in bile acid metabolism may be involved in the pathophysiology of constipation.
Collapse
Affiliation(s)
- Antal Bajor
- Department of Internal Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | |
Collapse
|
6
|
Karling P, Abrahamsson H, Dolk A, Hallböök O, Hellström PM, Knowles CH, Kjellström L, Lindberg G, Lindfors PJ, Nyhlin H, Ohlsson B, Schmidt PT, Sjölund K, Sjövall H, Walter S. Function and dysfunction of the colon and anorectum in adults: working team report of the Swedish Motility Group (SMoG). Scand J Gastroenterol 2009; 44:646-60. [PMID: 19191186 DOI: 10.1080/00365520902718713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Symptoms of fecal incontinence and constipation are common in the general population. These can, however, be unreliably reported and are poorly discriminatory for underlying pathophysiology. Furthermore, both symptoms may coexist. In the elderly, fecal impaction always must be excluded. For patients with constipation, colon transit studies, anorectal manometry and defecography may help to identify patients with slow-transit constipation and/or pelvic floor dysfunction. The best documented medical treatments for constipation are the macrogols, lactulose and isphagula. Evolving drugs include lubiprostone, which enhances colonic secretion by activating chloride channels. Surgery is restricted for a highly selected group of patients with severe slow-transit constipation and for those with large rectoceles that demonstrably cause rectal evacuatory impairment. For patients with fecal incontinence that does not resolve on antidiarrheal treatment, functional and structural evaluation with anorectal manometry and endoanal ultrasound or magnetic resonance (MR) of the anal canal may help to guide management. Sacral nerve stimulation is a rapidly evolving alternative when other treatments such as biofeedback and direct sphincter repair have failed. Advances in understanding the pathophysiology as a guide to treatment of patients with constipation and fecal incontinence is a continuing important goal for translational research. The content of this article is a summary of presentations given by the authors at the Fourth Meeting of the Swedish Motility Group, held in Gothenburg in April 2007.
Collapse
Affiliation(s)
- Pontus Karling
- Department of Internal Medicine, Umeå University Hospital, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Traub RJ, Tang B, Ji Y, Pandya S, Yfantis H, Sun Y. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology 2008; 135:2075-83. [PMID: 19000677 PMCID: PMC2782449 DOI: 10.1053/j.gastro.2008.08.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 08/18/2008] [Accepted: 08/25/2008] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Chronic visceral hyperalgesia is considered an important pathophysiologic symptom in irritable bowel syndrome (IBS); previous gastrointestinal inflammation is a potent etiologic factor for developing IBS. Although there are several animal models of adult visceral hypersensitivity after neonatal perturbation or acute colonic irritation/inflammation, current models of postinflammatory chronic visceral hyperalgesia are unsatisfactory. The aim of this study was to establish a model of chronic visceral hyperalgesia after colonic inflammation in the rat. METHODS Deoxycholic acid (DCA) was instilled into the rat colon daily for 3 days and animals were tested for up to 4 weeks. RESULTS DCA induced mild, transient colonic inflammation within 3 days that resolved within 3 weeks. An exaggerated visceromotor response, referred pain to mechanical stimulation, increased spinal Fos expression, and colonic afferent and dorsal horn neuron activity were apparent by 1 week and persisted for at least 4 weeks, indicating chronic dorsal horn hyperexcitability and visceral hyperalgesia. There was no spontaneous pain, based on open field behavior. There was a significant increase in opioid-receptor activity. CONCLUSIONS DCA induces mild, transient colitis, resulting in persistent visceral hyperalgesia and referred pain in rats, modeling some aspects of postinflammatory IBS.
Collapse
Affiliation(s)
- Richard J. Traub
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD
| | - Bin Tang
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD
| | - Yaping Ji
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD
| | - Sangeeta Pandya
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD
| | - Harris Yfantis
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD,Veterans Administration Maryland Health Care System, Department of Pathology and Laboratory Medicine, Baltimore, MD
| | - Ying Sun
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD
| |
Collapse
|
8
|
Larsson MH, Sapnara M, Thomas EA, Bornstein JC, Lindström E, Svensson DJ, Sjövall H. Pharmacological analysis of components of the change in transmural potential difference evoked by distension of rat proximal small intestine in vivo. Am J Physiol Gastrointest Liver Physiol 2008; 294:G165-73. [PMID: 17975133 DOI: 10.1152/ajpgi.00264.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The reflex response to distension of the small intestine in vivo is complex and not well understood. The aim of this study was to characterize the neural mechanisms contributing to the complex time course of the intestinal secretory response to distension. Transmucosal potential difference (PD) was used as a marker for mucosal chloride secretion, which reflects the activity of the secretomotor neurons. Graded distensions (5, 10, and 20 mmHg) of distal rat duodenum with saline for 5 min induced a biphasic PD response with an initial peak (rapid response) followed by a plateau (sustained response). The rapid response was significantly reduced by the neural blockers tetrodotoxin and lidocaine (given serosally) and by intravenous (iv) administration of the ganglionic blocker hexamethonium and the NK(1) receptor antagonist SR-140333. Serosal TTX and iv SR-140333 significantly reduced the sustained response, which was also reduced by the NK(3) receptor antagonist talnetant and by the vasoactive intestinal polypeptide (VPAC) receptor antagonist [4Cl-d-Phe(6), Leu(17)]-VIP. Serosal lidocaine and iv hexamethonium had no significant effect on this component. Inhibition of nitric oxide synthase had no effect on any of the components of the PD response to distension. The PD response to distension thus seems to consist of two components, a rapidly activating and adapting component operating via nicotinic transmission and NK(1) receptors, and a slow component operating via VIP-ergic transmission and involving both NK(1) and NK(3) receptors.
Collapse
Affiliation(s)
- Marie H Larsson
- Department of Integrative Pharmacology, AstraZeneca R & D, Mölndal S-431 83, Sweden.
| | | | | | | | | | | | | |
Collapse
|
9
|
Larsson MH, Simrén M, Thomas EA, Bornstein JC, Lindström E, Sjövall H. Elevated motility-related transmucosal potential difference in the upper small intestine in the irritable bowel syndrome. Neurogastroenterol Motil 2007; 19:812-20. [PMID: 17883433 DOI: 10.1111/j.1365-2982.2007.00941.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is complex and incompletely known. Very little has been studied regarding the role of submucous neuronal activity. We therefore measured small intestinal transmural potential difference (PD, reflecting mainly electrogenic chloride secretion), and its linkage with fasting motor activity [migrating motor complex (MMC)] in controls (n = 16) and patients with IBS [n = 23, 14 diarrhoea predominant (d-IBS) and nine constipation predominant (c-IBS)]. Transmural-PD and its relation to MMC phase III was measured by modified multilumen manometry for 3 h in the fasting state using one jejunal and one duodenal infusion line as flowing electrodes. The amplitude and duration of motor phase III was similar in controls and IBS patients, but the propagation speed of phase III was higher in IBS patients. In IBS patients, maximal PD during MMC phase III was significantly elevated in both the duodenum and jejunum (P < 0.05) and the PD decline after phase III was significantly prolonged in the jejunum (P < 0.01). The PD elevation was seen in both duodenum and jejunum in d-IBS patients, but only in the jejunum in the c-IBS patients. On the basis of previous modelling studies, we propose that the enhanced secretion may reflect disturbed enteric network behaviour in some patients with IBS.
Collapse
Affiliation(s)
- M H Larsson
- Department of Integrative Pharmacology, Gastrointestinal Biology, AstraZeneca R&D, Mölndal, Sweden.
| | | | | | | | | | | |
Collapse
|
10
|
Palásthy Z, Kaszaki J, Lázár G, Nagy S, Boros M. Intestinal nitric oxide synthase activity changes during experimental colon obstruction. Scand J Gastroenterol 2006; 41:910-8. [PMID: 16803689 DOI: 10.1080/00365520600548966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The experiments in this study were designed to follow the time course of nitric oxide (NO) synthesis in the large bowel during acute mechanical ileus. MATERIAL AND METHODS Occlusion of the mid-transverse colon was maintained for 420 min in anesthetized dogs. Strain-gauge transducers were used to analyze motility changes on the hepatic and lienal flexures, respectively. Constitutive NO synthase (cNOS) and inducible NOS (iNOS) activities were determined in tissue biopsies, and plasma nitrite/nitrate (NOx) level was measured in the portal blood. Following completion of the baseline studies, the animals were treated with either 7-nitroindazole (7-NI, selective neuronal NOS inhibitor), or N-nitro-L-arginine (NNA, non-selective NOS inhibitor). RESULTS In the sham-operated group the cNOS activities differed significantly in the oral and aboral tissue samples (oral: 102.9; versus aboral: 62.1 fmol/mg protein/min). The obstruction elicited a significant increase in portal NOx and elevated tissue inducible NO synthase (iNOS) activity. NNA treatment decreased the motility index in both intestinal segments for 60 min, but 120 min later the motility index was significantly elevated (2.5-fold increase in the oral part, and 1.8-fold enhancement in the aboral segment, respectively). Treatment with 7-NI decreased the cNOS activity in the oral and aboral parts by approximately 40% and 70%, respectively, and suppressed the motility increase in the aboral colon segment. CONCLUSIONS The motility of the colon was either significantly increased or decreased, depending on the type and selectivity of the NOS inhibitor compounds applied. NO of neuronal origin is a transmitter that stimulates peristaltic activity; but an increased iNOS/nNOS ratio significantly moderates the obstruction-induced motility increase.
Collapse
Affiliation(s)
- Zsolt Palásthy
- Department of Surgery, Szent-Györgyi Albert Medical and Pharmaceutical Centre, University of Szeged, Hungary
| | | | | | | | | |
Collapse
|
11
|
Toda N, Herman AG. Gastrointestinal Function Regulation by Nitrergic Efferent Nerves. Pharmacol Rev 2005; 57:315-38. [PMID: 16109838 DOI: 10.1124/pr.57.3.4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) smooth muscle responses to stimulation of the nonadrenergic noncholinergic inhibitory nerves have been suggested to be mediated by polypeptides, ATP, or another unidentified neurotransmitter. The discovery of nitric-oxide (NO) synthase inhibitors greatly contributed to our understanding of mechanisms involved in these responses, leading to the novel hypothesis that NO, an inorganic, gaseous molecule, acts as an inhibitory neurotransmitter. The nerves whose transmitter function depends on the NO release are called "nitrergic", and such nerves are recognized to play major roles in the control of smooth muscle tone and motility and of fluid secretion in the GI tract. Endothelium-derived relaxing factor, discovered by Furchgott and Zawadzki, has been identified to be NO that is biosynthesized from l-arginine by the constitutive NO synthase in endothelial cells and neurons. NO as a mediator or transmitter activates soluble guanylyl cyclase and produces cyclic GMP in smooth muscle cells, resulting in relaxation of the vasculature. On the other hand, NO-induced GI smooth muscle relaxation is mediated, not only by cyclic GMP directly or indirectly via hyperpolarization, but also by cyclic GMP-independent mechanisms. Numerous cotransmitters and cross talk of autonomic efferent nerves make the neural control of GI functions complicated. However, the findingsrelated to the nitrergic innervation may provide us a new way of understanding GI tract physiology and pathophysiology and might result in the development of new therapies of GI diseases. This review article covers the discovery of nitrergic nerves, their functional roles, and pathological implications in the GI tract.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|