1
|
Ma M, Zhang L, Liu Z, Teng Y, Li M, Peng X, An L. Effect of blastocyst development on hatching and embryo implantation. Theriogenology 2024; 214:66-72. [PMID: 37857152 DOI: 10.1016/j.theriogenology.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
The mammalian zygote, formed after a sperm fertilizes an egg, undergoes several rounds of mitosis and morphogenesis to form the blastocyst. During the peri-implantation period, the blastocyst hatches out of the zona pellucida (ZP) and invades the receptive uterine endometrium. This process promotes maternal-fetal dialogue at the physiological and molecular level, thereby initiating the implantation process. Blastocyst hatching is a consequence of elevated osmotic pressure due to active Na+/K+ ion transporter in the blastocyst cavity, as well as proteases produced by trophectoderm (TE) that hydrolyze the ZP. This review summarizes the process underpinning blastocyst hatching, such as the hatching schedule, the location of TEs during initial hatching out of the ZP, the molecules involved in blastocyst hatching, and how these processes affect implantation events. Additionally, we focus on identifying crucial molecules that may influence the quality of implantation and predict the outcome of embryo implantation. Further understanding the mechanism of these molecules may help us to improve the efficiency of Assisted reproductive technology (ART) in livestock breeding. This review provides insight into embryonic development, specifically during the short-term process of blastocyst hatching and its effects on the following implantation.
Collapse
Affiliation(s)
- Meixiang Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Liang Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Zihan Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yadi Teng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Miaolong Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xinrong Peng
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, 830011, China.
| | - Liyou An
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
2
|
Choi JH, Kim SM. Characterization of a novel hatching enzyme purified from starfish Asterina pectinifera. SPRINGERPLUS 2016; 5:1998. [PMID: 27933254 PMCID: PMC5120168 DOI: 10.1186/s40064-016-3484-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
Hatching enzyme is a protease which can degrade the membrane of egg. In this study, a hatching enzyme was purified from starfish (Asterina pectinifera) with 6.34 fold of purification rate, 5.04 % of yield, and 73.87 U/mg of specific activity. The molecular weight of starfish hatching enzyme was 86 kDa, which was reduced to 62 kDa after removal of N-linked oligosaccharides. The optimal pH and temperature of the hatching enzyme activity were pH 7.0 and 40 °C, respectively, while those of stability were pH 8 and 20 °C. The kinetic parameters, Vmax, Km, Kcat and Kcat/Km values were 0.197 U/ml, 0.289 mg/ml, 112.57 s−1, and 389.52 ml/mg s, respectively. Zn2+ increased the enzyme activity by 167.28 %, while EDTA, TPCK, TGCK, leupeptin, PMSF, and TLCK decreased. In addition, Ca2+, Mg2+, and Cu2+ did not affect the enzyme activity. The starfish hatching enzyme activity pretreated with EDTA was recovered by Zn2+. Therefore, the starfish hatching enzyme was classified as a serine-zinc protease.
Collapse
Affiliation(s)
- Ji Hoon Choi
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, 25457 Republic of Korea
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung, 25457 Republic of Korea
| |
Collapse
|
3
|
Homaei A, Lavajoo F, Sariri R. Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology. Int J Biol Macromol 2016; 88:542-52. [DOI: 10.1016/j.ijbiomac.2016.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/09/2016] [Accepted: 04/10/2016] [Indexed: 10/22/2022]
|
4
|
Nagasawa T, Kawaguchi M, Sano K, Yasumasu S. Sturgeon hatching enzyme and the mechanism of egg envelope digestion: Insight into changes in the mechanism of egg envelope digestion during the evolution of ray-finned fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:720-32. [DOI: 10.1002/jez.b.22660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Tatsuki Nagasawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo; Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo; Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama; Japan
| | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo; Japan
| |
Collapse
|
5
|
Nakazawa S, Shirae-Kurabayashi M, Otsuka K, Sawada H. Proteomics of ionomycin-induced ascidian sperm reaction: Released and exposed sperm proteins in the ascidian Ciona intestinalis. Proteomics 2015. [DOI: 10.1002/pmic.201500162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shiori Nakazawa
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Kei Otsuka
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| |
Collapse
|
6
|
Sanders SM, Shcheglovitova M, Cartwright P. Differential gene expression between functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus (Phylum Cnidaria). BMC Genomics 2014; 15:406. [PMID: 24884766 PMCID: PMC4072882 DOI: 10.1186/1471-2164-15-406] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023] Open
Abstract
Background A colony of the hydrozoan Hydractinia symbiolongicarpus comprises genetically identical yet morphologically distinct and functionally specialized polyp types. The main labor divisions are between feeding, reproduction and defense. In H. symbiolongicarpus, the feeding polyp (called a gastrozooid) has elongated tentacles and a mouth, which are absent in the reproductive polyp (gonozooid) and defensive polyp (dactylozooid). Instead, the dactylozooid has an extended body column with an abundance of stinging cells (nematocysts) and the gonozooid bears gonophores on its body column. Morphological differences between polyp types can be attributed to simple changes in their axial patterning during development, and it has long been hypothesized that these specialized polyps arose through evolutionary alterations in oral-aboral patterning of the ancestral gastrozooid. Results An assembly of 66,508 transcripts (>200 bp) were generated using short-read Illumina RNA-Seq libraries constructed from feeding, reproductive, and defensive polyps of H. symbiolongicarpus. Using several different annotation methods, approximately 54% of the transcripts were annotated. Differential expression analyses were conducted between these three polyp types to isolate genes that may be involved in functional, histological, and pattering differences between polyp types. Nearly 7 K transcripts were differentially expressed in a polyp-specific manner, including members of the homeodomain, myosin, toxin and BMP gene families. We report the spatial expression of a subset of these polyp-specific transcripts to validate our differential expression analyses. Conclusions While potentially originating through simple changes in patterning, polymorphic polyps in Hydractinia are the result of differentially expressed functional, structural, and patterning genes. The differentially expressed genes identified in our study provide a starting point for future investigations of the developmental patterning and functional differences that are displayed in the different polyp types that confer a division of labor within a colony of H. symbiolongicarpus. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-406) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | |
Collapse
|
7
|
Li ZJ, Kim SM. A novel hatching enzyme from starfish Asterias amurensis: purification, characterization, and cleavage specificity. Appl Biochem Biotechnol 2013; 169:1386-96. [PMID: 23306897 DOI: 10.1007/s12010-012-0090-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Hatching enzyme (HE) is of importance to degrade egg membrane to let the larvae be free. HE was purified and characterized from starfish blastula. The specific activity and the purification ratio of the purified HE with 110.9 kDa of molecular weight were 449.62 U/mg and 7.42-fold, respectively. Its optimal pH and temperature for activity were pH 8.0 and 30 °C, respectively. This enzyme was relatively stable in the range of pH 4.0-6.0 and 30-40 °C. This enzyme was inhibited by ethylene diamine tetraacetic acid (EDTA) and ethylene glycol tetraacetic acid, and also done moderately by Leupeptin, tosyl-lysine chloromethyl ketone, tosyl-phenylalanine chloromethyl ketone, and phenyl-methanesulfonyl fluoride. Zn(2+) ion activated HE activity strongly and recovered the EDTA-pretreated activity more than did Ca(2+), Mg(2+), and Cu(2+). Based on the results above, the starfish HE was classified as a zinc metallo- and trypsin-like serine protease. The values of Km, Vmax, and Kcat of the starfish HE on dimethyl casein were 0.31 mg/ml, 0.17 U/ml, and 122.70 s(-1), respectively, whereas 1.09 mg/ml, 0.12 U/ml, and 771.98 s(-1) on type I collagen. Therefore, the starfish HE could be a potential cosmeceutical because of its strong cleavage specificity on type I collagen.
Collapse
Affiliation(s)
- Zhi Jiang Li
- Department of Food and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163-319, People's Republic of China
| | | |
Collapse
|
8
|
Molecular cloning and characterization of hatching enzyme-like geneII (BmHELII) in the silkworm, Bombyx mori. Biochem Biophys Res Commun 2012; 419:194-9. [PMID: 22342669 DOI: 10.1016/j.bbrc.2012.01.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/30/2012] [Indexed: 11/23/2022]
Abstract
Hatching enzyme (HE) is an enzyme that digests an egg envelop at the time of embryo hatching. Previously, we have reported a kind of Bombyx mori hatching enzyme-like gene (BmHEL). In this paper, the full length of another BmHEL cDNA sequence (BmHELII, GenBank ID: JN627443) was cloned from bluish-silkworm-eggs. The cDNA was 977 bp in length with an open reading frame of 885 bp which encodes a polypeptide of 294 amino acids including a putative signal peptide of 16 amino acid residues and a mature protein of 278 amino acids. The deduced BmHELII had a predicted molecular mass of 33.62 kDa, isoelectric point of 5.44 and two conserved signature sequences of astacin family. Bioinformatic analysis results showed that the deduced protease domain amino acid sequence of BmHELII had 29.5-87.0% identities to that of HE identified in the other species. The BmHELII gene structure was 6-exon-5-intron, and the promoter region harbored some basal promoter elements and some embryo development related transcription factor binding sites. Semi-quantitative RT-PCR analysis revealed that the relative level of BmHELII transcripts at different stages during egg incubation increased with the development of embryos and reached to a maximum just before hatching, hence declined gradually after hatching. The spatio-temporal expression pattern of BmHELII basically resembled that of hatching enzyme gene. Moreover, the BmHELII transcript was detected in testis of the silkworm, and semi-quantitative RT-PCR analysis showed that it kept at the high level in testis of silkworm from larvae to moth, which suggested that BmHELII might take part in the development of sperm. These results will be helpful to provide a molecular basis for understanding the mechanism underlying silkworm hatching as well as spermatogenesis.
Collapse
|
9
|
Tang Y, Dong W, Kong T. Effects of heating on the immunogenicity and biological toxicity of Deinagkistrodon acutus venom and its fractions. Toxicon 2010; 56:45-54. [DOI: 10.1016/j.toxicon.2010.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/14/2009] [Accepted: 01/28/2010] [Indexed: 12/31/2022]
|
10
|
Fan T, Wang J, Yuan W, Zhong Q, Shi Y, Cong R. Purification and characterization of hatching enzyme from brine shrimp Artemia salina. Acta Biochim Biophys Sin (Shanghai) 2010; 42:165-71. [PMID: 20119628 DOI: 10.1093/abbs/gmp119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
By using Artemia chorion as a specific substrate, the hatching enzyme from Artemia salina (AHE) was purified by gel-filtration and ion-exchange chromatography, and characterized biochemically and enzymatically in this study. It was found that the AHE had a molecular weight of 82.2 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and often contained 73.3 kDa molecules in preparation. The AHE had obvious choriolytic activity, which was optimal at pH 7.0 and a temperature of 408C. The Km value of the AHE for dimethyl casein was 8.20 mg/ml. The AHE activity was almost completely inhibited by soybean trypsin inhibitor and p-amidinophenyl methane sulfonyl fluoride hydrochloride, greatly inhibited by N-tosyl-L-lysyl chloromethyl ketone, phenylmethanesulfonyl fluoride, and lima bean trypsin inhibitor, slightly inhibited by pepstatin, N-tosyl-L-phenylalanyl chloromethyl ketone, leupeptin, N-ethylmaleimide, and iodoacetamide, and not inhibited by chymostatin and bestatin. All these results imply that AHE is most probably a trypsin-type serine protease. Besides of these, AHE was also sensitive to EDTA and Zn21. Combined with the results that the EDTA-pre-treated HE activity could be perfectly recovered by Zn21, it is indicated that AHE might be also a kind of Zn-metalloprotease.
Collapse
Affiliation(s)
- Tingjun Fan
- Department of Marine Biology, Ocean University of China, Qingdao, China.
| | | | | | | | | | | |
Collapse
|
11
|
Yasumasu S, Uzawa M, Iwasawa A, Yoshizaki N. Hatching mechanism of the Chinese soft-shelled turtle Pelodiscus sinensis. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:435-41. [PMID: 20109577 DOI: 10.1016/j.cbpb.2010.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 11/24/2022]
Abstract
The mechanism by which the embryo hatches out of the egg envelope, the vitelline membrane and egg white, was studied in the Chinese soft-shelled turtle Pelodiscus sinensis. The cDNA of the turtle hatching enzyme (HE) was 1555bp-long and a mature enzyme of 321 amino acids. The mature HE was composed of an astacin protease domain of 200 amino acids and a CUB domain of 121 amino acids, and the estimated molecular size was 35,311. The protease domain contained two active site consensus sequences, HExxHxxGFxHExxRxDR and MHY. An immunoblotting test of an extract of allanto-chorions revealed a 40-kDa band by cross-reaction with the anti-Xenopus HE antiserum. The first change in the envelopes was the appearance of a hole, 1mm in diameter, at the location around the animal pole of day 8 incubation eggs. A cluster of tall cells, forming a circle in the avascular chorion of day 8 embryos and facing the edge of the hole, had various sizes of inclusion bodies and secretory granules that were labeled by immuno-electron microscopic staining with the antiserum. The egg envelopes were degraded gradually from the animal pole side towards the vegetal pole side in accordance with translocation of the avascular site of the chorion in the same direction. Labeled cells degenerated, presumably when the chorion was underlain by allantois in succeeding developmental stages. The vitelline membrane and egg white were totally digested, presumably by secreted HE, during the hatching period and were consumed for embryonic growth.
Collapse
Affiliation(s)
- Shigeki Yasumasu
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | | | | | | |
Collapse
|
12
|
Sterchi EE, Stöcker W, Bond JS. Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Aspects Med 2008; 29:309-28. [PMID: 18783725 DOI: 10.1016/j.mam.2008.08.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/10/2008] [Indexed: 12/13/2022]
Abstract
The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the 'hatching' subfamily comprising alveolin, ovastacin, LCE, HCE ('low' and 'high' choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions.
Collapse
Affiliation(s)
- Erwin E Sterchi
- Institute of Biochemistry and Molecular Biology, University of Berne, Buehlstrasse 28, CH-3012 Berne, Switzerland.
| | | | | |
Collapse
|
13
|
Wong JL, Wessel GM. Free-radical crosslinking of specific proteins alters the function of the egg extracellular matrix at fertilization. Development 2008; 135:431-40. [DOI: 10.1242/dev.015503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All animal embryos begin development by modifying the egg extracellular matrix. This protein-rich matrix protects against polyspermy, microbes and mechanical stress via enzyme-dependent transformations that alter the organization of its constituents. Using the sea urchin fertilization envelope,a well-defined extracellular structure formed within minutes of fertilization,we examine the mechanisms whereby limited permeability is established within this matrix. We find that the fertilization envelope acquires a barrier filtration of 40,000 daltons within minutes of insemination via a peroxidase-dependent mechanism, with dynamics that parallel requisite production of hydrogen peroxide by the zygote. To identify the molecular targets of this free-radical modification, we developed an in vivo technique to label and isolate the modified matrix components for mass spectrometry. This method revealed that four of the six major extracellular matrix components are selectively crosslinked, discriminating even sibling proteins from the same gene. Thus, specific free-radical chemistry is essential for establishing the embryonic microenvironment of early development.
Collapse
Affiliation(s)
- Julian L. Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Box G-L173, Brown University, Providence, RI 02912, USA
| | - Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Box G-L173, Brown University, Providence, RI 02912, USA
| |
Collapse
|
14
|
RUNGRUANGSAK-TORRISSEN KRISNA, FOSSEIDENGEN JANE. EFFECT OF ARTIFICIAL FEEDING ON DIGESTIVE EFFICIENCY, GROWTH AND QUALITIES OF MUSCLE AND OOCYTE OF MATURING ATLANTIC MACKEREL (SCOMBER SCOMBRUS L.). J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00139.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
RUNGRUANGSAK-TORRISSEN KRISNA. DIGESTIVE EFFICIENCY, GROWTH AND QUALITIES OF MUSCLE AND OOCYTE IN ATLANTIC SALMON (SALMO SALAR L.) FED ON DIETS WITH KRILL MEAL AS AN ALTERNATIVE PROTEIN SOURCE. J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00127.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Nokhbatolfoghahai M, Downie JR. Amphibian hatching gland cells: pattern and distribution in anurans. Tissue Cell 2007; 39:225-40. [PMID: 17585978 DOI: 10.1016/j.tice.2007.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 04/14/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
The hatching gland (HG) is a transient organ, found in most anuran embryos and early larvae, and located on the dorsal side of the head. The enzymes secreted by hatching gland cells (HGCs) aid the embryos to escape from their enveloping coats. Analysis of HG morphology and distribution in 20 anuran species from six families using scanning electron microscopy revealed small differences in the shape and pattern of the gland particularly in the length and width of the posterior mid-dorsal extension of the gland. The four species of foam-nest making leptodactylids examined had HGs of a somewhat different shape to the others, but otherwise, there was little sign of a relationship between HG shape and taxonomic position. In the single Eleutherodactylus species examined, cells with the appearance and location of HGCs were transiently present long before the active stage of hatching. No sign of HGCs was seen on the head surface of one species, Phyllomedusa trinitatis. It seems possible that in this species, hatching is achieved by a mechanical rather than an enzymatic mechanism. The microvilli characteristic of the surfaces of HGCs were quite variable in density and length from species to species, and at different stages. HGCs remained at the surface of the embryo for some time after hatching and the possibility of a post-hatching function is briefly discussed.
Collapse
|
17
|
Kawaguchi M, Yasumasu S, Hiroi J, Naruse K, Suzuki T, Iuchi I. Analysis of the exon–intron structures of fish, amphibian, bird and mammalian hatching enzyme genes, with special reference to the intron loss evolution of hatching enzyme genes in Teleostei. Gene 2007; 392:77-88. [PMID: 17222522 DOI: 10.1016/j.gene.2006.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 11/17/2006] [Accepted: 11/17/2006] [Indexed: 11/26/2022]
Abstract
Using gene cloning and in silico cloning, we analyzed the structures of hatching enzyme gene orthologs of vertebrates. Comparison led to a hypothesis that hatching enzyme genes of Japanese eel conserve an ancestral structure of the genes of fishes, amphibians, birds and mammals. However, the exon-intron structure of the genes was different from species to species in Teleostei: Japanese eel hatching enzyme genes were 9-exon-8-intron genes, and zebrafish genes were 5-exon-4-intron genes. In the present study, we further analyzed the gene structures of fishes belonging to Acanthopterygii. In the species of Teleostei we examined, diversification of hatching enzyme gene into two paralogous genes for HCE (high choriolytic enzyme) and LCE (low choriolytic enzyme) was found only in the acanthopterygian fishes such as medaka Oryzias latipes, Fundulus heteroclitus, Takifugu rubripes and Tetraodon nigroviridis. In addition, the HCE gene had no intron, while the LCE gene consisted of 8 exons and 7 introns. Phylogenetic analysis revealed that HCE and LCE genes were paralogous to each other, and diverged during the evolutionary lineage to Acanthopterygii. Analysis of gene synteny and cluster structure showed that the syntenic genes around the HCE and LCE genes were highly conserved between medaka and Teraodon, but such synteny was not found around the zebrafish hatching enzyme genes. We hypothesize that the zebrafish hatching enzyme genes were translocated from chromosome to chromosome, and lost some of their introns during evolution.
Collapse
Affiliation(s)
- Mari Kawaguchi
- Life Science Institute, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Möhrlen F, Maniura M, Plickert G, Frohme M, Frank U. Evolution of astacin-like metalloproteases in animals and their function in development. Evol Dev 2006; 8:223-31. [PMID: 16509900 DOI: 10.1111/j.1525-142x.2006.00092.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Astacin-like metalloproteases are ubiquitous in the animal kingdom but their phylogenetic relationships and ancient functions within the Metazoa are unclear. We have cloned and characterized four astacin-like cDNAs from the marine hydroid Hydractinia echinata and performed a database search for related genes in the draft genome sequence of the sea anemone Nematostella vectensis. These sequences and those of higher animals' astacins were subjected to phylogenetic analysis revealing five clusters within the Eumetazoa. The bone morphogenetic protein-1/tolloid-like astacins were represented in all eumetazoan phyla studied. The meprins were only found in vertebrates and cnidarians. Two clusters were taxon-specific, and one cluster represented astacins, which probably evolved after the split of the Cnidaria. Interestingly, grouping of astacins according to the protease catalytic domain alone resulted in clusters of proteins with similar overall domain architecture. The Hydractinia astacins were expressed in distinct cells during metamorphosis and some also during wound healing. Previously characterized cnidarian astacins also act during development. Based on our phylogeny, however, we propose that the developmental function of most of them is not homologous to the developmental function assigned to higher animals' astacins.
Collapse
Affiliation(s)
- Frank Möhrlen
- Department of Zoology and Martin Ryan Marine Science Institute, National University of Ireland, Galway, Ireland.
| | | | | | | | | |
Collapse
|
19
|
Li BJ, Fan TJ, Yang LL, Cong RS, Li L, Sun WJ, Lu CX, Shi ZP. Purification and characterization of hatching enzyme from shrimp Penaeus chinensis. Arch Biochem Biophys 2006; 451:188-93. [PMID: 16713987 DOI: 10.1016/j.abb.2006.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 04/01/2006] [Indexed: 11/24/2022]
Abstract
By using Penaeus chorion as a specific substrate, the hatching enzyme (HE) from Penaeus chinensis was purified by gel-filtration and ion-exchange chromatography, and characterized in terms of its molecular weight and enzymatic properties in this study. It was found that the molecular weight of Penaeus HE is about 43.0 kDa in SDS-PAGE. The Penaeus HE had obvious choriolytic activity, which was optimal at pH 6.0 and temperature of 40 degrees C, respectively. The Km value of the HE for casein was 7.47 mg ml(-1). The HE activity was almost completely inhibited by SBTI, p-APMSF, bestatin, and NEM, greatly inhibited by ovomucoid, TLCK, IAM, chymostatin, and PMSF, and slightly inhibited by pepstatin A, TPCK, LBTI, and leupeptin. These results indicate that the HE is most probably a trypsin-type serine protease. Besides of these, the HE was extremely sensitive to EDTA, Zn2+, Ca2+, Mg2+, and Cu2+. Combined with the results that the EDTA-pretreated HE activity could be perfectly recovered by Zn2+, it is indicated that shrimp HE is most probably a kind of Zn-metalloprotease.
Collapse
Affiliation(s)
- Bing-Jun Li
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shi ZP, Fan TJ, Cong RS, Wang XF, Sun WJ, Yang LL. Purification and characterization of hatching enzyme from flounder Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2006; 32:35-42. [PMID: 20035476 DOI: 10.1007/s10695-005-5250-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2005] [Indexed: 05/28/2023]
Abstract
Using chorion of Paralichthys as a specific substrate, hatching enzyme (HE) from Paralichthys olivaceus (PHE) was purified by gel-filtration and ion-exchange chromatography, and characterized in terms of its molecular weight and enzymatic properties in this study. It was found that the molecular size of PHE is about 34.8 kDa in SDS-PAGE. The PHE had obvious choriolytic activity, which was optimal at pH 7.0 and temperature of 35 degrees C, respectively. The Km value of the PHE for casein was 4.28 mg ml(-). The PHE was very sensitive to trypsin-specific inhibitors, especially serine protease-specific inhibitors, such as LBTI, SBTI, bestatin and p-APMSF, leupeptin, ovomucoid, PMSF, pepstatin A and TLCK, indicates that it is a trypsin-type serine protease. The PHE was also extremely sensitive to Cu(2+) and Ca(2+), combined with the results that it was inhibited by EDTA in a dose-dependent manner, indicates this PHE is also a kind of metalloprotease.
Collapse
Affiliation(s)
- Zhen-Ping Shi
- Department of Marine Biology, Division of Life Science and Technology, Ocean University of China, Qingdao, 266003, China
| | | | | | | | | | | |
Collapse
|
21
|
Kanzawa N, Tatewaki S, Watanabe R, Kunihisa I, Iwahashi H, Nakamura K, Tsuchiya T. Expression and tissue distribution of astacin-like squid metalloprotease (ALSM). Comp Biochem Physiol B Biochem Mol Biol 2005; 142:153-63. [PMID: 16081309 DOI: 10.1016/j.cbpc.2005.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 05/14/2005] [Accepted: 05/15/2005] [Indexed: 10/25/2022]
Abstract
Astacin metalloprotease family members function in a wide variety of biologic events, including cell differentiation and morphogenesis during embryonic development and adult tissue differentiation. We previously isolated and characterized an astacin-like squid metalloprotease (ALSM). To elucidate the embryonic expression of ALSM, we performed immunohistochemical analysis with specific antibodies and examined the expression profiles of ALSM isoforms by in situ hybridization analysis. Tissue distribution and expression were also examined in adult spear squid. mRNA expression of ALSM isoforms I and III was first detected in newly hatched squid and was restricted to the liver. No mRNA signals were detected in other tissues even in adult squids. At the protein level, both isoforms were prominent in the liver of embryos and later in digestive organs of adult squid. Both isoforms were also detected in muscle tissues, including mantle and tentacle muscle. Staining for ALSM III was also identified in the iris and in tissues near the eye in squid embryos. However, no reactive bands were detected by immunoblotting of adult squid eyes. Thus, ALSM is initially expressed at the late stage of embryogenesis in spear squid, and expression is restricted to the liver. Thereafter, ALSM isoforms function in various tissues in an isoform-dependent manner.
Collapse
Affiliation(s)
- Nobuyuki Kanzawa
- Department of Chemistry, Faculty of Science and Technology, Sophia University, 102-8554, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Quesada V, Sánchez LM, Alvarez J, López-Otín C. Identification and characterization of human and mouse ovastacin: a novel metalloproteinase similar to hatching enzymes from arthropods, birds, amphibians, and fish. J Biol Chem 2004; 279:26627-34. [PMID: 15087446 DOI: 10.1074/jbc.m401588200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have cloned and characterized human and mouse ovary cDNAs encoding a new protein of the astacin family of metalloproteinases, called ovastacin because of its predominant expression in ovarian tissues. Human and mouse ovastacins exhibit the same domain organization as other astacins, including signal sequence, propeptide, and metalloproteinase domain. However, ovastacins show an additional C-terminal domain of about 150 amino acids with no similarity to other ancillary domains present in the equivalent region of most astacins. Northern blot analysis of human tissues and cell lines revealed that ovastacin is only detected at significant levels in leukemia and lymphoma cells of different origin. In addition, RT-PCR analysis demonstrated that ovastacin is expressed in human and mouse ovary, in unfertilized mouse oocytes, and in 1.5-day-postcoitum preimplantation embryos. Further studies showed that superovulation caused a dramatic increase in the expression of mouse ovastacin, indicating that the production of this enzyme is under hormonal regulation. Human ovastacin was expressed in Escherichia coli and the purified recombinant protein hydrolyzed synthetic substrates used for assaying metalloproteinases. These activities were abolished by inhibitors of metalloproteinases, but not by inhibitors of other classes of proteases. On the basis of these results, we suggest that ovastacin could play in mammals a physiological function similar to that performed by hatching proteases in evolutionary distant species from arthropods to fish.
Collapse
Affiliation(s)
- Víctor Quesada
- Departamento de Bioquimica y Biologia Molecular and Morfologia y Biologia Celular, Facultad de Medicina, Instituto Universitario de Oncologia, Universidad de Oviedo, 33006-Oviedo, Spain
| | | | | | | |
Collapse
|
23
|
Schambony A, Hefele JA, Gentzel M, Wilm M, Wedlich D. A homologue of cysteine-rich secretory proteins induces premature degradation of vitelline envelopes and hatching of Xenopus laevis embryos. Mech Dev 2003; 120:937-48. [PMID: 12963113 DOI: 10.1016/s0925-4773(03)00162-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We cloned Xenopus laevis CRISP, XCRISP, a homologue of the mammalian family of cysteine-rich secretory proteins (CRISPs), which has been previously identified as a Wnt3a/noggin responsive gene in an expression screen [Mech. Dev. 87 (1999) 21]. We detected XCRISP expression exclusively in the hatching gland. XCRISP enters the secretory pathway and accumulates on the surface of presumptive hatching gland cells. Overexpression studies of XCRISP and XCRISP-mutants show that XCRISP induces premature hatching of embryos preceded by degradation of the vitelline envelope. A deletion mutant that lacks a 35 amino acid domain even accelerates hatching, while further deletion of the carboxy-terminus reverses these effects. From our studies, we conclude that XCRISP is sufficient to induce degradation of vitelline envelopes and that this activity maps to the most C-terminal amino acids, while the adjacent domain regulates XCRISP activity.
Collapse
Affiliation(s)
- Alexandra Schambony
- Institute of Zoology II, University of Karlsruhe, Fritz-Haber-Weg 4, D-76128 Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|