1
|
Granados JC, Nigam SK. Organic anion transporters in remote sensing and organ crosstalk. Pharmacol Ther 2024; 263:108723. [PMID: 39284369 DOI: 10.1016/j.pharmthera.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
The organic anion transporters, OAT1 and OAT3, regulate the movement of drugs, toxins, and endogenous metabolites. In 2007, we proposed that OATs and other SLC22 transporters are involved in "remote sensing" and organ crosstalk. This is now known as the Remote Sensing and Signaling Theory (RSST). In the proximal tubule of the kidney, OATs regulate signaling molecules such as fatty acids, bile acids, indoxyl sulfate, kynurenine, alpha-ketoglutarate, urate, flavonoids, and antioxidants. OAT1 and OAT3 function as key hubs in a large homeostatic network involving multi-, oligo- and monospecific transporters, enzymes, and nuclear receptors. The Remote Sensing and Signaling Theory emphasizes the functioning of OATs and other "drug" transporters in the network at multiple biological scales (inter-organismal, organism, organ, cell, organelle). This network plays an essential role in the homeostasis of urate, bile acids, prostaglandins, sex steroids, odorants, thyroxine, gut microbiome metabolites, and uremic toxins. The transported metabolites have targets in the kidney and other organs, including nuclear receptors (e.g., HNF4a, AHR), G protein-coupled receptors (GPCRs), and protein kinases. Feed-forward and feedback loops allow OAT1 and OAT3 to mediate organ crosstalk as well as modulate energy metabolism, redox state, and remote sensing. Furthermore, there is intimate inter-organismal communication between renal OATs and the gut microbiome. Extracellular vesicles containing microRNAs and proteins (exosomes) play a key role in the Remote Sensing and Signaling System as does the interplay with the neuroendocrine, hormonal, and immune systems. Perturbation of function with OAT-interacting drugs (e.g., probenecid, diuretics, antivirals, antibiotics, NSAIDs) can lead to drug-metabolite interactions. The RSST has general applicability to other multi-specific SLC and ABC "drug" transporters (e.g., OCT1, OCT2, SLCO1B1, SLCO1B3, ABCG2, P-gp, ABCC2, ABCC3, ABCC4). Recent high-resolution structures of SLC22 and other transporters, together with chemoinformatic and artificial intelligence methods, will aid drug development and also lead to a deeper mechanistic understanding of polymorphisms.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Nascimento MDL, do Nascimento SB, Lima EDSP, de Oliveira FM, Dos Santos RR, Cesar IDC, de Castro WV. Evaluation of the Effects of Extracts Containing Valeriana officinalis and Piper methysticum on the Activities of Cytochrome P450 3A and P-Glycoprotein. PLANTA MEDICA 2024; 90:792-800. [PMID: 39013429 DOI: 10.1055/a-2360-4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This work investigated interactions ascribed to the administration of phytomedicines containing Valeriana officinalis and Piper methysticum with conventional drugs. The phytomedicines were characterized by HPLC and administered per os to male Wistar rats, either concomitantly or not with the CYP3A substrate midazolam. To distinguish between the presystemic or systemic effect, midazolam was given orally and intravenously. The effects on the P-gp substrate fexofenadine uptake by Caco-2 cells were examined. The valerenic acid content was 1.6 ± 0.1 mg per tablet, whereas kavain was 13.7 ± 0.3 mg/capsule. Valerian and kava-kava extracts increased the maximum plasma concentration (Cmax) of midazolam 2- and 4-fold compared to the control, respectively. The area under the plasma concentrations versus time curve (AUC(0-∞)) was enhanced from 994.3 ± 152.3 ng.h/mL (control) to 3041 ± 398 ng.h/mL (valerian) and 4139 ± 373 ng.h/mL (kava-kava). The half-life of midazolam was not affected. These changes were attributed to the inhibition of midazolam metabolism by the enteric CYP3A since the i. v. pharmacokinetic of midazolam remained unchanged. The kava-kava extract augmented the uptake of fexofenadine by 3.5-fold compared to the control. Although Valeriana increased the uptake of fexofenadine, it was not statistically significant to that of the control (12.5 ± 3.7 ng/mg protein vs. 5.4 ± 0.3 ng/mg protein, respectively). Therefore, phytomedicines containing V. officinalis or P. methysticum inhibited the intestinal metabolism of midazolam in rats. Conversely, the P-gp-mediated transport of fexofenadine was preferably affected by kava-kava.
Collapse
Affiliation(s)
- Mariana de Lima Nascimento
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | - Sara Batista do Nascimento
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | | | - Flávio Martins de Oliveira
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | | | | | - Whocely Victor de Castro
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| |
Collapse
|
3
|
Jung YS, Jin BH, Choi JE, Park MS, Kim YW, Kang HW, Cho S, Kim CO. Assessment of Pharmacokinetic Effects of Herbal Medicines on Escitalopram. Ther Clin Risk Manag 2024; 20:151-160. [PMID: 38434107 PMCID: PMC10906722 DOI: 10.2147/tcrm.s448090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Herbal medicines are occasionally used in combination with conventional antidepressants to mitigate various depression-associated symptoms. However, there is limited information on herb-antidepressant interactions. In this study, we investigated the pharmacokinetic (PK) effects of four herbal medicines (Gami-soyosan, Banhasasim-tang, Ojeok-san, and Bojungikgi-tang) on escitalopram, a commonly used antidepressant. Patients and Methods In this open-label, fixed-sequence, three-period, crossover study, 18 participants were enrolled and divided into two groups. Each group received a 10 mg oral dose of escitalopram in period 1. Participants took escitalopram once daily and their assigned herbal medicines thrice a day for 7 d in periods 2 (group 1: Gami-soyosan, group 2: Ojeok-san) and 3 (group 1: Banhasasim-tang; group 2: Bojungikgi-tang). The primary endpoints were Cmax,ss and AUCtau,ss of escitalopram. Cmax,ss and AUCtau,ss in period 1 were obtained using nonparametric superposition from single-dose data. The PK endpoints were classified according to the CYP2C19 phenotype. Results Of 18 participants, 16 completed the study. Systemic exposure to escitalopram resulted in a minor increase in the presence of each herbal medicine. The geometric mean ratios (GMRs, combination with herbal medicines/escitalopram monotherapy) and their 90% confidence intervals (CIs) for Cmax,ss and AUCtau,ss were as follows: Gamisoyosan- 1.1454 (0.9201, 1.4258) and 1.0749 (0.8084, 1.4291), Banhasasim-tang-1.0470 (0.7779, 1.4092) and 1.0465 (0.7035, 1.5568), Ojeok-san-1.1204 (0.8744, 1.4357) and 1.1267 (0.8466, 1.4996), and Bojungikgi-tang-1.1264 (0.8594, 1.4762) and 1.1400 (0.8515, 1.5261), respectively. Furthermore, no significant differences in the GMRs of Cmax,ss and AUCtau,ss were observed across different CYP2C19 phenotypes in any of the groups. Conclusion The co-administration of escitalopram with Gami-soyosan, Banhasasim-tang, Ojeok-san, or Bojungikgi-tang did not exert significant PK effects on escitalopram. These findings provide valuable insights into the safe use of herbal medicines along with escitalopram.
Collapse
Affiliation(s)
- Yun Seob Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Hak Jin
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Ju Eun Choi
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Min Soo Park
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Young-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Hyung Won Kang
- College of Korean Medicine, Wonkwang University, Iksan, Korea
| | | | - Choon Ok Kim
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
4
|
Fan Y, Zhou Z, Zhang L. Effect of Oregon grape root extracts on P-glycoprotein mediated transport in in vitro cell lines. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 26:11927. [PMID: 38304488 PMCID: PMC10830684 DOI: 10.3389/jpps.2023.11927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Purpose: This study aims to investigate the potential of Oregon grape root extracts to modulate the activity of P-glycoprotein. Methods: We performed 3H-CsA or 3H-digoxin transport experiments in the absence or presence of two sources of Oregon grape root extracts (E1 and E2), berberine or berbamine in Caco-2 and MDCKII-MDR1 cells. In addition, real time quantitative polymerase chain reaction (RT-PCR) was performed in Caco-2 and LS-180 cells to investigate the mechanism of modulating P-glycoprotein. Results: Our results showed that in Caco-2 cells, Oregon grape root extracts (E1 and E2) (0.1-1 mg/mL) inhibited the efflux of CsA and digoxin in a dose-dependent manner. However, 0.05 mg/mL E1 significantly increased the absorption of digoxin. Ten µM berberine and 30 µM berbamine significantly reduced the efflux of CsA, while no measurable effect of berberine was observed with digoxin. In the MDCKII-MDR1 cells, 10 µM berberine and 30 µM berbamine inhibited the efflux of CsA and digoxin. Lastly, in real time RT-PCR study, Oregon grape root extract (0.1 mg/mL) up-regulated mRNA levels of human MDR1 in Caco-2 and LS-180 cells at 24 h. Conclusion: Our study showed that Oregon grape root extracts modulated P-glycoprotein, thereby may affect the bioavailability of drugs that are substrates of P-glycoprotein.
Collapse
Affiliation(s)
- Ying Fan
- Division of Clinical Review, Office of Safety and Clinical Evaluation, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Zhu Zhou
- York College, The City University of New York, Jamaica, NY, United States
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
5
|
Alghamdi W, Al-Fadel N, Alghamdi EA, Alghamdi M, Alharbi F. Signal Detection and Assessment of Herb-Drug Interactions: Saudi Food and Drug Authority Experience. Drugs Real World Outcomes 2023; 10:577-585. [PMID: 37857794 PMCID: PMC10730488 DOI: 10.1007/s40801-023-00388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Numerous investigations on herbal medicine that have been undertaken in the past several years demonstrate the general acceptance of its safety. The Saudi Food and Drug Authority (SFDA) established the Herb-Drug Interaction (HDI) project to detect and assess potential HDIs to ensure safety. The aim is to detect safety signals and assess them based on available evidence. METHODS First, SFDA-registered herbal products (n = 30) were selected and prioritized based on commonly used herbs. Second, reported potential HDIs were retrieved from the World Health Organization global database of individual case safety reports (VigiBase), AdisInsight®, and the Natural Medicines database. We excluded drugs non-registered by SFDA and labeled interactions in the product information of SFDA, the US Food and Drug Administration (FDA), and the European Medicines Agency (EMA). Finally, a comprehensive evaluation of potential HDIs was carried out using several evidence sources: literature, global cases, local cases, and other relevant documents. The Drug Interaction Probability Scale (DIPS) scale was used to assess the probability of a causal relationship between the interacting herb and drug and the event. RESULTS The search yielded 566 potential signals, and 41 had published evidence and were referred for assessment. The assessment results using DIPS were: 22 possible (53.6 %), 7 probable (17%), and 12 doubtful (29.2%) interactions. The recommendation was to include probable HDIs in the product information, including turmeric-tacrolimus, etoposide-Echinacea, Ginkgo biloba-ibuprofen, green tea-warfarin, and licorice-thiazides interactions. CONCLUSION The HDI project assessed the screening and identification of potential HDIs. The action plan of this project can be used in post-marketing activities to identify potential drug interactions.
Collapse
Affiliation(s)
- Waad Alghamdi
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
6
|
Shahid M, Ahmad A, Raish M, Bin Jardan YA, Alkharfy KM, Ahad A, Abul Kalam M, Ahmad Ansari M, Iqbal M, Ali N, Al-Jenoobi FI. Herb-drug interaction: Effect of sinapic acid on the pharmacokinetics of dasatinib in rats. Saudi Pharm J 2023; 31:101819. [PMID: 37860687 PMCID: PMC10582055 DOI: 10.1016/j.jsps.2023.101819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Dasatinib (DAS) is a narrow therapeutic index drug and novel oral multitarget inhibitor of tyrosine kinase and approved for the first-line therapy for chronic myelogenous leukemia (CML) and Philadelphia chromosome (Ph + ) acute lymphoblastic leukemia (ALL). DAS, a known potent substrate of cytochrome (CYP) 3A, P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) and is subject to auto-induction. The dietary supplementation of sinapic acid (SA) or concomitant use of SA containing herbs/foods may alter the pharmacokinetics as well as pharmacodynamics of DAS, that may probably lead to potential interactions. Protein expression in rat hepatic and intestinal tissues, as well as the in vivo pharmacokinetics of DAS and the roles of CYP3 A2 and drug transporters Pgp-MDR1 and BCPR/ABCG2, suggested a likely interaction mechanism. The single dose of DAS (25 mg/kg) was given orally to rats with or without SA pretreatment (20 mg/kg p.o. per day for 7 days, n = 6). The plasma concentration of DAS was estimated by using Ultra-High-Performance Liquid Chromatography Mass spectrometry (UHPLC-MS/MS). The in vivo pharmacokinetics and protein expression study demonstrate that SA pretreatment has potential to alter the DAS pharmacokinetics. The increase in Cmax, AUC and AUMC proposes increase in bioavailability and rate of absorption via modulation of CYP3 A2, PgP-MDR1 and BCPR/ABCG2 protein expression. Thus, the concomitant use of SA alone or with DAS may cause serious life-threatening drug interactions.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muzaffer Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Feyissa M, Gedif Fenta T, Asres K, Gebremariam T. Prevalence, Perception and Predictors of Concomitant Herbal Medicine Use among HIV/AIDS and Tuberculosis Patients in Metekel Zone, Northwest Ethiopia: A Cross-Sectional Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8235229. [PMID: 36437829 PMCID: PMC9691294 DOI: 10.1155/2022/8235229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 12/18/2023]
Abstract
BACKGROUND The use of herbal medicine is common in Ethiopia. However, evidence on the extent and predictors of concomitant use of herbal medicine with conventional treatment among HIV/AIDS and tuberculosis patients is limited. OBJECTIVE To assess the extent of concomitant use of herbal medicine with conventional therapy and associated factors among HIV/AIDS and tuberculosis patients in Metekel Zone, Northwest Ethiopia. METHOD A cross-sectional study was conducted from January to March 2020. HIV/AIDS and tuberculosis patients who visited the health facilities during the study were interviewed face-to-face using a structured and pretested questionnaire. The descriptive statistics and univariate and multivariate logistic regression analyses were conducted using SPSS version 25. A P-value of <0.05 was considered significant. RESULTS 412 patients on conventional treatment were included in this study; 355 (86.2%) were HIV patients, and 57 (13.8%) were TB patients. More than half, 217 (52.7%) participants reported using herbal medicine while on conventional therapy. Among those who claimed to have used herbal medicines, 32 (14.7%) received herbal medicine from traditional healers. About four of five herbal users did not disclose their use to their healthcare providers. The type of health facility on follow-up (P=0.03), disease status (P=0.01), occupation (P=0.02), discontinuing ART (P=0.03), and encountering side (P=0.04) were the determinant factors for the use of herbal medicine among our study participants. CONCLUSION In the Metekel Zone, concomitant consumption of herbal medication is common among HIV/AIDS and tuberculosis patients. Furthermore, most patients did not disclose the healthcare practitioners about their herbal use. Therefore, healthcare practitioners must assess and counsel patients regarding the potential adverse effects and herb-drug interaction to optimize therapy.
Collapse
Affiliation(s)
- Mamo Feyissa
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Teferi Gedif Fenta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsige Gebremariam
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
El Orfi N, Boutayeb S, Haddou Rahou B, Errihani H. Use of Medicinal Plants by Cancer Patients Under Chemotherapy in the Northwest of Morocco (Rabat Area) : Cross-Sectional Study. J Evid Based Integr Med 2022; 27:2515690X221128036. [PMID: 36254459 PMCID: PMC9580094 DOI: 10.1177/2515690x221128036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Variety of conventional treatments are used to treat cancer. Cancer patients adopt other alternative therapies including medicinal plants. Their curative power results in the presence of secondary metabolites in its different parts. However, they can have toxic effects and interactions with conventional treatment and even chemosensitivity of the cancer cells. OBJECTIVES This study aims to determine the prevalence of the use of medecinal plants by cancer patients undergoing chemotherapy, list the medecinal plants used, identify the most consumed, present the reported adverse effects and determine the predictive factors of their use. MATERIALS AND METHODS This was a cross-sectional study of 203 patients followed at the National Institute of Oncology in Rabat from 01 October 2018 to 30 November 2018. Regarding socio-demographic and clinical characteristics and data on the use of medicinal plants were collected from a questionnaire. FINDINGS of 203 patients, 37% used medicinal plants. 30 plants also the honey were identified during this study. The "euphorbia honey"was consumed at (40%), The most used plants were garlic (13%), turmeric, fenugreek and thyme (11% each). 5% of patients presented side effects related to the consumption of medicinal plants. There is a significant association between the use of medicinal plants and socio-economic level (p = 0.004) and duration of illness (p = 0.048). CONCLUSION This study revealed a high prevalence of medicinal plants used by cancer patients receiving chemotherapy at National Institute of Oncology. The more clinical studies are desirable to demonstrate the efficacy of medicinal plants and their therapeutic effects to encourage their consumption or prohibit them.
Collapse
Affiliation(s)
- Nadia El Orfi
- Life and Health Department, University of Medicine and Pharmacy Mohammed V, Rabat, Morocco,Nadia El Orfi. (PhD student), Adress: 46, hay nahda 1 complement, groupe el aahd, Rabat, Morroco.
| | | | - Bouchra Haddou Rahou
- Research department, High Institute of Nursing Professions and Technical Health, Rabat, Morocco
| | | |
Collapse
|
9
|
Cytochrome P450 3A2 and PGP-MDR1-Mediated Pharmacokinetic Interaction of Sinapic Acid with Ibrutinib in Rats: Potential Food/Herb–Drug Interaction. Processes (Basel) 2022. [DOI: 10.3390/pr10061066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Ibrutinib (IBR) metabolism (primarily by CYP3A enzyme) is the main route of excretion for IBR, which could lead to drug–drug/herb–drug interactions with herbal medicines, nutritional supplements, and other foods. Sinapic acid (SA) is a bioactive phytonutrient that is used as a dietary supplement to treat a variety of illnesses. Pharmacokinetic interactions may occur when IBR interacts with SA, which influences the pharmacokinetic processes such as absorption, distribution, metabolism, and excretion. Therefore, it is obligatory to investigate the safety apprehensions of such parallel usage and to evaluate the possible impact of SA on the pharmacokinetics of IBR and propose a possible interaction mechanism in an animal model. The IBR concentration in plasma samples was determined using a validated UHPLC-MS/MS method after administration of a single oral dosage of IBR (50 mg/kg) in rats with or without SA pretreatment (40 mg/kg p.o. each day for 7 days, n = 6). The co-administration of IBR with SA displayed significant increases in Cmax ~18.77%, AUC0–T ~28.07%, MRT ~16.87%, and Kel ~24.76%, and a significant decrease in the volume of distribution Vz/F_obs ~37.66%, the rate of clearance (Cl/F) ~21.81%, and T½ ~20.43%, respectively, were observed as compared to rats that were administered IBR alone, which may result in increased bioavailability of IBR. The metabolism of IBR in the liver and intestines is significantly inhibited when SA is given, which may lead to an increase in the absorption rate of IBR. These findings need to be investigated further before they can be used in clinical practice.
Collapse
|
10
|
Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, Gabuza KB, Chellan N, Tiano L, Dludla PV. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct 2021; 12:12235-12249. [PMID: 34847213 DOI: 10.1039/d1fo02696h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative stress and inflammation remain the major complications implicated in the development and progression of metabolic complications, including obesity, type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). In fact, due to their abundant antioxidant and anti-inflammatory properties, there is a general interest in understanding the therapeutic effects of some major food-derived bioactive compounds like curcumin against diverse metabolic diseases. Hence, a systematic search, through prominent online databases such as MEDLINE, Scopus, and Google Scholar was done focusing on randomized controlled trials (RCTs) reporting on the impact of curcumin supplementation in individuals with diverse metabolic complications, including obesity, T2D and NAFLD. Summarized findings suggest that curcumin supplementation can significantly reduce blood glucose and triglycerides levels, including markers of liver function like alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in patients with T2D and NAFLD. Importantly, this effect was consistent with the reduction of predominant markers of oxidative stress and inflammation, such as the levels of malonaldehyde (MDA), tumor necrosis factor-alpha (TNF-α), high sensitivity C-reactive protein (hs-CRP) and monocyte chemoattractant protein-1 (MCP-1) in these patients. Although RCTs suggest that curcumin is beneficial in ameliorating some metabolic complications, future research is still necessary to enhance its absorption and bioavailability profile, while also optimizing the most effective therapeutic doses.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Kwazikwakhe B Gabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa. .,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
11
|
Determination of effective concentrations of drug absorption enhancers using in vitro and ex vivo models. Eur J Pharm Sci 2021; 167:106028. [PMID: 34601070 DOI: 10.1016/j.ejps.2021.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Achievement of an effective concentration of the pharmaceutically active ingredient in the blood and/or at the target site is an important aspect in the formulation of drugs and therefore needs to be quantified. Any concentration above therapeutic levels can cause toxic effects whereas low concentrations can be sub-therapeutic. This paper investigated different concentrations of selected commercially sourced analytical-grade pure chemicals as potential drug absorption enhancers in vitro and ex vivo to determine the lowest effective concentrations for optimizing drug absorption in oral dosage forms. METHODS Recombinant cytochrome (CYP) 3A4 enzyme and recombinant p-glycoprotein membrane models were utilized for the investigation of in vitro inhibitory effects of drug absorption enhancers. Promega (2015) protocols were adopted for both assays. The everted porcine intestinal ex vivo model was employed for assessing effects of the drug absorption enhancers on the absorption of propranolol. RESULTS The lowest effective CYP3A4 inhibitory concentrations were observed for curcumin (75µM and 100 µM), quercetin (75 and 100 µM) and glycyrrhizic acid (50 µM) while the most effective p-glycoprotein (P-gp) inhibition concentrations were curcumin (10, 15, 25, 50, 75 and 100 µM), sinomenine (50, 75, and 100 µM), quercetin (75 and 100 µM) and naringin (50 µM). Additive effects were observed between combinations of quercetin (75 µM) and curcumin (100 µM); quercetin (75 µM) and curcumin (75 µM); quercetin (75 µM) and curcumin (50 µM), and quercetin (75 µM) with curcumin (10 µM), which increased the basal ex vivo absorption of propranolol from 1.24 ± 0.03 µg/mL to 5.19 ± 0.12 µg/mL, 4.17 ± 0.05 µg/mL, 3.86 ± 0.10 µg/mL, and 4.07± 0.05 µg/mL respectively, after 2 hours. CONCLUSION Incorporation of the drug absorption enhancers (e.g., curcumin and quercetin), at specific concentrations, in dosage forms could improve the bioavailability of the BCS Class III and IV drugs that are substrates of CYP3A4 and p-glycoprotein.
Collapse
|
12
|
Surana AR, Agrawal SP, Kumbhare MR, Gaikwad SB. Current perspectives in herbal and conventional drug interactions based on clinical manifestations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00256-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Herbs are an important source of pharmaceuticals. Herbs are traditionally used by millions of peoples for medicine, food and drink in developed and developing nations considering that they are safe. But, interaction of herbs with other medicines may cause serious adverse effects or reduces their efficacy. The demand for “alternative” medicines has been increased significantly, which include medicine derived from plant or herbal origin. The objective of this review article mainly focuses on drug interactions of commonly used herbs along with possible mechanisms. The method adopted for this review is searching of herb-drug interactions in online database.
Main text
Herb-drug interaction leads to pharmacological modification. The drug use along with herbs may show pharmacodynamic and pharmacokinetic interactions. Pharmacokinetic interaction causes alteration in absorption, distribution, metabolism and elimination. Similarly, pharmacodynamic interaction causes additive or synergistic or antagonist effect on the drugs or vice versa. Researchers had demonstrated that herbs show the toxicities and drug interactions like other pharmacologically active compounds. There is lack of knowledge amongst physician, pharmacist and consumers related to pharmacological action and mechanism of herb-drug interaction. This review article focuses on the herb-drug interaction of danshen (Salvia miltiorrhiza), Echinacea (Echinacea purpurea), garlic (Allium sativum), ginkgo (Ginkgo biloba), goldenseal (Hydrastis canadensis), green tea (Camellia sinensis), kava (Piper methysticum), liquorice (Glycyrrhiza glabra), milk thistle (Silybum marianum) and St. John’s wort (Hypericum perforatum) along with probable mechanisms and clinical manifestation based on case studies reported in literature.
Conclusion
Herb-drug interactions may lead to serious side effects. Physician, pharmacist and patients must be more cautious while prescribing and or consuming these herbs.
Collapse
|
13
|
Zhang Y, Man Ip C, Lai YS, Zuo Z. Overview of Current Herb-Drug Interaction Databases. Drug Metab Dispos 2021; 50:86-94. [PMID: 34697080 DOI: 10.1124/dmd.121.000420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
An HERB-Drug Interaction (HDI) database is a structured data collection method for HDI information extracted from scattered literatures for quick retrieval. Our review summarized the ten currently available HDI databases, including those databases comprising HDI on the market. A detailed comparison on the scope of monographs, including the nature of content extracted from the original literature and user interfaces of these databases, was performed, and the number of references of fifty popular herbs in each HDI database was counted and presented in a heatmap to give users an intuitive understanding of the focuses of different HDI databases. Since it is well known that the development and maintenance of databases need continuous investment of capital and manpower, the sustainability of these databases was also reviewed and compared. Recently, artificial intelligence (AI) technologies, especially Natural Language Processing (NLP), have been applied to screen specific topics from massive articles and automatically identify the names of drugs and herbs in the literature. However, its application on the labor-intensive extraction and evaluation of HDI-related experimental conditions and results from literature remains limited due to the scarcity of these HDI data and the lack of well-established annotated datasets for these specific NLP recognition tasks. In view of the difficulties faced by current HDI databases and potential expansion of AI application in HDI database development, we propose a standardized format for data reporting and use of Concept Unique Identifier (CUI) for medical terms in the literature to accelerate the structured data collection. SIGNIFICANCE STATEMENT: The worldwide popularity of botanical and/or traditional medicine products has raised safety concerns due to potential HDI. However, the publicly available HDI databases are mostly outdated or incomplete. Through our review of the currently available HDI databases, a clear understanding of the key issues could be obtained and possible solutions to overcome the labour-intensive extraction as well as professional evaluation of information in HDI database development are proposed.
Collapse
Affiliation(s)
- Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Chung Man Ip
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Yuen Sze Lai
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
14
|
Babos MB, Heinan M, Redmond L, Moiz F, Souza-Peres JV, Samuels V, Masimukku T, Hamilton D, Khalid M, Herscu P. Herb-Drug Interactions: Worlds Intersect with the Patient at the Center. MEDICINES (BASEL, SWITZERLAND) 2021; 8:44. [PMID: 34436223 PMCID: PMC8401017 DOI: 10.3390/medicines8080044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
This review examines three bodies of literature related to herb-drug interactions: case reports, clinical studies, evaluations found in six drug interaction checking resources. The aim of the study is to examine the congruity of resources and to assess the degree to which case reports signal for further study. A qualitative review of case reports seeks to determine needs and perspectives of case report authors. Methods: Systematic search of Medline identified clinical studies and case reports of interacting herb-drug combinations. Interacting herb-drug pairs were searched in six drug interaction resources. Case reports were analyzed qualitatively for completeness and to identify underlying themes. Results: Ninety-nine case-report documents detailed 107 cases. Sixty-five clinical studies evaluated 93 mechanisms of interaction relevant to herbs reported in case studies, involving 30 different herbal products; 52.7% of these investigations offered evidence supporting reported reactions. Cohen's kappa found no agreement between any interaction checker and case report corpus. Case reports often lacked full information. Need for further information, attitudes about herbs and herb use, and strategies to reduce risk from interaction were three primary themes in the case report corpus. Conclusions: Reliable herb-drug information is needed, including open and respectful discussion with patients.
Collapse
Affiliation(s)
- Mary Beth Babos
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Michelle Heinan
- School of Medical Sciences, Lincoln Memoria University, Harrogate, TN 37752, USA;
| | - Linda Redmond
- Medical Center Long Term Care, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Fareeha Moiz
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Joao Victor Souza-Peres
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Valerie Samuels
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Tarun Masimukku
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | | | - Myra Khalid
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Paul Herscu
- Research Division, Herscu Laboratory, Amherst, MA 01002, USA;
| |
Collapse
|
15
|
Premchand RK, Samnani N. Case report on interaction of warfarin with herbal medicine “kadha”. IHJ CARDIOVASCULAR CASE REPORTS (CVCR) 2021. [PMCID: PMC8184357 DOI: 10.1016/j.ihjccr.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With the increase in the number of COVID-19 cases worldwide, and a lack of proper preventive and therapeutic treatment, herbal medicine is frequently used by many people to increase the immune status of the body. We describe a case of a 56 year-old-man stabilized on warfarin (7 mg daily) from 12 years, experienced an elevated international normalized ratio (INR) of 5.45 after the consumption of an Indian traditional herbal drink “kadha” as a precautionary measure to prevent COVID-19 infection.
Collapse
|
16
|
Elkady EF, Fouad MA, Alshoba N, Tarek Mahmoud S. Validated LC–MS/MS method for the determination of some prescribed CNS drugs: Application to an in vivo pharmacokinetic study of drug-herb metabolic interaction potential of khat. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Fu C, Wu Q, Zhang Z, Xia Z, Liu Z, Lu H, Wang Y, Huang G. Development of a sensitive and rapid UHPLC-MS/MS method for simultaneous quantification of nine compounds in rat plasma and application in a comparative pharmacokinetic study after oral administration of Xuefu Zhuyu Decoction and nimodipine. Biomed Chromatogr 2020; 34:e4872. [PMID: 32358897 DOI: 10.1002/bmc.4872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023]
Abstract
Xuefu Zhuyu Decoction (XFZYD) is a traditional Chinese medicine prescription used for the clinical treatment of traumatic brain injury (TBI). The purpose of this work was to develop a sensitive and rapid UHPLC-MS/MS method to simultaneously study the pharmacokinetics of nimodipine and eight components of XFZYD, namely, amygdalin, hydroxysafflor yellow A, rutin, liquiritin, narirutin, naringin, neohesperidin and saikosaponin A, in rats with and without TBI. Multiple reaction monitoring was highly selective in the detection of nine analytes and the internal standard without obvious interference. The calibration curves displayed good linearity (r > 0.99) over a wide concentration range. The mean absolute recoveries of the nine analytes were 85-106%, and all matrix effects were in the range 80-120%. The intra- and inter-day precision and accuracy were acceptable (RSD, <15%; RE%, ±20%). The validated method was successfully applied to compare the pharmacokinetics in four experimental groups, including control rats orally administered XFZYD and TBI model rats orally administered XFZYD, XFZYD and nimodipine, or nimodipine alone. The results showed that herb-drug interactions occurred between XFZYD and nimodipine in the treatment of TBI, nimodipine affected the pharmacokinetics of XFZYD, and XFZYD affected the absorption, distribution and excretion of nimodipine in vivo.
Collapse
Affiliation(s)
- Chunyan Fu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, P. R. China.,College of Pharmacy, Shaoyang University, Shaoyang, Hunan, P. R. China
| | - Qian Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Zhimin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Zian Xia
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zhaoying Liu
- Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, P. R. China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Gang Huang
- Guangzhou Analytical Application Center, Shimadzu Corporation, Guangzhou, China
| |
Collapse
|
18
|
Kim Y, Jo JJ, Cho P, Shrestha R, Kim KM, Ki SH, Song KS, Liu KH, Song IS, Kim JH, Lee JM, Lee S. Characterization of red ginseng-drug interaction by CYP3A activity increased in high dose administration in mice. Biopharm Drug Dispos 2020; 41:295-306. [PMID: 32557706 DOI: 10.1002/bdd.2246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/08/2022]
Abstract
Ginseng (Panax ginseng Meyer) is a popular traditional herbal medicine used worldwide. Patients often take ginseng preparations with other medicines where the ginseng dose could exceed the recommended dose during long-term administration. However, ginseng-drug interactions at high doses of ginseng are poorly understood. This study showed the possibility of herb-drug interactions between the Korean red ginseng (KRG) extract and cytochrome P450 (CYP) substrates in higher administration in mice. The CYP activities were determined in vivo after oral administration of KRG extract doses of 0.5, 1.0, and 2.0 g/kg for 2 or 4 weeks by monitoring the concentration of five CYP substrates/metabolites in the blood. The area under the curve for OH-midazolam/midazolam catalysed by CYP3A was increased significantly by the administration of 2.0 g/kg KRG extract for 2 and 4 weeks. CYP3A-catalysed midazolam 1'-hydroxylation also increased significantly in a dose- and time-dependent manner in the S9 fraction of mouse liver which was not related to induction by transcription. Whereas CYP2D-catalysed dextromethorphan O-deethylation decreased in a dose- and time-dependent manner in vivo. In conclusion, interactions were observed between KRG extract and CYP2D and CYP3A substrates at subchronic-high doses of KRG administration in mice.
Collapse
Affiliation(s)
- Younah Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Jae Jo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Piljoung Cho
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Riya Shrestha
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Kyung-Sik Song
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Im-Sook Song
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
19
|
Ayusman S, Duraivadivel P, Gowtham H, Sharma S, Hariprasad P. Bioactive constituents, vitamin analysis, antioxidant capacity and α-glucosidase inhibition of Canna indica L. rhizome extracts. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Mazhar H, Foster BC, Necyk C, Gardiner PM, Harris CS, Robaey P. Natural Health Product-Drug Interaction Causality Assessment in Pediatric Adverse Event Reports Associated with Attention-Deficit/Hyperactivity Disorder Medication. J Child Adolesc Psychopharmacol 2020; 30:38-47. [PMID: 31670573 DOI: 10.1089/cap.2019.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Some pediatric patients with attention-deficit/hyperactivity disorder (ADHD) use natural health products (NHPs) such as herbal remedies. Although herbal remedies are generally considered to be safe when they are used appropriately, they may contain active components that can interact with medications being used concurrently, with potential for NHP-drug interactions leading to adverse events. Objectives: The objectives of this study were (1) to identify adverse event reports (AERs) involving commonly used herbal remedies and ADHD prescription medicines in children and adolescents; (2) to evaluate the quality of collected AERs; and (3) to assess whether NHP-drug interactions can be causally linked to reported adverse events. Methods: We systematically searched the FDAble database (FDAble.com) for herbal remedies commonly used by patients (4-18 years old) also taking ADHD drugs from 1997 to 2015. We assessed the completeness of the AERs and used three causality assessment tools modified for NHPs (Naranjo Adverse Drug Reaction Probability Scale, HORN Drug Interaction Probability Scale, and World Health Organization Uppsala Monitoring Centre Scale). Results: Of the 23 identified AERs involving both an herbal remedy and an ADHD prescription medication, most involved multiple (>3) substances with inadequate detail to assess multiple potential interactions. Following data extraction and evaluation of completeness, five AERs involving only one herbal remedy and one ADHD medication were evaluated for causality. An NHP-drug interaction was assessed to be probable in one case and to be possible in another. Both these reports involved a methylphenidate formulation and St. John's wort. Conclusions: Eighteen of the 23 identified AERs involving both an herbal remedy and an ADHD drug also involved other multiple ingredient products. The reporting quality was poor for the five AERs examined. Further research is needed to study the interaction between St. John's wort and methylphenidate.
Collapse
Affiliation(s)
- Hajra Mazhar
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.,Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Canada
| | - Brian C Foster
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Candace Necyk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Paula M Gardiner
- Department of Family Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Cory S Harris
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Canada.,School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Philippe Robaey
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.,CHU Sainte-Justine Research Centre, Université de Montreal, Montreal, Canada
| |
Collapse
|
21
|
Wu CS, Chen YH, Chen CL, Chien SK, Syifa N, Hung YC, Cheng KJ, Hu SC, Lo PT, Lin SY, Wu TH. Constructing a bilingual website with validated database for Herb and Western medicine interactions using Ginseng, Ginkgo and Dong Quai as examples. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:335. [PMID: 31775730 PMCID: PMC6881993 DOI: 10.1186/s12906-019-2731-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022]
Abstract
Background Concerns have been raised regarding the efficacy and safety resulting from the potential interactions of herbs with Western medications due to the use of both herbs and Western medicine by the general public. Information obtained from the web must be critically evaluated prior to its use in making decisions. Description This study aimed to construct an herb-drug interaction (HDI) website (https://drug-herb-interaction.netlify.com) with a critically reviewed database. Node.js was used to store the database by running JavaScript. Vue.js is a front-end framework used for web interface development. A total of 135 sets of information related to the interactions of ginseng, ginkgo and dong quai with Western medicine from the literature identified in Medline were collected, followed by critical reviews to prepare nineteen items of information for each HDI monograph. A total of 80 sets of validated HDIs met all criteria and were further assessed at the individual reliability level (likely, possible, and unevaluable) and labeled with the “interaction” item. This query system of the website can be operated in both the Chinese and English languages to obtain all monographs on HDIs in the database, including bilingual interaction data. The database of HDI monographs can be updated by simply uploading a new version of the information Excel file. The designed “smart search” module, in addition to the “single search”, is convenient for requesting multiple searches. Among the “likely” interactions (n = 26), 50% show negative HDIs. Ten of these can increase the effect of the Western drug, and the others (n = 3) imply that the HDI can be beneficial. Conclusions The current study provides a website platform and 80 sets of validated bilingual HDIs involving ginseng, ginkgo and dong quai in an online database. A search of HDI monographs related to these three herbs can be performed with this bilingual, easy-to-use query website, which is feasible for professionals and the general public. The identified reliability level for each HDI may assist readers’ decisions regarding whether taking Western medications concomitant with one of three herbal medicinal foods is safe or whether caution is required due to potentially serious outcomes.
Collapse
|
22
|
A Systematic Review of Drug Metabolism Studies of Plants With Anticancer Properties: Approaches Applied and Limitations. Eur J Drug Metab Pharmacokinet 2019; 45:173-225. [DOI: 10.1007/s13318-019-00582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Alsulays BB, Jamil S, Raish M, Ansari MA, Ahmad A, Alalaiwe A, Alshahrani SM, Alshetaili AS, Ansari MJ, Alshehri SM, haq N. Influences of Ferulic Acid on Pharmacokinetics of Carbamazepine in Rats: Possible Mechanism of Herb/food-drug Interactions. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.978.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Jadhao S, Thomas A, Raje A, Nagrik S, Kothapalli L, Shaikh A. Herb-Drug Interaction of Quercetin on the Pharmacokinetics of Losartan in Rats: A High-Performance Thin-Layer Chromatography Study. JPC-J PLANAR CHROMAT 2019. [DOI: 10.1556/1006.2019.32.5.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shraddha Jadhao
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Asha Thomas
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Amol Raje
- Clinical Candidate Optimization Department, Advinus Therapeutics Ltd., Pune, India
| | - Shatrughna Nagrik
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Lata Kothapalli
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Aaftab Shaikh
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
25
|
Ziemann J, Lendeckel A, Müller S, Horneber M, Ritter CA. Herb-drug interactions: a novel algorithm-assisted information system for pharmacokinetic drug interactions with herbal supplements in cancer treatment. Eur J Clin Pharmacol 2019; 75:1237-1248. [PMID: 31154477 DOI: 10.1007/s00228-019-02700-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a system to estimate the risk of herb-drug interactions that includes the available evidence from clinical and laboratory studies, transparently delineates the algorithm for the risk estimation, could be used in practice settings and allows for adaptation and update. METHODS We systematically searched Drugbank, Transformer, Drug Information Handbook, European and German Pharmacopoeia and MEDLINE for studies on herb-drug interactions of five common medicinal plants (coneflower, ginseng, milk thistle, mistletoe and St. John's wort). A diverse set of data were independently extracted by two researchers and subsequently analysed by a newly developed algorithm. Results are displayed in the form of interaction risk categories. The development of the algorithm was guided by an expert panel consensus process. RESULTS From 882 publications retrieved by the search, 154 studies were eligible and provided 529 data sets on herbal interactions. The developed algorithm prioritises results from clinical trials over case reports over in vitro investigations and considers type of study, consistency of study results and study outcome for clinical trials as well as identification, permeability, bioavailability, and interaction potency of an identified herbal perpetrator for in vitro investigations. Risk categories were assigned to and dynamically visualised in a colour-coded matrix format. CONCLUSIONS The novel algorithm allows to transparently generate and dynamically display herb-drug interaction risks based on the available evidence from clinical and laboratory pharmacologic studies. It provides health professionals with readily available and easy updatable information about the risk of pharmacokinetic interactions between herbs and oncologic drugs.
Collapse
Affiliation(s)
- Janine Ziemann
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Annette Lendeckel
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Susann Müller
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Markus Horneber
- Department of Internal Medicine, Division of Oncology/Hematology and Pneumology, Paracelsus Medical University, Klinikum Nuernberg, Nuernberg, Germany
| | - Christoph A Ritter
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany.
| |
Collapse
|
26
|
Raish M, Ahmad A, Ansari MA, Alkharfy KM, Ahad A, Al-Jenoobi FI, Al-Mohizea AM, Khan A, Ali N. Effects of sinapic acid on hepatic cytochrome P450 3A2, 2C11, and intestinal P-glycoprotein on the pharmacokinetics of oral carbamazepine in rats: Potential food/herb-drug interaction. Epilepsy Res 2019; 153:14-18. [PMID: 30927680 DOI: 10.1016/j.eplepsyres.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
Dietary supplements, herbal medicines, and other foods may affect the pharmacokinetics and/or pharmacodynamics of carbamazepine (CBZ), which may possibly lead to potential drug-drug/herb-drug interactions, as CBZ has a narrow therapeutic window. Sinapic acid (SA) is a bioactive phytoconstituent used as a dietary supplement for the treatment of epilepsy. This study determined the effects of SA on the pharmacokinetics of CBZ and proposed a possible interaction mechanism in twenty-four male wistar rats (180-210 g). A single CBZ dose (80 mg/kg) was administered orally to rats with or without SA pretreatment (20 mg/kg p.o. per day for 7 days, n = 6). The CBZ concentration in plasma samples was determined by using a sensitive reversed-phase high-performance liquid chromatography assay. The pharmacokinetic parameters were calculated by using non-compartmental analysis. Significance was determined through Dunnett's multiple comparison test or one-way analysis of variance as appropriate; p < 0.05 were considered significant. The change in the pharmacokinetic parameters (Cmax, Tmax, AUC0-t, AUC0-∞, T½, and kel) of CBZ was evaluated after the administration of CBZ alone or after CBZ co-administration with SA pretreatment. The plasma concentration of CBZ was higher after SA pretreatment than that without pretreatment. The pharmacokinetics of orally administered CBZ were found to be significantly altered (p < 0.05) in rats pretreated with SA compared to those in rats administered CBZ alone. The increases in the Cmax, AUC0-t, T1/2, and MRT of CBZ were 29.79%, 57.18%, 77.18%, and 58.31%, respectively, whereas the kel and apparent oral CL/F were significantly reduced (p < 0.05) in rats pretreated with SA compared to those in rats not pretreated with SA (43.87% and 42.50%, respectively). However, no significant change was observed in the Tmax of CBZ in rats pretreated with SA compared to that in rats that did not receive pretreatment. The enhancement in Cmax, AUC0-t, T1/2, and MRT and the reduction in Kel and CL/F values resulted from the significant inhibition of CYP3 A2, the CYP2C11-mediated metabolism of CBZ in the liver, and the inhibition of intestinal P-glycoprotein/MDR1, which enhanced the rate of CBZ absorption. Further studies are required to determine the clinical relevance of these observations.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Borse SP, Singh DP, Nivsarkar M. Understanding the relevance of herb-drug interaction studies with special focus on interplays: a prerequisite for integrative medicine. Porto Biomed J 2019; 4:e15. [PMID: 31595257 PMCID: PMC6726296 DOI: 10.1016/j.pbj.0000000000000015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022] Open
Abstract
Integrative medicine refers to the blending of conventional and evidence-based complementary medicines and therapies with the aim of using the most appropriate of either or both modalities for ultimate patient benefits. One of the major hurdles for the same is the chances of potential herb–drug interactions (HDIs). These HDIs could be beneficial or harmful, or even fatal; therefore, a thorough understanding of the eventualities of HDIs is essential so that a successful integration of the modern and complementary alternative systems of medicine could be achieved. Here, we summarize all the important points related to HDIs, including types, tools/methods for study, and prediction of the HDIs, along with a special focus on interplays between drug metabolizing enzymes and transporters. In addition, this article covers future perspective, with a focus on background endogenous players of interplays and approaches to predict the drug–disease–herb interactions so as to fetch the desired effects of these interactions.
Collapse
Affiliation(s)
- Swapnil P Borse
- Department of Pharmacology and Toxicology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej.,NIRMA University, Sarkhej-Gandhinagar Highway, Ahmadabad, Gujarat, India
| | - Devendra P Singh
- Department of Pharmacology and Toxicology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej.,NIRMA University, Sarkhej-Gandhinagar Highway, Ahmadabad, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej
| |
Collapse
|
28
|
Auti P, Gabhe S, Mahadik K. Bioanalytical method development and its application to pharmacokinetics studies on Simvastatin in the presence of piperine and two of its synthetic derivatives. Drug Dev Ind Pharm 2019; 45:664-668. [DOI: 10.1080/03639045.2019.1569034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pratibha Auti
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be) University, Poona College of Pharmacy Erandwane, Pune, Maharashtra, India
| | - Satish Gabhe
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be) University, Poona College of Pharmacy Erandwane, Pune, Maharashtra, India
| | - Kakasaheb Mahadik
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be) University, Poona College of Pharmacy Erandwane, Pune, Maharashtra, India
| |
Collapse
|
29
|
Farrington R, Musgrave IF, Byard RW. Evidence for the efficacy and safety of herbal weight loss preparations. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:87-92. [PMID: 30738773 DOI: 10.1016/j.joim.2019.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022]
Abstract
Rising rates of obesity across the globe have been associated with an increase in the use of herbal preparations for weight control. However, the mechanisms of action for these substances are often not known, as is the potential for interaction with other herbal preparations or prescription pharmaceutical drugs. To investigate the reported efficacy and safety of herbal weight loss preparations, we conducted a review of the literature focusing on herbs that are most commonly used in weight loss preparations, specifically, Garcinia cambogia, Camellia sinensis, Hoodia gordonii, Citrus aurantium and Coleus forskohlii. There was no clear evidence that the above herbal preparations would cause sustained long-term weight loss in humans in the long term. Serious illness and even death have occasionally resulted from the use of herbal weight loss preparations. Few clinical trials have been undertaken to evaluate the efficacy and/or safety of herbal weight loss preparations. In addition, potential issues of herb-herb and herb-drug interactions are often not considered. Regulation of these products is much less rigorous than for prescription medications, despite documented cases of associated hepatotoxicity.
Collapse
Affiliation(s)
- Rachael Farrington
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Ian F Musgrave
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Roger W Byard
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Forensic Science SA, Adelaide, South Australia 5000, Australia
| |
Collapse
|
30
|
Inhibitory Effect of Japanese Traditional Kampo Formula Frequently Prescribed in Gynecological Clinics on CYP3A4. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4259603. [PMID: 30364098 PMCID: PMC6188721 DOI: 10.1155/2018/4259603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 11/17/2022]
Abstract
Recently, the use of herbal medicines has become popular, and information on drug interactions between herbal medicines and chemical drugs is needed in clinics. In Japan, the number of patients taking Japanese traditional Kampo medicines has been increasing, and the proper drug information about herb-drug interaction is highly demanded. The most established herb-drug interaction is the case of grapefruit juice (GFJ) via the inhibition on CYP3A4 expressed in the small intestine. In the present study, we compared the inhibitory titer on CYP3A4 between the target Kampo products and GFJ used as positive control. We evaluated the inhibitory effects of GFJ and three extracts of Kampo formulas frequently used in gynecological clinics on CYP3A4 in vitro and calculated the related titer of one-time dosage of Kampo formulas to GFJ in order to predict its effect on clinics. Although the extracts of these three Kampo formulas and the most of crude drug components in the formulas exhibited the inhibitory effects on CYP3A4 in some levels, the possibilities of tokishakuyakusan and keishibukuryogan to cause drug interaction can be quite low; however, it is possible that the excessive dosage of kamishoyosan may cause drug interaction with the substrate of CYP3A4 in clinics.
Collapse
|
31
|
Effects of Khat (Catha edulis) use on catalytic activities of major drug-metabolizing cytochrome P450 enzymes and implication of pharmacogenetic variations. Sci Rep 2018; 8:12726. [PMID: 30143732 PMCID: PMC6109098 DOI: 10.1038/s41598-018-31191-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022] Open
Abstract
In a one-way cross-over study, we investigated the effect of Khat, a natural amphetamine-like psychostimulant plant, on catalytic activities of five major drug-metabolizing cytochrome P450 (CYP) enzymes. After a one-week Khat abstinence, 63 Ethiopian male volunteers were phenotyped using cocktail probe drugs (caffeine, losartan, dextromethorphan, omeprazole). Phenotyping was repeated after a one-week daily use of 400 g fresh Khat leaves. Genotyping for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A5 were done. Urinary cathinone and phenylpropanolamine, and plasma probe drugs and metabolites concentrations were quantified using LC-MS/MS. Effect of Khat on enzyme activities was evaluated by comparing caffeine/paraxanthine (CYP1A2), losartan/losartan carboxylic acid (CYP2C9), omeprazole/5-hydroxyomeprazole (CYP2C19), dextromethorphan/dextrorphan (CYP2D6) and dextromethorphan/3-methoxymorphinan (CYP3A4) metabolic ratios (MR) before and after Khat use. Wilcoxon-matched-pair-test indicated a significant increase in median CYP2D6 MR (41%, p < 0.0001), and a marginal increase in CYP3A4 and CYP2C19 MR by Khat. Repeated measure ANOVA indicated the impact of CYP1A2 and CYP2C19 genotype on Khat-CYP enzyme interactions. The median MR increased by 35% in CYP1A2*1/*1 (p = 0.07) and by 40% in carriers of defective CYP2C19 alleles (p = 0.03). Urinary log cathinone/phenylpropanolamine ratios significantly correlated with CYP2D6 genotype (p = 0.004) and CYP2D6 MR (P = 0.025). Khat significantly inhibits CYP2D6, marginally inhibits CYP3A4, and genotype-dependently inhibit CYP2C19 and CYP1A2 enzyme activities.
Collapse
|
32
|
Perumal S, Mahmud R, Mohamed N. Combination of Epicatechin 3-Gallate from Euphorbia hirta and Cefepime Promotes Potential Synergistic Eradication Action against Resistant Clinical Isolate of Pseudomonas aeruginosa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5713703. [PMID: 30108657 PMCID: PMC6077534 DOI: 10.1155/2018/5713703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa is naturally resistant to many classes of antipseudomonal antibiotics due to the species ability to easily acquire resistance. Plant-based antibacterial agent in combination with the existing antibiotic proposes an alternative treatment regimen for the eradication of resistant bacterial infections. The antibacterial effects of the isolated epicatechin 3-gallate compound from Euphorbia hirta in combination with cefepime were investigated in vitro against resistant P. aeruginosa. The fractional inhibitory concentration index of the combination was determined using checkerboard broth microdilution method. Epicatechin 3-gallate combined with cefepime had produced synergistic effect against P. aeruginosa (with average FIC index of 0.24). The MIC of epicatechin 3-gallate was effectively reduced to MIC/4, MIC/8, MIC/16, and MIC/32 in the presence of cefepime. Time-kill study of epicatechin 3-gallate combined with cefepime exhibited remarkable bactericidal activity where the eradication of P. aeruginosa occurred within 4 h of treatment. Scanning electron micrographs revealed apparent cell membrane damage and leakage of cytoplasmic contents from P. aeruginosa cells which eventually led to the cell lysis after the combination treatment of epicatechin 3-gallate and cefepime. The potential of epicatechin 3-gallate to act synergistically with cefepime against clinically resistant P. aeruginosa strain possibly will maximize the successful outcomes when choosing empirical antibiotic treatment in hospitals or health care institutions.
Collapse
Affiliation(s)
- Shanmugapriya Perumal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Roziahanim Mahmud
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nornisah Mohamed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
33
|
Raish M, Ahmad A, Ansari MA, Alkharfy KM, Ahad A, Khan A, Aljenobi FI, Ali N, Al-Mohizea AM. Effect of sinapic acid on aripiprazole pharmacokinetics in rats: Possible food drug interaction. J Food Drug Anal 2018; 27:332-338. [PMID: 30648588 PMCID: PMC9298613 DOI: 10.1016/j.jfda.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Dietary supplements and foods can interact with various drugs, leading to possible clinical concerns. This study aimed to investigate the effect of orally administered sinapic acid (SA) on the pharmacokinetics of aripiprazole (APZ) in rats and its possible modulatory effects on hepatic cytochrome P450 (CYP3A2 and CYP2D6) expression in the liver tissues. Single dose and multiple dose parallel groups of wistar rats were categorized into six groups (n = 6 each) which abstained from food for 12 h prior to the experiment, while water was allowed ad libitum. The investigation was carried out for single dose: Group I was treated with normal saline orally for 15 days (normal control). Group II was administered normal saline orally for 15 days and received APZ (3 mg/kg p.o.) on day 15. Group III received SA (20 mg/kg p.o.) for 15 days and received APZ (3 mg/kg p.o.) on day 15. Group IV was treated with SA (20 mg/kg p.o.) for 15 days. For the multiple dose study, Group I was treated with normal saline orally for 15 days (normal control); Group II received APZ (3 mg/kg p.o.) daily for 15 days; Group III was administered with SA (20 mg/kg p.o.) and APZ (3 mg/kg p.o.) for 15 days and Group IV received SA (20 mg/kg p.o.) for 15 days. The group I and IV were kept common in single and multiple dose groups. After last APZ dose, plasma samples were collected and APZ concentrations were determined using an UPLC-MS/MS technique. The pharmacokinetic parameters were calculated using a non-compartmental analysis. The concomitant administration of APZ with SA (as single or multiple dose) resulted in an increase in APZ absorption and a decrease on its systemic clearance. This was associated with a reduction in CYP3A2 and CYP2D6 protein expressions by 33-43% and -71-68% after the single and multiple co-administration, which are two enzymes responsible of the metabolism of APZ. Therefore, a reduction in the metabolic clearance appears to be the mechanism underlying the drug interaction of dietary supplement containing SA with APZ. Therefore, the concomitant administration of SA and APZ should be carefully viewed. Further investigations are required to assess the clinical significance of such observations in humans.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Aljenobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naushad Ali
- Department of Quality Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Olawoye OS, Adeagbo BA, Bolaji OO. Moringa oleifera leaf powder alters the pharmacokinetics of amodiaquine in healthy human volunteers. J Clin Pharm Ther 2018; 43:626-632. [PMID: 29920710 DOI: 10.1111/jcpt.12725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/17/2018] [Indexed: 12/26/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Moringa oleifera (MO) Lam (Moringaceae) is commonly used as food supplement and as medicine in most African countries where malaria is also endemic. Therefore, co-administration of MO with antimalarials is a possibility. This study investigated the effects of MO leaves powder on the pharmacokinetics of amodiaquine (AQ) in human subjects. METHODS Twenty healthy volunteers were recruited for the 3-period study. In the first period, a single dose of AQ tablet (10 mg/kg) was administered orally after an overnight fast. After a 7-day washout period, AQ was co-administered with MO. For the third period, each subject took 3 g MO once daily for 7 days and on the 8th day, MO was co-administered with AQ. The plasma concentrations of amodiaquine and desethylamodiaquine (DEAQ) were simultaneously determined using a validated HPLC method. RESULTS AND DISCUSSION The results showed a significant decrease (P = .037) in the Cmax of AQ after concurrent administration (CA) with MO, whereas after pretreatment (PT), there was a 32% decrease in the Cmax of AQ. For the metabolite, DEAQ, Cmax increased significantly (P = .006) by 79.36%, and Cmax in PT was significantly higher than (P = .001) that of the CA arm of the study. AUC of DEAQ increased significantly by 40.4% (P = .006) and by 188% (P = .001) after CA and PT, respectively. WHAT IS NEW AND CONCLUSION The study established pharmacokinetic interaction between AQ and MO when given together or following a long period of ingestion of MO. This may have clinical implications for malaria therapy.
Collapse
Affiliation(s)
- O S Olawoye
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - B A Adeagbo
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - O O Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
35
|
Johnson EJ, González-Peréz V, Tian DD, Lin YS, Unadkat JD, Rettie AE, Shen DD, McCune JS, Paine MF. Selection of Priority Natural Products for Evaluation as Potential Precipitants of Natural Product-Drug Interactions: A NaPDI Center Recommended Approach. Drug Metab Dispos 2018; 46:1046-1052. [PMID: 29735752 DOI: 10.1124/dmd.118.081273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 11/22/2022] Open
Abstract
Pharmacokinetic interactions between natural products (NPs) and conventional medications (prescription and nonprescription) are a longstanding but understudied problem in contemporary pharmacotherapy. Consequently, there are no established methods for selecting and prioritizing commercially available NPs to evaluate as precipitants of NP-drug interactions (NPDIs). As such, NPDI discovery remains largely a retrospective, bedside-to-bench process. This Recommended Approach, developed by the Center of Excellence for Natural Product Drug Interaction Research (NaPDI Center), describes a systematic method for selecting NPs to evaluate as precipitants of potential clinically significant pharmacokinetic NPDIs. Guided information-gathering tools were used to score, rank, and triage NPs from an initial list of 47 candidates. Triaging was based on the presence and/or absence of an NPDI identified in a clinical study (≥20% or <20% change in the object drug area under the concentration vs. time curve, respectively), as well as mechanistic and descriptive in vitro and clinical data. A qualitative decision-making tool, termed the fulcrum model, was developed and applied to 11 high-priority NPs for rigorous study of NPDI risk. Application of this approach produced a final list of five high-priority NPs, four of which are currently under investigation by the NaPDI Center.
Collapse
Affiliation(s)
- Emily J Johnson
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Vanessa González-Peréz
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Dan-Dan Tian
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Yvonne S Lin
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jashvant D Unadkat
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Allan E Rettie
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Danny D Shen
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jeannine S McCune
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Mary F Paine
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (Y.S.L., J.D.U., A.E.R., D.D.S., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.J., V.G.-P., D.-D.T., M.F.P.); Department of Pharmaceutics (Y.S.L., J.D.U., D.D.S., J.S.M.) and Department of Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| |
Collapse
|
36
|
Iijima R, Watanabe T, Ishiuchi K, Matsumoto T, Watanabe J, Makino T. Interactions between crude drug extracts used in Japanese traditional Kampo medicines and organic anion-transporting polypeptide 2B1. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:153-159. [PMID: 29248449 DOI: 10.1016/j.jep.2017.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/19/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of herbal medicines has become popular worldwide, and the information on drug interactions between herbal medicines and chemical drugs is needed. AIM OF THE STUDY We screened the inhibitory effects of crude drugs used in Kampo medicines used in Japan on organic anion-transporting polypeptide (OATP) 2B1 to predict potential interactions between Kampo medicines and chemical drugs used together. MATERIALS AND METHODS We chose 98 kinds of crude drugs frequently used as ingredients of Kampo formulations in Japan and prepared their boiling water extracts. We then screened their inhibitory effects on OATP2B1 by measuring the uptake of estrone 3-sulphate (E3S) by HEK293 cells stably expressing OATP2B1. RESULTS At the concentration of 100µg/ml, the extracts prepared from 12 kinds of crude drugs, Scuteralliae Radix, Arecae Semen, Aurantii Fructus Immaturus, Perillae Herba, Panacis Japonici Rhizoma, Moutan Cortex, Polygalae Radix, Rhei Rhizoma, Cannabis Fructus, Chrysanthemi Flos, Eriobotryae Folium, and Querci Cortex, suppressed the function of OATP2B1 by less than 20%. The extract of bofutsushosan, a representative Kampo formulation, inhibited OATP2B1 function with sufficient levels to suppress absorption of OATP2B1 substrates in clinics. We further evaluated the inhibitory effects of several ingredients containing Rhei Rhizoma, Perillae Herba, and Moutan Cortex on OATP2B1. CONCLUSIONS Because of crude drugs used in Kampo medicines might suppress absorption of OATP2B1 substrates, these results may contribute to the safe and effective use of Kampo medicine in clinics. A list of abbreviations: EC, (-)-epicatechin; ECG, epicatechin gallate; EGC, epigallocatechin; EGCG, Epigallocatechin gallate; FBS, fetal bovine serum; grapefruit juice; HEK293, Human embryonic kidney; IC50, The half inhibitory concentration; OATP, organic anion-transporting polypeptide; β-PGG, penta-O-galloyl-β-D-glucose; t.i.d, 3 times a day.
Collapse
Affiliation(s)
- Rie Iijima
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 4678603, Japan
| | - Tomoki Watanabe
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 4678603, Japan
| | - Kan'ichiro Ishiuchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 4678603, Japan
| | - Takashi Matsumoto
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki 300-1192, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 4678603, Japan.
| |
Collapse
|
37
|
You MK, Kim HJ, Kook JH, Kim HA. St. John's Wort Regulates Proliferation and Apoptosis in MCF-7 Human Breast Cancer Cells by Inhibiting AMPK/mTOR and Activating the Mitochondrial Pathway. Int J Mol Sci 2018; 19:ijms19040966. [PMID: 29570671 PMCID: PMC5979501 DOI: 10.3390/ijms19040966] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
St. John’s Wort (SJW) has been used as an estrogen agonist in the systems affected by menopause. Also, hypericin, a bioactive compound of SJW, has been used as a photosensitizer in photodynamic therapy. In the present study, we investigate the anti-proliferative and pro-apoptotic effects of SJW to demonstrate the chemo-preventive effect in human breast cancer cells. MCF-7 cells were cultured with DMSO or various concentrations of SJW ethanol extract (SJWE). Cell viability, proliferation, apoptosis, the expression of proteins involved in cell growth and apoptosis, and caspase-3/7 activity were examined. SJWE dose-dependently suppressed cell growth and induced apoptosis of MCF-7 cells. Mechanistically, SJWE enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and decreased the expression of p-mammalian target of rapamycin (p-mTOR) and p-eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). Also, SJWE inhibited the phosphorylation of protein kinase B (Akt) and showed increases in the expression of pro-apoptotic proteins Bax and Bad with decreases in the expression of anti-apoptotic proteins including B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), and p-Bcl-2-associated death promoter (p-Bad). SJWE at 50 μg/mL showed markedly enhanced caspase-7 activation. Taken together, our results provide evidence that SJWE shows anti-proliferative and pro-apoptotic effects via inhibition of AMPK/mTOR and activation of a mitochondrial pathway. Therefore, SJWE can be used as a chemo-preventive agent without photo-activation.
Collapse
Affiliation(s)
- Mi-Kyoung You
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Hwa-Jin Kim
- Hisol Inc., 247-9, Baraebong-gil, Unbong-eup, Namwon-si, Jeollabuk-do 55717, Korea.
| | - Ji Hyun Kook
- Department of Food and Nutrition, Mokpo National University, 1666, Yeongsan-ro, Cheonggye-myeon, Muan-gun, Jeollanam-do 58554, Korea.
| | - Hyeon-A Kim
- Department of Food and Nutrition, Mokpo National University, 1666, Yeongsan-ro, Cheonggye-myeon, Muan-gun, Jeollanam-do 58554, Korea.
| |
Collapse
|
38
|
Kovačević I, Kogler VM, Turković TM, Dunkić LF, Ivanec Ž, Petek D. Self-care of chronic musculoskeletal pain - experiences and attitudes of patients and health care providers. BMC Musculoskelet Disord 2018. [PMID: 29514616 PMCID: PMC5842573 DOI: 10.1186/s12891-018-1997-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Self-care is often the first choice for people with chronic musculoskeletal pain. Self-care includes the use of non-prescription medications with no doctor's supervision, as well as the use of other modern and traditional treatment methods with no consultation of the health care provider. Self-care may have positive effects on the successful outcome of a multidisciplinary approach to treatment. The aim of this study was to investigate the experiences and attitudes of patients and health care providers to the self-care of chronic musculoskeletal pain. METHODS Qualitative Phenomenological study, where the data were collected by the method of an audio-taped interview in 15 patients at the outpatient clinic for pain management and in 20 health care providers involved in the treatment of those patients. The interviews were transcribed verbatim and analyzed by principles of Interpretative Thematic Analysis. RESULTS Topics identified in patients: a) positive aspects of self-care, b) a need for pain self-care, c) social aspects of pain self-care. Topics identified in health care providers: a) aspects of self-care, b) a need for self-care c) risks of self-care. Most of patients have positive attitude to self-care and this is the first step to pain management and to care for itself. The most frequent factors influencing decision about the self-care are heavy pain, unavailability of the doctor, long awaiting time for the therapy, or ineffectiveness of methods of conventional medicine. The health care providers believe that self-care of chronic musculoskeletal pain may be a patient's contribution to clinical treatment. However, good awareness of methods used is important in this context, to avoid adverse effects of self-care. CONCLUSION Patients understand the self-care of musculoskeletal pain as an individually adjusted treatment and believe in its effectiveness. Health care providers support self-care as an adjunction to clinical management only, and think that self-care of musculoskeletal pain acts as a placebo, with a short-lived effect on chronic musculoskeletal pain.
Collapse
Affiliation(s)
- Irena Kovačević
- University of Applied Health Sciences, Mlinarska 38, 10 000, Zagreb, Croatia.
| | | | | | - Lidija Fumić Dunkić
- Sisters of Charity University Hospital Centre, Vinogradska cesta 29, Zagreb, Croatia
| | - Željko Ivanec
- Sisters of Charity University Hospital Centre, Vinogradska cesta 29, Zagreb, Croatia
| | - Davorina Petek
- Department of Family Medicine, Faculty of Medicine, University of Ljubljana, Poljanski nasip 58, 1000, Ljubljana, Slovenia
| |
Collapse
|
39
|
Inhibition of cytochrome P450 enzymes by thymoquinone in human liver microsomes. Saudi Pharm J 2018; 26:673-677. [PMID: 29989011 PMCID: PMC6035319 DOI: 10.1016/j.jsps.2018.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/11/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the potential effect of thymoquinone (TQ) on the metabolic activity of four major drug metabolizing enzymes in human liver microsomes, namely cytochrome P450 (CYP) 1A2, CYP2C9, CYP2D6 and CYP3A4. The inhibition of CYP enzymatic activities by TQ was evaluated by incubating typical substrates (phenacetin for CYP1A2, tolbutamide for CYP2C9, dextromethorphan for CYP2D6, and testosterone for CYP3A4) with human liver microsomes and NADPH in the absence or presence of TQ (1, 10 and 100 µM). The respective metabolite of the substrate that was formed was measured by HPLC. Results of the presented study presented that the metabolic activities of all the investigated CYP enzymes, viz. CYP1A2, CYP2C9, CYP2D6 and CYP3A4, were inhibited by TQ. At 1 µM TQ, CYP2C9 enzyme activity was maximally inhibited by 46.35%, followed by CYP2D6 (20.26%) > CYP1A2 (13.52%) > CYP3A4 (12.82%). However, at 10 µM TQ, CYP2C9 enzyme activity was maximally inhibited by 69.69%, followed by CYP3A4 (23.59%) > CYP1A2 (23.51%) > CYP2D6 (11.42%). At 100 µM TQ, CYP1A2 enzyme activity was maximally inhibited by 81.92%, followed by CYP3A4 (79.24%) > CYP2C9 (69.22%) > CYP2D6 (28.18%). The IC50 (mean ± SE) values for CYP1A2, CYP2C9, CYP2D6 and CYP3A4 inhibition were 26.5 ± 2.9 µM, 0.5 ± 0.4 µM, >500 µM and 25.2 ± 3.1 µM, respectively. These findings suggest that there is a high probability of drug interactions resulting from the co-administration of TQ or herbs containing TQ with drugs that are metabolized by the CYP enzymes, particularly CYP2C9.
Collapse
|
40
|
Ekow Thomford N, Dzobo K, Adu F, Chirikure S, Wonkam A, Dandara C. Bush mint (Hyptis suaveolens) and spreading hogweed (Boerhavia diffusa) medicinal plant extracts differentially affect activities of CYP1A2, CYP2D6 and CYP3A4 enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:58-69. [PMID: 28942133 DOI: 10.1016/j.jep.2017.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 05/27/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Hyptis suaveolens (L) Poit and Boerhavia diffusa Linn are medicinal herbal plants commonly found in the tropics and sub-tropics. They are used to treat various conditions among them boils, dyslipidaemia, eczema, malaria, jaundice and gonorrhoea. Thus, the herbal medicinal extracts are now found as part of some commercial herbal formulations. There has not been adequate characterization of these medicinal herbs on their effects on drug metabolising enzymes. AIM OF THE STUDY To investigate the effects of extracts of Hyptis suaveolens (HS) and Boerhavia diffusa (BD) on activity of drug metabolising enzymes, CYP1A2, CYP2D6 and CYP3A4, as well predict their potential for herb-drug interaction. A secondary aim was to identify constituent compounds such as polyphenolics, in the crude extract preparations of Hyptis suaveolens and Boerhavia diffusa and measure them for activity. MATERIALS AND METHODS CYP450 inhibition assays using recombinant CYP450 (rCYP) and fluorescence screening employing individual isozymes (CYP1A2, CYP2D6 and CYP3A4) were used to determine reversible- and time-dependent inhibition (TDI) profiles of extracts of Hyptis suaveolens and Boerhavia diffusa. Inhibition kinetic parameters, Ki and Kinact were also estimated. UPLC-MS employing a Synapt G2 (ESI negative) coupled to a PDA detector was used to identify polyphenolic compounds in crude extracts of Hyptis suaveolens and Boerhavia diffusa. RESULTS The inhibitory potency of Hyptis suaveolens and Boerhavia diffusa extracts varied among the different enzymes, with CYP1A2 (3.68 ± 0.10µg/mL) being the least inhibited by HS compared to CYP2D6 (1.39 ± 0.01µg/mL) and CYP3A4 (2.36 ± 0.57µg/mL). BD was most potent on CYP3A4 (7.36 ± 0.94µg/mL) compared to both CYP2D6 (17.79 ± 1.02µg/mL) and CYP1A2 (9.48 ± 0.78µg/mL). Extracts of Hyptis suaveolens and Boerhavia diffusa exhibited TDIs on all CYPs. The most prominent phenolic candidates identified in both medicinal herbs using UPLC-MS analysis included caffeic acid, rutin, quercetin, citric acid, ferulic acid and gluconic acid. These phenolic compounds are thought to potentially give HS and BD their therapeutic effects and inhibitory characteristics affecting CYP450 activities. In vivo predictions showed the potential for HS and BD extracts to cause significant interactions if co-administered with other medications. CONCLUSIONS The study reveals that crude aqueous extracts of HS and BD potentially inhibit drug metabolising isozymes CYP1A2, CYP2D6 and CYP3A4 in a reversible and time-dependent manner. Thus care should be taken when these extracts are co-administered with drugs that are substrates of CYP1A2, CYP2D6 and CYP3A4.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Drug metabolism Research Group, Division of Human Genetics, Department of Pathology & Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa; School of Medical Sciences, University of Cape Coast, Cape Coast, PMB, Ghana.
| | - Kevin Dzobo
- ICGEB, Cape Town component, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa; Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Faustina Adu
- School of Medical Sciences, University of Cape Coast, Cape Coast, PMB, Ghana.
| | - Shadreck Chirikure
- Department of Archaeology, University of Cape Town, Cape Town, Rondebosch 7701, South Africa.
| | - Ambroise Wonkam
- Pharmacogenomics and Drug metabolism Research Group, Division of Human Genetics, Department of Pathology & Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Collet Dandara
- Pharmacogenomics and Drug metabolism Research Group, Division of Human Genetics, Department of Pathology & Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
41
|
Awortwe C, Makiwane M, Reuter H, Muller C, Louw J, Rosenkranz B. Critical evaluation of causality assessment of herb-drug interactions in patients. Br J Clin Pharmacol 2018; 84:679-693. [PMID: 29363155 DOI: 10.1111/bcp.13490] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this review was to assess the severity of adverse drug reactions (ADRs) due to herb-drug interactions (HDI) in patients taking herbs and prescribed medications based on published evidence. Electronic databases of PubMed, the Cochrane Library, Medline and Scopus were searched for randomized or nonrandomized clinical studies, case-control and case reports of HDI. The data were extracted and the causal relationship of ADRs as consequences of HDI assessed using Horn's drug interaction probability scale or Roussel Uclaf Causality Assessment Method scoring systems. The mechanism of interaction was ascertained using Stockley's herbal medicine interaction companion. Forty-nine case reports and two observational studies with 15 cases of ADRs were recorded. The majority of the patients were diagnosed with cardiovascular diseases (30.60%), cancer (22.45%) and renal transplants (16.32%) receiving mostly warfarin, alkylating agents and cyclosporine, respectively. HDI occurred in patients resulting in clinical ADRs with different severity. Patients may poorly respond to therapeutic agents or develop toxicity due to severe HDI, which in either scenario may increase the cost of treatment and/or lead to or prolong patient hospitalization. It is warranted to increase patient awareness of the potential interaction between herbs and prescribed medicines and their consequences to curb HDI as a potential health problem.
Collapse
Affiliation(s)
- Charles Awortwe
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa.,Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Memela Makiwane
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| | - Christo Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Bernd Rosenkranz
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, 7505, South Africa
| |
Collapse
|
42
|
Toward Evidence-Based Chinese Medicine: Status Quo, Opportunities and Challenges. Chin J Integr Med 2018; 24:163-170. [PMID: 29340887 DOI: 10.1007/s11655-017-2795-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 02/05/2023]
Abstract
How to test the treatments of Chinese medicine (CM) and make them more widely accepted by practitioners of Western medicine and the international healthcare community is a major concern for practitioners and researchers of CM. For centuries, various approaches have been used to identify and measure the efficacy and safety of CM. However, the high-quality evidence related to CM that produced in China is still rare. Over the recent years, evidence-based medicine (EBM) has been increasingly applied to CM, strengthening its theoretical basis. This paper reviews the past and present state of CM, analyzes the status quo, challenges and opportunities of basic research, clinical trials, systematic reviews, clinical practice guidelines and clinical pathways and evidence-based education developed or conducted in China, pointing out how EBM can help to make CM more widely used and recognized worldwide.
Collapse
|
43
|
Assessing Herb–Drug Interactions of Herbal Products With Therapeutic Agents for Metabolic Diseases: Analytical and Regulatory Perspectives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64179-3.00009-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Interventional Spine and Pain Procedures in Patients on Antiplatelet and Anticoagulant Medications (Second Edition). Reg Anesth Pain Med 2017; 43:225-262. [DOI: 10.1097/aap.0000000000000700] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Caffeine – rich infusion from Cola nitida (kola nut) inhibits major carbohydrate catabolic enzymes; abates redox imbalance; and modulates oxidative dysregulated metabolic pathways and metabolites in Fe2+-induced hepatic toxicity. Biomed Pharmacother 2017; 96:1065-1074. [DOI: 10.1016/j.biopha.2017.11.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/05/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
|
46
|
Chávez-Morales R, Jaramillo-Juárez F, Rodríguez-Vázquez M, Martínez-Saldaña M, del Río FP, Garfias-López J. The Ginkgo biloba extract (GbE) protects the kidney from damage produced by a single and low dose of carbon tetrachloride in adult male rats. ACTA ACUST UNITED AC 2017; 69:430-434. [DOI: 10.1016/j.etp.2017.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/19/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023]
|
47
|
Rashrash M, Schommer JC, Brown LM. Prevalence and Predictors of Herbal Medicine Use Among Adults in the United States. J Patient Exp 2017; 4:108-113. [PMID: 28959715 PMCID: PMC5593261 DOI: 10.1177/2374373517706612] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To describe the prevalence of herbal medicine use among US adults and to assess factors associated with and predictors of herbal use. DESIGN The data for herbal products use were collected from the 2015 National Consumer Survey on the Medication Experience and Pharmacists' Roles. Chi-square test was used to analyz factors associated with herbal use, and predictors of herbal use were assessed with logistic regression analysis. RESULTS Factors associated with herbal supplement use include age older than 70, having a higher than high school education, using prescription medications or over-the-counter (OTC) medications, and using a mail-order pharmacy." All Disease state associated significantly with herbal use. Approximately thirty-eight percent of those who used herbals used prescription medications and 42% of those who used herbals also used an OTC medication. The most frequent conditions associated with herbal supplement use were a stroke (48.7%), cancer (43.1%), and arthritis (43.0%). Among herbal product users, factors that predicted use included having higher than school education, using OTC medications, using mail-order pharmacy, stroke, obesity, arthritis, and breathing problems. CONCLUSIONS More than one-third of respondents reported using herbal supplements. Older age and higher education were associated with a higher use of herbal supplements. People with chronic diseases are more likely to use herbal medicines than others. OTC drug users and patients with stroke are more likely to use herbal medicines than others.
Collapse
Affiliation(s)
- Mohamed Rashrash
- Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, USA
| | - Jon C Schommer
- University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Lawrence M Brown
- Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA, USA
| |
Collapse
|
48
|
Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological Effects of Glycyrrhiza glabra (Licorice): A Review. Phytother Res 2017; 31:1635-1650. [PMID: 28833680 DOI: 10.1002/ptr.5893] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
Licorice (Glycyrrhiza glabra) has been considered as an herbal drug since ancient time. Nowadays, it is a well-known spice that possesses worth pharmacological effects. However, some relevant articles have revealed negative impacts of licorice in health. By considering the great wishes in using herbal medicine, it is important to show adverse effects of herbal medicine in health. At present, there are misunderstandings toward the safety of herbal medicines. Herein, we gathered scientific research projects on the toxicity effects of licorice and glycyrrhizin to highlight their safety. In this regards, we categorized our findings about the toxicity effects of licorice and glycyrrhizin in acute, sub-acute, sub-chronic, and chronic states. Besides, we discussed on the cytotoxicity, genotoxicity, mutagenicity, and carcinogenicity of licorice and glycyrrhizin as well as their developmental toxicity. This review disclosed that G. glabra and glycyrrhizin salts are moderately toxic. They need to be used with caution during pregnancy. G. glabra and glycyrrhizin possess selective cytotoxic effects on cancerous cells. The most important side effects of licorice and glycyrrhizin are hypertension and hypokalemic-induced secondary disorders. Licorice side effects are increased by hypokalemia, prolonged gastrointestinal transient time, decreased type 2 11-beta-hydroxysteroid dehydrogenase activities, hypertension, anorexia nervosa, old age, and female sex. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Somayeh Nazari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Raish M, Ahmad A, Alkharfy KM, Jan BL, Mohsin K, Ahad A, Al-Jenoobi FI, Al-Mohizea AM. Effects of Paeonia emodi on hepatic cytochrome P450 (CYP3A2 and CYP2C11) expression and pharmacokinetics of carbamazepine in rats. Biomed Pharmacother 2017; 90:694-698. [PMID: 28419964 DOI: 10.1016/j.biopha.2017.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022] Open
Abstract
Herbal medicines, dietary supplements, and other foods may pharmacokinetically and/or pharmacodynamically interact with carbamazepine (CBZ), which could lead to potential clinical consequences. Paeonia emodi (PE) is one of the herbs used as complementary therapy in the treatment of epileptic patients in some cultures, and may also be co-administered with CBZ. This study evaluates the effects of PE on the pharmacokinetics of CBZ and determines a possible mechanism of interaction. Rats were administered vehicle saline or PE (200mg/kg, p.o. daily for 7days), then administered a single CBZ dose (80mg/kg, p.o.) on day 7. Plasma samples were analyzed for CBZ concentrations using a sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) assay. Pharmacokinetic parameters were calculated using non-compartmental analysis. The co-administration of PE with CBZ resulted in increased plasma maximum concentration (Cmax), area under the curve (AUC0-∞), and half-life (T½), by 14.61%, 48.12%, and 43.72%, respectively. The calculated oral clearance (CL/F) was reduced by 33.54%, while the volume of distribution (Vss) was unaffected. The PE extract also showed a significant potential to reduce CYP3A and CYP2C protein expression by approximately 50%. Therefore, a reduction in the metabolic capacity responsible for CBZ clearance appears to be the mechanism behind this herb-drug interaction. Consequently, the concomitant administration of PE and CBZ should be viewed cautiously. Further studies are needed to determine the clinical relevance of these observations.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ajaz Ahmad
- Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Basit L Jan
- Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kazi Mohsin
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
50
|
Singh A, Zhao K. Herb-Drug Interactions of Commonly Used Chinese Medicinal Herbs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:197-232. [PMID: 28807159 DOI: 10.1016/bs.irn.2017.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more and more popular use of traditional herbal medicines, in particular Chinese herbal medicines, herb-drug interactions have become a more and more important safety issue in the clinical applications of the conventional drugs. Researches in this area are increasing very rapidly. Herb-drug interactions are complicated due to the fact that multiple chemical components are involved, and these compounds may possess diverse pharmacological activities. Interactions can be in both pharmacokinetics and pharmacodynamics. Abundant studies focused on pharmacokinetic interactions of herbs and drugs. Herbs may affect the behavior of the concomitantly used drugs by changing their absorption, distribution, metabolism, and excretion. Studies on pharmacodynamics interactions of herbs and drugs are still very limited. Herb-drug interactions are potentially causing changes in drug levels and drug activities and leading to either therapeutic failure or toxicities. Sometime it can be fatal. The exposures to drugs, lacking of knowledge in the potential adverse herb-drug interactions, will put big risk to patients' safety in medical services. On the contrary, some interactions may be therapeutically beneficial. It may be used to help develop new therapeutic strategies in the future. This chapter is trying to review the development in the area of herb-drug interactions based on the recently published research findings. Information on the potential interactions among the commonly used Chinese medicinal herbs and conventional drugs is summarized in this chapter.
Collapse
Affiliation(s)
- Amrinder Singh
- Traditional Chinese Herbal Medicine Programme, Middlesex University, The Borough, Hendon, London, United Kingdom
| | - Kaicun Zhao
- Traditional Chinese Herbal Medicine Programme, Middlesex University, The Borough, Hendon, London, United Kingdom.
| |
Collapse
|