1
|
Suzuki T, Yoshihara M, Sakai S, Tsuji K, Nagoya K, Magara J, Tsujimura T, Inoue M. Effect of peripherally and cortically evoked swallows on jaw reflex responses in anesthetized rabbits. Brain Res 2018; 1694:19-28. [PMID: 29730058 DOI: 10.1016/j.brainres.2018.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/03/2018] [Accepted: 05/01/2018] [Indexed: 01/02/2023]
Abstract
This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 s. In the middle 10 s, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-s periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-s SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed.
Collapse
Affiliation(s)
- Taku Suzuki
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Shogo Sakai
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Kojun Tsuji
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan.
| |
Collapse
|
2
|
Kato T, Nakamura N, Masuda Y, Yoshida A, Morimoto T, Yamamura K, Yamashita S, Sato F. Phasic bursts of the antagonistic jaw muscles during REM sleep mimic a coordinated motor pattern during mastication. J Appl Physiol (1985) 2012. [PMID: 23195628 DOI: 10.1152/japplphysiol.00895.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sleep-related movement disorders are characterized by the specific phenotypes of muscle activities and movements during sleep. However, the state-specific characteristics of muscle bursts and movement during sleep are poorly understood. In this study, jaw-closing and -opening muscle electromyographic (EMG) activities and jaw movements were quantified to characterize phenotypes of motor patterns during sleep in freely moving and head-restrained guinea pigs. During non-rapid eye movement (NREM) sleep, both muscles were irregularly activated in terms of duration, activity, and intervals. During rapid eye movement (REM) sleep, clusters of phasic bursts occurred in the two muscles. Compared with NREM sleep, burst duration, activity, and intervals were less variable during REM sleep for both muscles. Although burst activity was lower during the two sleep states than during chewing, burst duration and intervals during REM sleep were distributed within a similar range to those during chewing. A trigger-averaged analysis of muscle bursts revealed that the temporal association between the bursts of the jaw-closing and -opening muscles during REM sleep was analogous to the temporal association during natural chewing. The burst characteristics of the two muscles reflected irregular patterns of jaw movements during NREM sleep and repetitive alternating bilateral movements during REM sleep. The distinct patterns of jaw muscle bursts and movements reflect state-specific regulations of the jaw motor system during sleep states. Phasic activations in the antagonistic jaw muscles during REM sleep are regulated, at least in part, by the neural networks involving masticatory pattern generation, demonstrating that waking jaw motor patterns are replayed during sleep periods.
Collapse
Affiliation(s)
- T Kato
- Osaka University Graduate School of Dentistry, Department of Oral Anatomy and Neurobiology, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Morquette P, Lavoie R, Fhima MD, Lamoureux X, Verdier D, Kolta A. Generation of the masticatory central pattern and its modulation by sensory feedback. Prog Neurobiol 2012; 96:340-55. [PMID: 22342735 DOI: 10.1016/j.pneurobio.2012.01.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/16/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
The basic pattern of rhythmic jaw movements produced during mastication is generated by a neuronal network located in the brainstem and referred to as the masticatory central pattern generator (CPG). This network composed of neurons mostly associated to the trigeminal system is found between the rostral borders of the trigeminal motor nucleus and facial nucleus. This review summarizes current knowledge on the anatomical organization, the development, the connectivity and the cellular properties of these trigeminal circuits in relation to mastication. Emphasis is put on a population of rhythmogenic neurons in the dorsal part of the trigeminal sensory nucleus. These neurons have intrinsic bursting capabilities, supported by a persistent Na(+) current (I(NaP)), which are enhanced when the extracellular concentration of Ca(2+) diminishes. Presented evidence suggest that the Ca(2+) dependency of this current combined with its voltage-dependency could provide a mechanism for cortical and sensory afferent inputs to the nucleus to interact with the rhythmogenic properties of its neurons to adjust and adapt the rhythmic output. Astrocytes are postulated to contribute to this process by modulating the extracellular Ca(2+) concentration and a model is proposed to explain how functional microdomains defined by the boundaries of astrocytic syncitia may form under the influence of incoming inputs.
Collapse
Affiliation(s)
- Philippe Morquette
- Groupe de Recherche sur le Système Nerveux Central du FRSQ, Université de Montréal and Faculté de médecine dentaire, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Charra R, Datiche F, Casthano A, Gigot V, Schaal B, Coureaud G. Brain processing of the mammary pheromone in newborn rabbits. Behav Brain Res 2011; 226:179-88. [PMID: 21925546 DOI: 10.1016/j.bbr.2011.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/30/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
Abstract
Chemosignals strongly contribute to social interactions in mammals, including mother-young relationships. In the European rabbit, a volatile compound emitted by lactating females in milk, the 2-methylbut-2-enal, has been isolated. Carrying the properties of a pheromone, in particular the spontaneous ability to release critical sucking-related movements in newborns, it has been called the mammary pheromone (MP). Lesion of the vomeronasal organ and preliminary 2-deoxyglucose data suggested that the MP could be processed by the main olfactory system. However, the neuronal substrate that sustains the MP-induced response of neonates remained unknown. Here, we evaluated Fos expression in 4-day-old-rabbits exposed to the MP (in comparison with control neonates exposed to non-relevant odorant, no odorant or unmanipulated pups) both at the level of the olfactory bulb and central brain regions. Evidence of high and widespread Fos immunoreactivity in the main olfactory bulb appear in MP pups while the accessory olfactory bulb exhibits a negligible staining. However, no obvious bulbar pattern of Fos expression is observed, when in contrast a certain pattern emerges with the neutral odorant. Compared to this latter, the MP exposure increases Fos expression in the anterior piriform cortex, the organum vasculosum of the lamina terminalis and the habenula, with a tendency in the lateral preoptic region. For the first time, a pheromone essential for mother-young interaction is thus highlighted for its processing by the main olfactory system, the whole olfactory bulb, and by brain regions involved in osmoregulation, thirst and motivation-guided motor responses.
Collapse
Affiliation(s)
- R Charra
- Developmental Ethology and Cognitive Psychology & Brain, Sensoriality and Metabolism groups, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne, Agrosup Dijon, Dijon, France
| | | | | | | | | | | |
Collapse
|
5
|
Effects of electrical stimulation of the superior laryngeal nerve on the jaw-opening reflex. Brain Res 2011; 1391:44-53. [PMID: 21466791 DOI: 10.1016/j.brainres.2011.03.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 01/24/2011] [Accepted: 03/29/2011] [Indexed: 01/01/2023]
Abstract
The present study aimed to examine whether the jaw-opening reflex (JOR) is modulated during swallowing, and if so, to compare the modulation between the low- and high-threshold afferent-evoked reflex responses. Experiments were carried out on 11 anesthetized rabbits. The inferior alveolar nerve was stimulated to evoke the JOR in the digastric muscle. The stimulus intensity was either 1.5 (low threshold) or 4.0 (high threshold) times the threshold for eliciting the JOR. As a conditioning stimulation, the superior laryngeal nerve (SLN) was repetitively stimulated to evoke the swallowing reflex. The stimulus intensity ranged from 0.6 to 8.0 times the threshold to evoke the swallowing reflex during SLN stimulation over 20s. Electromyographic (EMG) activities of the digastric and mylohyoid muscles were recorded, and the peak-to-peak EMG amplitude of the digastric muscle was measured and compared with and without SLN stimulation, as well as with and without swallowing. Comparisons were also made between low- and high-threshold afferent-evoked JORs. The JOR was strongly suppressed during SLN stimulation. The degree of suppression increased and the latency for the JOR was delayed when the stimulus current applied to the SLN was increased. Such modulation was apparent when the low-threshold afferent-evoked JOR was recorded. Effects of motor outputs of swallowing events and those of single-pulse stimulation of SLN on the inhibition of the JOR were not noted. These results suggest that the JOR evoked by both the low- and high-threshold afferents was inhibited during laryngeal sensory input and following swallowing, probably to prevent opposing jaw movements evoked by oral sensory input during swallowing.
Collapse
|
6
|
Brain stem control of the phases of swallowing. Dysphagia 2009; 24:333-48. [PMID: 19399555 DOI: 10.1007/s00455-009-9211-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 01/09/2009] [Indexed: 10/20/2022]
Abstract
The phases of swallowing are controlled by central pattern-generating circuitry of the brain stem and peripheral reflexes. The oral, pharyngeal, and esophageal phases of swallowing are independent of each other. Although central pattern generators of the brain stem control the timing of these phases, the peripheral manifestation of these phases depends on sensory feedback through reflexes of the pharynx and esophagus. The dependence of the esophageal phase of swallowing on peripheral feedback explains its absence during failed swallows. Reflexes that initiate the pharyngeal phase of swallowing also inhibit the esophageal phase which ensures the appropriate timing of its occurrence to provide efficient bolus transport and which prevents the occurrence of multiple esophageal peristaltic events. These inhibitory reflexes are probably partly responsible for deglutitive inhibition. Three separate sets of brain stem nuclei mediate the oral, pharyngeal, and esophageal phases of swallowing. The trigeminal nucleus and reticular formation probably contain the oral phase pattern-generating neural circuitry. The nucleus tractus solitarius (NTS) probably contains the second-order sensory neurons as well as the pattern-generating circuitry of both the pharyngeal and esophageal phases of swallowing, whereas the nucleus ambiguus and dorsal motor nucleus contain the motor neurons of the pharyngeal and esophageal phases of swallowing. The ventromedial nucleus of the NTS may govern the coupling of the pharyngeal phase to the esophageal phase of swallowing.
Collapse
|
7
|
Ross CF, Dharia R, Herring SW, Hylander WL, Liu ZJ, Rafferty KL, Ravosa MJ, Williams SH. Modulation of mandibular loading and bite force in mammals during mastication. ACTA ACUST UNITED AC 2007; 210:1046-63. [PMID: 17337717 DOI: 10.1242/jeb.02733] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Modulation of force during mammalian mastication provides insight into force modulation in rhythmic, cyclic behaviors. This study uses in vivo bone strain data from the mandibular corpus to test two hypotheses regarding bite force modulation during rhythmic mastication in mammals: (1) that bite force is modulated by varying the duration of force production, or (2) that bite force is modulated by varying the rate at which force is produced. The data sample consists of rosette strain data from 40 experiments on 11 species of mammals, including six primate genera and four nonprimate species: goats, pigs, horses and alpacas. Bivariate correlation and multiple regression methods are used to assess relationships between maximum (epsilon(1)) and minimum (epsilon(2)) principal strain magnitudes and the following variables: loading time and mean loading rate from 5% of peak to peak strain, unloading time and mean unloading rate from peak to 5% of peak strain, chew cycle duration, and chew duty factor. Bivariate correlations reveal that in the majority of experiments strain magnitudes are significantly (P<0.001) correlated with strain loading and unloading rates and not with strain loading and unloading times. In those cases when strain magnitudes are also correlated with loading times, strain magnitudes are more highly correlated with loading rate than loading time. Multiple regression analyses reveal that variation in strain magnitude is best explained by variation in loading rate. Loading time and related temporal variables (such as overall chew cycle time and chew duty factor) do not explain significant amounts of additional variance. Few and only weak correlations were found between strain magnitude and chew cycle time and chew duty factor. These data suggest that bite force modulation during rhythmic mastication in mammals is mainly achieved by modulating the rate at which force is generated within a chew cycle, and less so by varying temporal parameters. Rate modulation rather than time modulation may allow rhythmic mastication to proceed at a relatively constant frequency, simplifying motor control computation.
Collapse
Affiliation(s)
- Callum F Ross
- Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lund JP, Kolta A. Brainstem circuits that control mastication: do they have anything to say during speech? JOURNAL OF COMMUNICATION DISORDERS 2006; 39:381-90. [PMID: 16884732 DOI: 10.1016/j.jcomdis.2006.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/12/2006] [Indexed: 05/11/2023]
Abstract
UNLABELLED Mastication results from the interaction of an intrinsic rhythmical neural pattern and sensory feedback from the mouth, muscles and joints. The pattern is matched to the physical characteristics of food, but also varies with age. There are large differences in masticatory movements among subjects. The intrinsic rhythmical pattern is generated by an assembly of neurons called a central pattern generator (CPG) located in the pons and medulla. The CPG receives inputs from higher centers of the brain, especially from the inferio-lateral region of the sensorimotor cortex and from sensory receptors. Mechanoreceptors in the lips and oral mucosa, in muscles, and in the periodontal ligaments around the roots of the teeth have particularly powerful effects on movement parameters. The central pattern generator includes a core group of neurons with intrinsic bursting properties, as well as a variety of other neurons that receive inputs from oral and muscle spindle afferents. Reorganization of subpopulations of neurons within the CPG underlies changes in movement pattern. In addition to controlling motoneurons supplying the jaw, tongue, and facial muscles, the CPG also modulates reflex circuits. It is proposed that these brainstem circuits also participate in the control of human speech. LEARNING OUTCOMES Readers will be able to: (1) describe the general location and function of the central pattern generator for mastication, (2) identify the primary nuclei involved in the central pattern generator for mastication, (3) describe the general interactions among the central pattern generators of speech, mastication, respiration, and locomotion, and (4) compare/relate the brainstem systems controlling mastication and speech.
Collapse
Affiliation(s)
- James P Lund
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Que. H3A 2B2, Canada.
| | | |
Collapse
|
9
|
Lund JP, Kolta A. Generation of the Central Masticatory Pattern and Its Modification by Sensory Feedback. Dysphagia 2006; 21:167-74. [PMID: 16897322 DOI: 10.1007/s00455-006-9027-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian mastication results from the interaction of an intrinsic rhythmical neural pattern and sensory feedback generated by the interaction of the effecter system (muscles, bones, joints, teeth, soft tissues) with food. The main variables that explain variation in the pattern of human mastication are the subjects themselves, their age, the type of food being eaten, and time during a sequence of movements. The intrinsic pattern of mastication is generated by a central pattern generator (CPG) located in the pons and medulla. The output of the CPG is modified by inputs that descend from higher centers of the brain and by feedback from sensory receptors. Intraoral touch receptors, muscle spindles in the jaw-closing muscles, and specialized mechanoreceptors in the periodontal ligament have especially powerful effects on movement parameters.
Collapse
Affiliation(s)
- James P Lund
- Faculty of Dentistry, McGill University, Montreal, Quebec, H3A 2B2, Canada.
| | | |
Collapse
|
10
|
Takamatsu J, Inoue T, Tsuruoka M, Suganuma T, Furuya R, Kawawa T. Involvement of reticular neurons located dorsal to the facial nucleus in activation of the jaw-closing muscle in rats. Brain Res 2006; 1055:93-102. [PMID: 16087167 DOI: 10.1016/j.brainres.2005.06.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 06/27/2005] [Accepted: 06/29/2005] [Indexed: 11/18/2022]
Abstract
The location of excitatory premotor neurons for jaw-closing motoneurons was examined by the use of electrical and chemical stimulation and extracellular single-unit recording techniques in the anesthetized rat. Single-pulse electrical stimulation of the supratrigeminal region (SupV) and the reticular formation dorsal to the facial nucleus (RdVII) elicited masseter EMG response at mean (+/-SD) latencies of 2.22 +/- 0.59 ms and 3.10 +/- 1.14 ms, respectively. Microinjection (0.1-0.3 microl) of glutamate (50 mM) or kainate (0.5-100 microM) into RdVII increased masseter nerve activity in artificially ventilated and immobilized rats by 30.2 +/- 40.5% and 50.7 +/- 46.8% compared to baseline values, respectively. Forty reticular neurons were antidromically activated by stimulation of the ipsilateral trigeminal motor nucleus (MoV). Twenty neurons were found in RdVII, and the remaining 20 neurons were located in SupV, or areas adjacent to SupV or RdVII. Eleven neurons in RdVII responded to at least either passive jaw opening or light pressure applied to the teeth or tongue. Nine neurons responded to passive jaw opening. Five of the nine neurons responded to multiple stimulus categories. A monosynaptic excitatory projection from one neuron in RdVII was detected by spike-triggered averaging of the rectified masseter nerve activity. We suggest that reticular neurons in RdVII are involved in increasing masseter muscle activity and that excitatory premotor neurons for masseter motoneurons are likely located in this area. RdVII could be an important candidate for controlling activity of jaw-closing muscles via peripheral inputs.
Collapse
Affiliation(s)
- Junichi Takamatsu
- Department of Prosthodontics, Showa University School of Dentistry, Tokyo 145-8515, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Athanassiadis T, Westberg KG, Olsson KA, Kolta A. Physiological characterization, localization and synaptic inputs of bursting and nonbursting neurons in the trigeminal principal sensory nucleus of the rat. Eur J Neurosci 2005; 22:3099-110. [PMID: 16367776 DOI: 10.1111/j.1460-9568.2005.04479.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A population of neurons in the trigeminal principal sensory nucleus (NVsnpr) fire rhythmically during fictive mastication induced in the in vivo rabbit. To elucidate whether these neurons form part of the central pattern generator (CPG) for mastication, we performed intracellular recordings in brainstem slices taken from young rats. Two cell types were defined, nonbursting (63%) and bursting (37%). In response to membrane depolarization, bursting cells, which dominated in the dorsal part of the NVsnpr, fired an initial burst followed by single spikes or recurring bursts. Non-bursting neurons, scattered throughout the nucleus, fired single action potentials. Microstimulation applied to the trigeminal motor nucleus (NVmt), the reticular border zone surrounding the NVmt, the parvocellular reticular formation or the nucleus reticularis pontis caudalis (NPontc) elicited a postsynaptic potential in 81% of the neurons tested for synaptic inputs. Responses obtained were predominately excitatory and sensitive to glutamatergic antagonists DNQX and/or APV. Some inhibitory and biphasic responses were also evoked. Bicuculline methiodide or strychnine blocked the IPSPs indicating that they were mediated by GABA(A) or glycinergic receptors. About one-third of the stimulations activated both types of neurons antidromically, mostly from the masseteric motoneuron pool of NVmt and dorsal part of NPontc. In conclusion, our new findings show that some neurons in the dorsal NVsnpr display both firing properties and axonal connections which support the hypothesis that they may participate in masticatory pattern generation. Thus, the present data provide an extended basis for further studies on the organization of the masticatory CPG network.
Collapse
Affiliation(s)
- T Athanassiadis
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
12
|
Dal Bo G, Lund JP, Verdier D, Kolta A. Inputs to nucleus pontis caudalis from adjacent trigeminal areas. Eur J Neurosci 2005; 22:1987-96. [PMID: 16262637 DOI: 10.1111/j.1460-9568.2005.04371.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent studies suggest that the nucleus pontis caudalis (nPontc) plays a role in patterning mastication through interactions with the adjacent lateral tegmentum. In this study, we used in vitro intracellular recording and staining to describe the basic membrane properties and morphology of nPontc neurones and to further explore interactions with adjacent structures, using coronal sections of the brainstem of 78 rats, aged 9-28 days. Neurones were large, with dendrites that spread in all directions, and about 64% fired tonically even in the absence of synaptic inputs. Tonic neurones were predominant in the centre of the nucleus. Electrical stimulation of all regions of the nPontc produced mixed excitatory and inhibitory effects on interneurones of lateral tegmental nuclei. Focal inactivation of the dorsal nPontc with injections of tetrodotoxin also had mixed effects on the spontaneous firing of both interneurones and motoneurones but similar injections in the ventral nPontc produced mostly increases of firing. Sixty-five percent of nPontc neurones received synaptic inputs from the lateral tegmental areas and most of these (68%) were excitatory and mediated by glutamatergic receptors. Inhibitory postsynaptic potentials were mediated by GABA(A) or glycinergic receptors. Although most responses occurred at relatively long latencies (> 2 ms), they could follow relatively high-frequency stimulation (> 50 Hz). Excitatory and inhibitory connections between ipsi- and contralateral nPontc neurones were also documented, which could contribute to bilateral coordination of jaw movements. This study provides evidence that the nPontc exerts both tonic and phasic influences on the premotor components of the masticatory central pattern generator.
Collapse
Affiliation(s)
- G Dal Bo
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
13
|
Adaption of the central masticatory pattern to the biomechanical properties of food. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ics.2005.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Athanassiadis T, Olsson KA, Kolta A, Westberg KG. Identification of c-Fos immunoreactive brainstem neurons activated during fictive mastication in the rabbit. Exp Brain Res 2005; 165:478-89. [PMID: 15887006 DOI: 10.1007/s00221-005-2319-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 02/16/2005] [Indexed: 10/25/2022]
Abstract
In the present study we used the expression of the c-Fos-like protein as a "functional marker" to map populations of brainstem neurons involved in the generation of mastication. Experiments were conducted on urethane-anesthetized and paralyzed rabbits. In five animals (experimental group), rhythmical bouts of fictive masticatory-like motoneuron activity (cumulative duration 60-130 min) were induced by electrical stimulation of the left cortical "masticatory area" and recorded from the right digastric motoneuron pool. A control group of five animals (non-masticatory) were treated in the same way as the experimental animals with regard to surgical procedures, anesthesia, paralysis, and survival time. To detect the c-Fos-like protein, the animals were perfused, and the brainstems were cryosectioned and processed immunocytochemically. In the experimental group, the number of c-Fos-like immunoreactive neurons increased significantly in several brainstem areas. In rostral and lateral areas, increments occurred bilaterally in the borderzones surrounding the trigeminal motor nucleus (Regio h); the rostrodorsomedial half of the trigeminal main sensory nucleus; subnucleus oralis-gamma of the spinal trigeminal tract; nuclei reticularis parvocellularis pars alpha and nucleus reticularis pontis caudalis (RPc) pars alpha. Further caudally-enhanced labeling occurred bilaterally in nucleus reticularis parvocellularis and nucleus reticularis gigantocellularis (Rgc) including its pars-alpha. Our results provide a detailed anatomical record of neuronal populations that are correlated with the generation of the masticatory motor behavior.
Collapse
Affiliation(s)
- T Athanassiadis
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, 901 87, Umeå, Sweden
| | | | | | | |
Collapse
|
15
|
Min MY, Hsu PC, Yang HW. The physiological and morphological characteristics of interneurons caudal to the trigeminal motor nucleus in rats. Eur J Neurosci 2004; 18:2981-98. [PMID: 14656294 DOI: 10.1111/j.1460-9568.2003.03030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we have characterized the membrane properties and morphology of interneurons which lie between the caudal pole of the trigeminal motor nucleus and the rostral border of the facial motor nucleus. Previous studies suggest that many of these interneurons may participate in the genesis of rhythmical jaw movements. Saggital brainstem slices were taken from rats aged 5-8 days. Interneurons lying caudal to the trigeminal motor nucleus were visualized using near-infrared differential interference contrast (DIC) microscopy, and were recorded from using patch pipettes filled with a K-gluconate- and biocytin-based solution. The 127 neurons recorded could be categorized into three subtypes on the basis of their responses to injection of depolarizing current pulses, namely tonic firing (type I), burst firing (type II) and spike-adaptive (type III) neurons. Type I interneurons had a higher input resistance and a lower rheobase than type II neurons. All three neuron subtypes showed 'sag' of the voltage response to injection of large-amplitude hyperpolarizing current pulses, and, in addition, also showed rectification of the voltage response to injection of depolarizing current pulses, with type II neurons showing significantly greater rectification than type I neurons. The axonal arborizations were reconstructed for 44 of 63 neurons labelled with tracer. Neurons of each subtype were found to issue axon collaterals terminating in the brainstem nuclei, including the parvocellular reticular nucleus (PCRt), the trigeminal motor nucleus (Vmot), the supratrigeminal nucleus or the trigeminal mesencephalic nucleus. Twenty-five of the 43 neurons issued collaterals which terminated in the Vmot and the other brainstem nuclei. When viewed under 100x magnification, the collaterals of some interneurons were seen to give off varicosities and end-terminations which passed close to the somata of unidentified neurons in the trigeminal motor nucleus and in the area close to the interneuron soma itself. This suggests that the interneurons may make synaptic contacts both on motoneurons and also on nearby interneurons. These results provide data on the membrane properties of trigeminal interneurons and evidence for their synaptic connections both with nearby interneurons and also with motoneurons. Thus, the interneurons examined could play roles in the shaping, and possibly also in the generation, of rhythmical signals to trigeminal motoneurons.
Collapse
Affiliation(s)
- Ming-Yuan Min
- Department of Physiology, China Medical University, Taichung 404, Taiwan
| | | | | |
Collapse
|
16
|
Scott G, Westberg KG, Vrentzos N, Kolta A, Lund JP. Effect of lidocaine and NMDA injections into the medial pontobulbar reticular formation on mastication evoked by cortical stimulation in anaesthetized rabbits. Eur J Neurosci 2003; 17:2156-62. [PMID: 12786982 DOI: 10.1046/j.1460-9568.2003.02670.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons of the dorsal nucleus reticularis pontis caudalis (nPontc) fire rhythmically during fictive mastication, while neurons of the ventral half tend to fire tonically (Westberg et al., 2001). This paper describes the changes in the pattern of rhythmical mastication elicited by stimulation of the sensorimotor cortex during inhibition or excitation of neurons in this nucleus and adjacent parts of nucleus reticularis gigantocellularis (Rgc) in the anaesthetized rabbit. Masticatory movements and electromyographic (EMG) activity of the masseter and digastric muscles produced by cortical stimulation were recorded before, during and after injections of a local anaesthetic (lidocaine) or excitatory amino acid N-methyl-d-aspartate (NMDA) into nPontc and Rgc through a microsyringe with attached microelectrode to record neuronal activity. Lidocaine inhibited local neurons and modified the motor program, and the effects varied with the site of injection. Most injections into the ventral half of nPontc increased cycle duration, digastric burst duration and burst area. The action of lidocaine in dorsal nPontc was more variable, although burst duration and area were often decreased. The effects on the muscle activity were always bilateral. Lidocaine block of the rostromedial part of Rgc had no effect on movements or on EMGs. Injections of NMDA excited local neurons and when injected into ventral nPontc, it completely blocked mastication. Dorsal injections either had no effect or increased cycle frequency, while decreasing burst duration and area. No increases in EMG burst duration or area were observed with NMDA. Our findings suggest that neurons of ventral nPontc tonically inhibit other parts of the central pattern generator during mastication, while dorsal neurons have mixed effects. We incorporated these findings into a new model of the masticatory central pattern generator.
Collapse
Affiliation(s)
- G Scott
- Faculty of Dentistry, McGill University, Montréal, Québec H3A 2B2, Canada
| | | | | | | | | |
Collapse
|
17
|
Tsuboi A, Kolta A, Chen CC, Lund JP. Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur J Neurosci 2003; 17:229-38. [PMID: 12542659 DOI: 10.1046/j.1460-9568.2003.02450.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The trigeminal principal sensory nucleus (NVsnpr) contains both trigemino-thalamic neurons and interneurons projecting to the reticular formation and brainstem motor nuclei. Here we describe the inputs and patterns of firing of NVsnpr neurons during fictive mastication in anaesthetized and paralysed rabbits to determine the role that NVsnpr may play in patterning mastication. Of the 272 neurons recorded in NVsnpr, 107 changed their firing patterns during repetitive stimulation of the left or right sensorimotor cortex to induce fictive mastication. Thirty increased their firing tonically. Seventy-seven became rhythmically active, but only 31 fired in phase with mastication. The others discharged in bursts at more than twice the frequency of trigeminal motoneurons. Most rhythmic masticatory neurons were concentrated in the dorsal part, and those which fired during the jaw closing phase of the cycle were confined to the anterior pole of the nucleus. Most of these cells had inputs from muscle spindle afferents, whereas most of those firing during jaw opening had inputs from periodontal receptors. Non-masticatory rhythmical neurons had receptive fields on the lips and face. The majority of rhythmical masticatory units were modulated during fictive mastication evoked by both the left and right cortices and only four changed their phase of firing when switching from one cortex to the other. When coupled with the finding that NVsnpr neurons exhibit spontaneous bursting in vitro[Sandler et al. (1998) Neuroscience, 83, 891], the results described here suggest that neurons of dorsal NVsnpr may form the core of the central pattern generator for mastication.
Collapse
Affiliation(s)
- A Tsuboi
- Faculty of Dentistry, McGill University, Montréal, Québec H3A 2B2, Canada
| | | | | | | |
Collapse
|