1
|
Mahmood MA, Naqvi RZ, Rahman SU, Amin I, Mansoor S. Plant Virus-Derived Vectors for Plant Genome Engineering. Viruses 2023; 15:v15020531. [PMID: 36851743 PMCID: PMC9958682 DOI: 10.3390/v15020531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Advances in genome engineering (GE) tools based on sequence-specific programmable nucleases have revolutionized precise genome editing in plants. However, only the traditional approaches are used to deliver these GE reagents, which mostly rely on Agrobacterium-mediated transformation or particle bombardment. These techniques have been successfully used for the past decades for the genetic engineering of plants with some limitations relating to lengthy time-taking protocols and transgenes integration-related regulatory concerns. Nevertheless, in the era of climate change, we require certain faster protocols for developing climate-smart resilient crops through GE to deal with global food security. Therefore, some alternative approaches are needed to robustly deliver the GE reagents. In this case, the plant viral vectors could be an excellent option for the delivery of GE reagents because they are efficient, effective, and precise. Additionally, these are autonomously replicating and considered as natural specialists for transient delivery. In the present review, we have discussed the potential use of these plant viral vectors for the efficient delivery of GE reagents. We have further described the different plant viral vectors, such as DNA and RNA viruses, which have been used as efficient gene targeting systems in model plants, and in other important crops including potato, tomato, wheat, and rice. The achievements gained so far in the use of viral vectors as a carrier for GE reagent delivery are depicted along with the benefits and limitations of each viral vector. Moreover, recent advances have been explored in employing viral vectors for GE and adapting this technology for future research.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot 51310, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saleem Ur Rahman
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Jhang Road, Faisalabad 38000, Pakistan
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74000, Pakistan
- Correspondence:
| |
Collapse
|
2
|
Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. Appl Environ Microbiol 2022; 88:e0033322. [PMID: 35638841 PMCID: PMC9238390 DOI: 10.1128/aem.00333-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased β-lactamase production, a response dependent on the broad-spectrum β-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent β-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent β-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in β-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit β-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security.
Collapse
|
3
|
Fazili MA, Bashir I, Ahmad M, Yaqoob U, Geelani SN. In vitro strategies for the enhancement of secondary metabolite production in plants: a review. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:35. [PMID: 35221660 PMCID: PMC8857880 DOI: 10.1186/s42269-022-00717-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plants are the prime source of vital secondary metabolites (SMs) which are medicinally important for drug development, and these secondary metabolites are often used by plants in the various important tasks like defense against herbivory, interspecies defenses and against different types of stresses. For humans, these secondary metabolites are important as medicines, pigments, flavorings and drugs. Because most of the pharmaceutical industries are highly dependent on medicinal plants and their extraction, these medicinal plants are getting endangered. MAIN BODY Plant cell culture technologies are introduced as a viable mechanism for producing and studying SMs of plants. Various types of in vitro strategies (elicitation, hairy root culture system, suspension culture system, etc.) have been considerably used for the improvement of the production of SMs of plants. For the enhancement of SM production, suspension culture and elicitation are mainly used, but hairy root culture and other organ cultures are proved to satisfy the demand of secondary metabolites. Now, it is easy to control and manipulate the pathways that produce the plant secondary metabolites. CONCLUSIONS Techniques like plant cell, tissue and organ cultures provide a valuable method for the production of medicinally significant SMs. In recent years, most of the in vitro strategies are used due to knowledge and regulation of SM pathway in commercially valuable plants. In future, these things will provide a valuable method to sustain the feasibility of medicinal plants as the renewable sources of medicinally important compounds, and these methods will provide successful production of desired, important, valuable and also unknown compounds.
Collapse
Affiliation(s)
- Mohammad Afaan Fazili
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, UP India
| | - Irfan Bashir
- Plant Biotechnology and Tissue Culture Section, Department of Botany, Aligarh Muslim University, Aligarh, UP India
| | - Mudasar Ahmad
- Department of Botany, GDC Boys Pulwama, Pulwama, J&K 192301 India
| | - Ubaid Yaqoob
- Department of Botany, Sri Pratap College, M. A. Road, Srinagar, J&K 190001 India
| | - Syed Naseem Geelani
- Division of Social and Basic Sciences, Faculty of Forestry, SKAUST-K, Benhama, Ganderbal, J&K India
| |
Collapse
|
4
|
Chen L, Wang X, Liu Y. Contribution of macrolactin in Bacillus velezensis CLA178 to the antagonistic activities against Agrobacterium tumefaciens C58. Arch Microbiol 2021; 203:1743-1752. [PMID: 33471134 DOI: 10.1007/s00203-020-02141-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Beneficial rhizobacteria can inhibit soilborne pathogens by secreting an array of polyketides, lipopeptides and dipeptides, but the effect of polyketides on crown gall disease caused by Agrobacterium tumefaciens C58 is unclear. In this study, the antagonistic compounds of the plant growth-promoting rhizobacterium Bacillus velezensis CLA178 was sorted with different organic phases, purified by high-pressure liquid chromatography, and detected by a liquid chromatography ionization-mass spectrometry system. Macrolactins were found to be the compounds with antagonistic activity against A. tumefaciens C58. When the macrolactin synthesis pathway was disrupted, the mutant △mlnA only showed slight antagonistic activity against A. tumefaciens C58. Transmission electron microscopy showed that the inhibition of C58 cell division by cell-free culture from the mutant △mlnA was weaker than that by cell-free culture from CLA178. The mutant deficient in production of macrolactin showed a weaker transcription of genes involved in attachment of C58 to plant and lower biocontrol of crown gall disease in rose than the wild-type strain CLA178. The effect of macrolactins on pathogen C58 has been also confirmed by the purified macrolactins. These results reveal that macrolactins contribute to the biocontrol activity of C58 by inhibiting cell division and downregulating the transcription of chvB and chvE.
Collapse
Affiliation(s)
- Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China.,National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Beijing, 102300, People's Republic of China
| | - Xinghong Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China.,National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Beijing, 102300, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
5
|
F-Box Gene D5RF Is Regulated by Agrobacterium Virulence Protein VirD5 and Essential for Agrobacterium-Mediated Plant Transformation. Int J Mol Sci 2020; 21:ijms21186731. [PMID: 32937889 PMCID: PMC7555846 DOI: 10.3390/ijms21186731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Abstract
We previously reported that the Agrobacterium virulence protein VirD5 possesses transcriptional activation activity, binds to a specific DNA element D5RE, and is required for Agrobacterium-mediated stable transformation, but not for transient transformation. However, direct evidence for a role of VirD5 in plant transcriptional regulation has been lacking. In this study, we found that the Arabidopsis gene D5RF (coding for VirD5 response F-box protein, At3G49480) is regulated by VirD5. D5RF has two alternative transcripts of 930 bp and 1594 bp that encode F-box proteins of 309 and 449 amino acids, designated as D5RF.1 and D5RF.2, respectively. D5RF.2 has a N-terminal extension of 140 amino acids compared to D5RF.1, and both of them are located in the plant cell nucleus. The promoter of the D5RF.1 contains two D5RE elements and can be activated by VirD5. The expression of D5RF is downregulated when the host plant is infected with virD5 deleted Agrobacterium. Similar to VirD5, D5RF also affects the stable but not transient transformation efficiency of Agrobacterium. Some pathogen-responsive genes are downregulated in the d5rf mutant. In conclusion, this study further confirmed Agrobacterium VirD5 as the plant transcription activator and identified Arabidopsis thalianaD5RF.1 as the first target gene of VirD5 in regulation.
Collapse
|
6
|
Abstract
The ecological modes of fungi are shaped not only by their intrinsic features and the environment in which they occur, but also by their interactions with diverse microbes. Here we explore the ecological and genomic features of diverse bacterial endosymbionts-endohyphal bacteria-that together are emerging as major determinants of fungal phenotypes and plant-fungi interactions. We first provide a historical perspective on the study of endohyphal bacteria. We then propose a functional classification of three main groups, providing an overview of their genomic, phylogenetic, and ecological traits. Last, we explore frontiers in the study of endohyphal bacteria, with special attention to those facultative and horizontally transmitted bacteria that associate with some of the most diverse lineages of fungi. Overall, our aim is to synthesize the rich literature from nearly 50 years of studies on endohyphal bacteria as a means to highlight potential applications and new research directions.
Collapse
|
7
|
Jia Y, Yao X, Zhao M, Zhao Q, Du Y, Yu C, Xie F. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process. Int J Mol Sci 2015; 16:18522-43. [PMID: 26262617 PMCID: PMC4581258 DOI: 10.3390/ijms160818522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/11/2015] [Accepted: 07/30/2015] [Indexed: 01/20/2023] Open
Abstract
The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.
Collapse
Affiliation(s)
- Yuying Jia
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xingdong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingzhe Zhao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qiang Zhao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yanli Du
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Cuimei Yu
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| | - Futi Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
8
|
Maes M, Amit E, Danieli T, Lebendiker M, Loyter A, Friedler A. The disordered region of Arabidopsis VIP1 binds the Agrobacterium VirE2 protein outside its DNA-binding site. Protein Eng Des Sel 2014; 27:439-46. [DOI: 10.1093/protein/gzu036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
9
|
Wang Y, Peng W, Zhou X, Huang F, Shao L, Luo M. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus. THE NEW PHYTOLOGIST 2014; 203:1266-1281. [PMID: 24865527 DOI: 10.1111/nph.12866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS).
Collapse
Affiliation(s)
- Yafei Wang
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Peng
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Huang
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingyun Shao
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meizhong Luo
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Padavannil A, Jobichen C, Qinghua Y, Seetharaman J, Velazquez-Campoy A, Yang L, Pan SQ, Sivaraman J. Dimerization of VirD2 binding protein is essential for Agrobacterium induced tumor formation in plants. PLoS Pathog 2014; 10:e1003948. [PMID: 24626239 PMCID: PMC3953389 DOI: 10.1371/journal.ppat.1003948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
The Type IV Secretion System (T4SS) is the only bacterial secretion system known to translocate both DNA and protein substrates. The VirB/D4 system from Agrobacterium tumefaciens is a typical T4SS. It facilitates the bacteria to translocate the VirD2-T-DNA complex to the host cell cytoplasm. In addition to protein-DNA complexes, the VirB/D4 system is also involved in the translocation of several effector proteins, including VirE2, VirE3 and VirF into the host cell cytoplasm. These effector proteins aid in the proper integration of the translocated DNA into the host genome. The VirD2-binding protein (VBP) is a key cytoplasmic protein that recruits the VirD2-T-DNA complex to the VirD4-coupling protein (VirD4 CP) of the VirB/D4 T4SS apparatus. Here, we report the crystal structure and associated functional studies of the C-terminal domain of VBP. This domain mainly consists of α-helices, and the two monomers of the asymmetric unit form a tight dimer. The structural analysis of this domain confirms the presence of a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) fold. Biophysical studies show that VBP is a dimer in solution and that the HEPN domain is the dimerization domain. Based on structural and mutagenesis analyses, we show that substitution of key residues at the interface disrupts the dimerization of both the HEPN domain and full-length VBP. In addition, pull-down analyses show that only dimeric VBP can interact with VirD2 and VirD4 CP. Finally, we show that only Agrobacterium harboring dimeric full-length VBP can induce tumors in plants. This study sheds light on the structural basis of the substrate recruiting function of VBP in the T4SS pathway of A. tumefaciens and in other pathogenic bacteria employing similar systems.
Collapse
Affiliation(s)
- Abhilash Padavannil
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Qinghua
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jayaraman Seetharaman
- X4 Beamline, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit IQFR-CSIC-BIFI, and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain, and Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - Liu Yang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shen Q. Pan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - J. Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
11
|
Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud]. Mol Biol Rep 2014; 41:3257-69. [PMID: 24488319 DOI: 10.1007/s11033-014-3188-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022]
Abstract
In this study, leaf midribs, the elite explants, were used for the first time to develop an efficient regeneration and transformation protocol for ramie [Boehmeria nivea (L.) Gaud.] via Agrobacterium-mediated genetic transformation. Sensitivity of leaf midribs regeneration to kanamycin was evaluated, which showed that 40 mg l(-1) was the optimal concentration needed to create the necessary selection pressure. Factors affecting the ramie transformation efficiency were evaluated, including leaf age, Agrobacterium concentration, length of infection time for the Agrobacterium solution, acetosyringone concentration in the co-cultivation medium, and the co-cultivation period. The midrib explants from 40-day-old in vitro shoots, an Agrobacterium concentration at OD600 of 0.6, 10-min immersion in the bacteria solution, an acetosyringone concentration of 50 mg l(-1) in the co-cultivation medium and a 3-day co-cultivation period produced the highest efficiencies of regeneration and transformation. In this study, the average transformation rate was 23.25%. Polymerase chain reactions using GUS and NPTII gene-specific primers, Southern blot and histochemical GUS staining analyses further confirmed that the transgene was integrated into the ramie genome and expressed in the transgenic ramie. The establishment of this system of Agrobacterium-mediated genetic transformation and regeneration of transgenic plants will be used not only to introduce genes of interest into the ramie genome for the purpose of trait improvement, but also as a common means of testing gene function by enhancing or inhibiting the expression of target genes.
Collapse
|
12
|
Ghedira R, De Buck S, Van Ex F, Angenon G, Depicker A. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation. PLANTA 2013; 238:1025-1037. [PMID: 23975012 DOI: 10.1007/s00425-013-1948-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.
Collapse
Affiliation(s)
- Rim Ghedira
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Sylvie De Buck
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Frédéric Van Ex
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), 1050, Brussel, Belgium
- Bayer CropScience NV, Technologiepark 38, 9052, Ghent, Belgium
| | - Geert Angenon
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), 1050, Brussel, Belgium
| | - Ann Depicker
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
13
|
Ghedira R, De Buck S, Nolf J, Depicker A. The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:823-32. [PMID: 23581821 DOI: 10.1094/mpmi-11-12-0267-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To evaluate the chromosomal background of different Agrobacterium strains on floral dip transformation frequency, eight wild-type Agrobacterium strains, provided by Laboratorium voor Microbiologie Gent (LMG) and classified in different genomic groups, were compared with the commonly used Agrobacterium strains C58C1 Rif(r) (pMP90) and LBA4404 in Arabidopsis thaliana Columbia (Col-0) and C24 ecotypes. The C58C1 Rif(r) chromosomal background in combination with the pMP90 virulence plasmid showed high Col-0 floral dip transformation frequencies (0.76 to 1.57%). LMG201, which is genetically close to the Agrobacterium C58 strain, with the same virulence plasmid showed comparable or even higher transformation frequencies (1.22 to 2.28%), whereas the LBA4404 strain displayed reproducibly lower transformation frequencies (<0.2%). All other tested LMG Agrobacterium chromosomal backgrounds had transformation frequencies between those of the C58C1 Rif(r) (pMP90) and LBA4404 reference strains. None of the strains could transform the C24 ecotype with a frequency higher than 0.1%. Strikingly, all Arabidopsis Col-0 floral dip transformation experiments showed a high transformation variability from plant to plant (even more than 50-fold) within and across the performed biological repeats for all analyzed Agrobacterium strains. Therefore, the physiology of the plant and, probably, the availability of competent flowers to be transformed determine, to a large extent, floral dip transformation frequencies.
Collapse
Affiliation(s)
- Rim Ghedira
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
14
|
Magori S, Citovsky V. Hijacking of the Host SCF Ubiquitin Ligase Machinery by Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2011; 2:87. [PMID: 22645554 PMCID: PMC3355745 DOI: 10.3389/fpls.2011.00087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/06/2011] [Indexed: 05/29/2023]
Abstract
The SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex mediates polyubiquitination of proteins targeted for degradation, thereby controlling a plethora of biological processes in eukaryotic cells. Although this ubiquitination machinery is found and functional only in eukaryotes, many non-eukaryotic pathogens also encode F-box proteins, the critical subunits of the SCF complex. Increasing evidence indicates that such non-eukaryotic F-box proteins play an essential role in subverting or exploiting the host ubiquitin/proteasome system for efficient pathogen infection. A recent bioinformatic analysis has identified more than 70 F-box proteins in 22 different bacterial species, suggesting that use of pathogen-encoded F-box effectors in the host cell may be a widespread infection strategy. In this review, we focus on plant pathogen-encoded F-box effectors, such as VirF of Agrobacterium tumefaciens, GALAs of Ralstonia solanacearum, and P0 of Poleroviruses, and discuss the molecular mechanism by which plant pathogens use these factors to manipulate the host cell for their own benefit.
Collapse
Affiliation(s)
- Shimpei Magori
- Department of Biochemistry and Cell Biology, State University of New YorkStony Brook, NY, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New YorkStony Brook, NY, USA
| |
Collapse
|
15
|
Weinthal DM, Barash I, Tzfira T, Gaba V, Teper D, Sessa G, Manulis-Sasson S. Characterization of nuclear localization signals in the type III effectors HsvG and HsvB of the gall-forming bacterium Pantoea agglomerans. MICROBIOLOGY-SGM 2011; 157:1500-1508. [PMID: 21372093 DOI: 10.1099/mic.0.047118-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HsvG and HsvB, two paralogous type III effectors of the gall-forming bacteria Pantoea agglomerans pv. gypsophilae and P. agglomerans pv. betae, determine host specificity on gypsophila and beet, respectively. They were previously shown to be DNA-binding proteins imported into host and non-host nuclei and might act as transcriptional activators. Sequence analysis of these effectors did not detect canonical nuclear localization signals (NLSs), but two basic amino acid clusters designated putative NLS1 and NLS2 were detected in their N-terminal and C-terminal regions, respectively. pNIA assay for nuclear import in yeast and bombardment of melon leaves with each of the NLSs fused to a 2xYFP reporter indicated that putative NLS1 and NLS2 were functional in transport of HsvG into the nucleus. A yeast two-hybrid assay showed that HsvB, HsvG, putative NLS1, putative NLS2, HsvG converted into HsvB, or HsvB converted into HsvG by exchanging the repeat domain, all interacted with AtKAP-α and importin-α3 of Arabidopsis thaliana. Deletion analysis of the NLS domains in HsvG suggested that putative NLS1 or NLS2 were required for pathogenicity on gypsophila cuttings and presumably for import of HsvG into the nucleus. This study demonstrates the presence of two functional NLSs in the type III effectors HsvG and HsvB.
Collapse
Affiliation(s)
- Dan M Weinthal
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.,Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tzvi Tzfira
- Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Victor Gaba
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | - Doron Teper
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Shulamit Manulis-Sasson
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
16
|
Tenea GN, Spantzel J, Lee LY, Zhu Y, Lin K, Johnson SJ, Gelvin SB. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants. THE PLANT CELL 2009; 21:3350-67. [PMID: 19820187 PMCID: PMC2782275 DOI: 10.1105/tpc.109.070607] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 08/10/2009] [Accepted: 09/25/2009] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.
Collapse
|
17
|
Hussain M, Ahmad MS, Siddique A, Hanif M, Ali S, Mirza B. Dimethyltin(IV) Derivatives of Biologically Potent Substituted Phenylacrylic Acids: Synthesis, Chemical Characterization and Inhibitory Effects onAgrobacterium tumefaciens. Chem Biol Drug Des 2009; 74:183-9. [DOI: 10.1111/j.1747-0285.2009.00845.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Duarte RTD, Staats CC, Fungaro MHP, Schrank A, Vainsten MH, Furlaneto-Maia L, Nakamura CV, de Souza W, Furlaneto MC. Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum. Lett Appl Microbiol 2007; 44:248-54. [PMID: 17309500 DOI: 10.1111/j.1472-765x.2006.02092.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To examine the ability of Agrobacterium to attach to Metarhizium anisopliae var. acridum strain CG423 under co-cultivation and to develop an Agrobacterium-mediated method of gene delivery into strain CG423, a promising agent for biological control of grasshoppers. METHODS AND RESULTS The co-cultivation of Agrobacterium tumefaciens and M. anisopliae var. acridum was analysed under scanning electron microscopy. We observed that Agrobacterium attached to and formed aggregates around Metarhizium conidia and germ tubes. We also observed the occurrence of fibril-like structures connecting neighbouring bacterial-fungal cells. The Agrobacterium-mediated transformation was applied using two binary vectors carrying a benomyl resistance gene as a selection marker. The efficiency of transformation was up to 53 transformants per 10(5) target conidia. High mitotic stability of the transformants (89-97%) was demonstrated after five successive transfers on non-selective media. Molecular analysis revealed the occurrence of high frequency of gene conversion. CONCLUSIONS In our study, we report that A. tumefaciens strain AGL-1 attaches to and genetically transforms the entomopathogenic fungus Metarhizium anisopliae var. acridum. SIGNIFICANCE AND IMPACT OF THE STUDY We report for the first time, the attachment of Agrobacterium to fungal cells opening new avenues for the study of this essential step of the T-DNA transfer process. Considering the efficiency of the transformation protocol herein described, this is a useful tool for gene disruption in M. anisopliae var. acridum.
Collapse
Affiliation(s)
- R T D Duarte
- Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina-PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Oldacres AM, Newbury HJ, Puddephat IJ. QTLs controlling the production of transgenic and adventitious roots in Brassica oleracea following treatment with Agrobacterium rhizogenes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:479-88. [PMID: 15942754 DOI: 10.1007/s00122-005-2037-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 04/11/2005] [Indexed: 05/02/2023]
Abstract
Brassica oleracea can be genetically engineered using Agrobacterium rhizogenes. The initial stage of this process is the production of transgenic ('hairy') roots; shoots are subsequently regenerated from these roots. Previous work using gus and gfp reporter genes has shown that genotypes of B. oleracea vary in their performance for transgenic root production. Quantitative trait loci (QTLs) controlling this trait have been located in one mapping population. The current study provides evidence that performance for transgenic root production is associated with performance for adventitious (non-transgenic) root production in B. oleracea across a second mapping population. This is shown by regression analyses between performance for the two traits and the demonstration that QTLs controlling the two traits map to the same positions within the genome. Since the rate of adventitious root production does not differ significantly in the presence and absence of A. rhizogenes, there is no evidence that the expression of Agrobacterium genes induces adventitious root production. It is apparent that genotypes exhibiting high adventitious root production in the absence of A. rhizogenes will also tend to show high transgenic root production, thereby allowing the selection of lines that are more efficiently transformed.
Collapse
Affiliation(s)
- A M Oldacres
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
20
|
Jelesko JG, Carter K, Kinoshita Y, Gruissem W. Frequency and character of alternative somatic recombination fates of paralogous genes during T-DNA integration. Mol Genet Genomics 2005; 274:91-102. [PMID: 15983820 DOI: 10.1007/s00438-005-0001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 04/25/2005] [Indexed: 11/28/2022]
Abstract
A synthetic RBCSB gene cluster was transformed into Arabidopsis in order to simultaneously evaluate the frequency and character of somatic illegitimate recombination, homologous recombination, and targeted gene replacement events associated with T-DNA-mediated transformation. The most frequent type of recombination event observed was illegitimate integration of the T-DNA without activation of the silent DeltaRBCS1B: LUC transgene. Sixteen luc(+) (firefly luciferase positive) T1 plants were isolated. Six of these were due to illegitimate recombination events resulting in a gene trapping effect. Nine resulted from homologous recombination between paralogous RBCSB sequences associated with T-DNA integration. The frequency of somatic homologous recombination associated with T-DNA integration was almost 200 times higher than previously reported rates of meiotic homologous recombination with the same genes. The distribution of (somatic homologous) recombination resolution sites generally fits a fractional interval length model. However, a small region adjacent to an indel showed a significant over-representation of resolution sites, suggesting that DNA mismatch recognition may also play an important role in the positioning of somatic resolution sites. The frequency of somatic resolution within exon-2 was significantly different from that previously observed during meiotic recombination.
Collapse
Affiliation(s)
- John G Jelesko
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | | | | | |
Collapse
|
21
|
Lacroix B, Vaidya M, Tzfira T, Citovsky V. The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 2005; 24:428-37. [PMID: 15616576 PMCID: PMC545813 DOI: 10.1038/sj.emboj.7600524] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 11/26/2004] [Indexed: 11/08/2022] Open
Abstract
To genetically transform plants, Agrobacterium exports its transferred DNA (T-DNA) and several virulence (Vir) proteins into the host cell. Among these proteins, VirE3 is the only one whose biological function is completely unknown. Here, we demonstrate that VirE3 is transferred from Agrobacterium to the plant cell and then imported into its nucleus via the karyopherin alpha-dependent pathway. In addition to binding plant karyopherin alpha, VirE3 interacts with VirE2, a major bacterial protein that directly associates with the T-DNA and facilitates its nuclear import. The VirE2 nuclear import in turn is mediated by a plant protein, VIP1. Our data indicate that VirE3 can mimic this VIP1 function, acting as an 'adapter' molecule between VirE2 and karyopherin alpha and 'piggy-backing' VirE2 into the host cell nucleus. As VIP1 is not an abundant protein, representing one of the limiting factors for transformation, Agrobacterium may have evolved to produce and export to the host cells its own virulence protein that at least partially complements the cellular VIP1 function necessary for the T-DNA nuclear import and subsequent expression within the infected cell.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| | - Manjusha Vaidya
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| | - Tzvi Tzfira
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
22
|
Abu-Arish A, Frenkiel-Krispin D, Fricke T, Tzfira T, Citovsky V, Wolf SG, Elbaum M. Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J Biol Chem 2004; 279:25359-63. [PMID: 15054095 DOI: 10.1074/jbc.m401804200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrobacterium tumefaciens infects plant cells by a unique mechanism involving an interkingdom genetic transfer. A single-stranded DNA substrate is transported across the two cell walls along with the bacterial virulence proteins VirD2 and VirE2. A single VirD2 molecule covalently binds to the 5'-end of the single-stranded DNA, while the VirE2 protein binds stoichiometrically along the length of the DNA, without sequence specificity. An earlier transmission/scanning transmission electron microscopy study indicated a solenoidal ("telephone coil") organization of the VirE2-DNA complex. Here we report a three-dimensional reconstruction of this complex using electron microscopy and single-particle image-processing methods. We find a hollow helical structure of 15.7-nm outer diameter, with a helical rise of 51.5 nm and 4.25 VirE2 proteins/turn. The inner face of the protein units contains a continuous wall and an inward protruding shelf. These structures appear to accommodate the DNA binding. Such a quaternary arrangement naturally sequesters the DNA from cytoplasmic nucleases and suggests a mechanism for its nuclear import by decoration with host cell factors. Coexisting with the helices, we also found VirE2 tetrameric ring structures. A two-dimensional average of the latter confirms the major features of the three-dimensional reconstruction.
Collapse
Affiliation(s)
- Asmahan Abu-Arish
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
23
|
Tzfira T, Frankman LR, Vaidya M, Citovsky V. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. PLANT PHYSIOLOGY 2003; 133:1011-23. [PMID: 14551323 PMCID: PMC281598 DOI: 10.1104/pp.103.032128] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 08/28/2003] [Accepted: 08/28/2003] [Indexed: 05/18/2023]
Abstract
Agrobacterium tumefaciens-mediated genetic transformation involves transfer of a single-stranded T-DNA molecule (T strand) into the host cell, followed by its integration into the plant genome. The molecular mechanism of T-DNA integration, the culmination point of the entire transformation process, remains largely obscure. Here, we studied the roles of double-stranded breaks (DSBs) and double-stranded T-DNA intermediates in the integration process. We produced transgenic tobacco (Nicotiana tabacum) plants carrying an I-SceI endonuclease recognition site that, upon cleavage with I-SceI, generates DSB. Then, we retransformed these plants with two A. tumefaciens strains: one that allows transient expression of I-SceI to induce DSB and the other that carries a T-DNA with the I-SceI site and an integration selection marker. Integration of this latter T-DNA as full-length and I-SceI-digested molecules into the DSB site was analyzed in the resulting plants. Of 620 transgenic plants, 16 plants integrated T-DNA into DSB at their I-SceI sites; because DSB induces DNA repair, these results suggest that the invading T-DNA molecules target to the DNA repair sites for integration. Furthermore, of these 16 plants, seven plants incorporated T-DNA digested with I-SceI, which cleaves only double-stranded DNA. Thus, T-strand molecules can be converted into double-stranded intermediates before their integration into the DSB sites within the host cell genome.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794, USA.
| | | | | | | |
Collapse
|
24
|
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003; 301:653-7. [PMID: 12893945 DOI: 10.1126/science.1086391] [Citation(s) in RCA: 3686] [Impact Index Per Article: 175.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
Collapse
MESH Headings
- 3' Untranslated Regions
- 5' Untranslated Regions
- Alleles
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Composition
- Chromosomes, Plant/genetics
- DNA, Bacterial/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Ethylenes/pharmacology
- Exons
- Expressed Sequence Tags
- Gene Expression
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Genome, Plant
- Introns
- Mutagenesis, Insertional
- Mutation
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- Recombination, Genetic
- Rhizobium/genetics
Collapse
Affiliation(s)
- José M Alonso
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 631] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
26
|
Tzfira T, Vaidya M, Citovsky V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci U S A 2002; 99:10435-40. [PMID: 12124400 PMCID: PMC124932 DOI: 10.1073/pnas.162304099] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Indexed: 12/21/2022] Open
Abstract
Agrobacterium is a unique model system as well as a major biotechnological tool for genetic manipulation of plant cells. It is still unknown, however, whether host cellular factors exist that are limiting for infection, and whether their overexpression in plant cells can increase the efficiency of the infection. Here, we examined the effect of overexpression in tobacco plants of an Arabidopsis gene, VIP1, which encodes a recently discovered cellular protein required for Agrobacterium infection. Our results indicate that VIP1 is imported into the plant cell nucleus via the karyopherin alphadependent pathway and that elevated intracellular levels of VIP1 render the host plants significantly more susceptible to transient and stable genetic transformation by Agrobacterium, probably because of the increased nuclear import of the transferred-DNA.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
27
|
Tzfira T, Citovsky V. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 2002; 12:121-9. [PMID: 11859024 DOI: 10.1016/s0962-8924(01)02229-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetic modification of plant cells by Agrobacterium is the only known natural example of DNA transport between kingdoms. While the bacterial factors involved in Agrobacterium infection have been relatively well characterized, studies of their host cellular partners are just beginning. Here, we describe the plant cell factors that might participate in Agrobacterium-mediated genetic transformation and discuss their possible roles in this process. Because Agrobacterium probably adapts existing cellular processes for its life cycle, identifying the host factors participating in Agrobacterium infection might contribute to a better understanding of such basic biological processes as cell communication, intracellular transport and DNA repair and recombination as well as help expand the host range of Agrobacterium as a genetic engineering tool.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Dept of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | | |
Collapse
|
28
|
Tzfira T, Vaidya M, Citovsky V. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 2001; 20:3596-607. [PMID: 11432846 PMCID: PMC125502 DOI: 10.1093/emboj/20.13.3596] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2000] [Revised: 02/09/2001] [Accepted: 04/30/2001] [Indexed: 11/13/2022] Open
Abstract
T-DNA nuclear import is a central event in genetic transformation of plant cells by Agrobacterium. This event is thought to be mediated by two bacterial proteins, VirD2 and VirE2, which are associated with the transported T-DNA molecule. While VirD2 is imported into the nuclei of plant, animal and yeast cells, nuclear uptake of VirE2 occurs most efficiently in plant cells. To understand better the mechanism of VirE2 action, a cellular interactor of VirE2 was identified and its encoding gene cloned from Arabidopsis. The identified plant protein, designated VIP1, specifically bound VirE2 and allowed its nuclear import in non-plant systems. In plants, VIP1 was required for VirE2 nuclear import and Agrobacterium tumorigenicity, participating in early stages of T-DNA expression.
Collapse
Affiliation(s)
| | | | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
Corresponding author e-mail:
| |
Collapse
|
29
|
Tzfira T, Citovsky V. Comparison between nuclear localization of nopaline- and octopine-specific Agrobacterium VirE2 proteins in plant, yeast and mammalian cells. MOLECULAR PLANT PATHOLOGY 2001; 2:171-6. [PMID: 20573004 DOI: 10.1046/j.1364-3703.2001.00065.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
SUMMARY In a unique case of trans-kingdom DNA transfer, Agrobacterium genetically transforms plants by transferring its DNA segment into the host cell nucleus and integrating it into the plant genome. One of the central players in this process is the bacterial virulence protein, VirE2, which binds the transported DNA molecule and facilitates its nuclear import. Nuclear import of VirE2 proteins encoded by two major Agrobacterium strains, nopaline and octopine, has been hypothesized to occur by different mechanisms, i.e. the nopaline VirE2 was imported only into the nuclei of plant cells while the octopine VirE2 also accumulated in the nuclei of animal cells. Here, this notion was tested by a systematic comparison of nuclear import of nopaline- and octopine-specific VirE2 in dicotyledonous and monocotyledonous plants and in living mammalian and yeast cells. These experiments showed that nuclear import of both nopaline and octopine VirE2 proteins is plant-specific, occurring in plant but not in non-plant systems.
Collapse
Affiliation(s)
- T Tzfira
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
30
|
Abstract
Agrobacterium tumefaciens is a soil phytopathogen that elicits neoplastic growths on the host plant species. In nature, however, Agrobacterium also may encounter organisms belonging to other kingdoms such as insects and animals that feed on the infected plants. Can Agrobacterium, then, also infect animal cells? Here, we report that Agrobacterium attaches to and genetically transforms several types of human cells. In stably transformed HeLa cells, the integration event occurred at the right border of the tumor-inducing plasmid's transferred-DNA (T-DNA), suggesting bona fide T-DNA transfer and lending support to the notion that Agrobacterium transforms human cells by a mechanism similar to that which it uses for transformation of plants cells. Collectively, our results suggest that Agrobacterium can transport its T-DNA to human cells and integrate it into their genome.
Collapse
|
31
|
Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V. Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 2001; 98:1871-6. [PMID: 11172043 PMCID: PMC29349 DOI: 10.1073/pnas.98.4.1871] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2000] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens is a soil phytopathogen that elicits neoplastic growths on the host plant species. In nature, however, Agrobacterium also may encounter organisms belonging to other kingdoms such as insects and animals that feed on the infected plants. Can Agrobacterium, then, also infect animal cells? Here, we report that Agrobacterium attaches to and genetically transforms several types of human cells. In stably transformed HeLa cells, the integration event occurred at the right border of the tumor-inducing plasmid's transferred-DNA (T-DNA), suggesting bona fide T-DNA transfer and lending support to the notion that Agrobacterium transforms human cells by a mechanism similar to that which it uses for transformation of plants cells. Collectively, our results suggest that Agrobacterium can transport its T-DNA to human cells and integrate it into their genome.
Collapse
Affiliation(s)
- T Kunik
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- D V Ward
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|