1
|
Abstract
PURPOSE Water immersion adds additional drag and metabolic demand for limb movement with respect to air, but its effect on the internal metabolic power (Ėint) of cycling is unknown. We aimed at quantifying the increase in Ėint during underwater cycling with respect to dry conditions at different pedaling rates. METHODS 12 healthy subjects (4 females) pedaled on a waterproof cycle ergometer in an experimental pool that was either empty (DRY) or filled with tap water at 30.8 ± 0.6 °C (WET). Four different pedal cadences (fp) were studied (40, 50, 60 and 70 rpm) at 25, 50, 75 and 100 W. The metabolic power at steady state was measured via open circuit respirometry and Ėint was calculated as the metabolic power extrapolated for 0 W. RESULTS Ėint was significantly higher in WET than in DRY at 50, 60 and 70 rpm (81 ± 31 vs 32 ± 30 W, 167 ± 35 vs 50 ± 29 W, 311 ± 51 vs 81 ± 30 W, respectively, all p < 0.0001), but not at 40 rpm (16 ± 5 vs 11 ± 17 W, p > 0.99). Ėint increased with the third power of fp both in WET and DRY (R2 = 0.49 and 0.91, respectively). CONCLUSION Water drag increased Ėint, although limbs unloading via the Archimedes' principle and limbs shape could be potential confounding factors. A simple formula was developed to predict the increase in mechanical power in dry conditions needed to match the rate of energy expenditure during underwater cycling: 44 fp3 - 7 W, where fp is expressed in hertz.
Collapse
Affiliation(s)
- Giovanni Vinetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY Department of Anaesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
2
|
Diaz-Artiles A, Navarro Tichell P, Perez F. Cardiopulmonary Responses to Sub-Maximal Ergometer Exercise in a Hypo-Gravity Analog Using Head-Down Tilt and Head-Up Tilt. Front Physiol 2019; 10:720. [PMID: 31263424 PMCID: PMC6590066 DOI: 10.3389/fphys.2019.00720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
After more than 50 years of spaceflight, we still do not know what is the appropriate range of gravity levels that are required to maintain normal physiological function in humans. This research effort aimed to investigate musculoskeletal, cardiovascular, and pulmonary responses between 0 and 1 g. A human experiment was conducted to investigate acute physiological outcomes to simulated altered-gravity with and without ergometer exercise using a head-down tilt (HDT)/head-up tilt (HUT) paradigm. A custom tilting platform was built to simulate multiple gravitational loads in the head-to-toe direction (Gz) by tilting the bed to the appropriate angle. Gravity levels included: Microgravity (-6°HDT), Moon (0.17g-Gz at +9.5°HUT), Mars (0.38g-Gz at +22.3°HUT), and Earth (1g-Gz at +90° upright). Fourteen healthy subjects performed an exercise protocol at each simulated gravity level that consisted of three work rates (50W, 75W, 100W) while maintaining a constant cycling rate of 90 rpm. Multiple cardiopulmonary variables were gathered, including volume of oxygen uptake (VO2), volume of carbon dioxide output (VCO2), pulmonary ventilation (VE), tidal volume (VT), respiratory rate (Rf), blood pressure, and heart rate (HR) using a portable metabolic system and a brachial blood pressure cuff. Foot forces were also measured continuously during the protocol. Exercise data were analyzed with repeated-measures ANOVA with Bonferroni correction for multiple comparisons, and regression models were fitted to the experimental data to generate dose-response curves as a function of simulated AG-levels and exercise intensity. Posture showed a main effect in all variables except for systolic blood pressure. In particular, VO2, VCO2, VE, VT, Rf, and HR showed average changes across exercise conditions between Microgravity and 1 g (i.e., per unit of simulated AG) of -97.88 mL/min/g, -95.10 mL/min/g, -3.95 L/min/g, 0.165 L/g, -5.33 breaths/min/g, and 5.05 bpm/g, respectively. In the case of VO2, further pairwise comparisons did not show significant differences between conditions, which was consistent with previous studies using supine and HDT postures. For all variables (except HR), comparisons between Mars and Earth conditions were not statistically different, suggesting that ergometer exercise at a gravitational stress comparable to Mars gravity (∼3/8 g) could provide similar physiological stimuli as cycling under 1 g on Earth.
Collapse
Affiliation(s)
- Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A&M University, College Station, TX, United States
| | - Patricia Navarro Tichell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Francisca Perez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
3
|
The physiology of submaximal exercise: The steady state concept. Respir Physiol Neurobiol 2017; 246:76-85. [PMID: 28818484 DOI: 10.1016/j.resp.2017.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/13/2017] [Accepted: 08/04/2017] [Indexed: 11/24/2022]
Abstract
The steady state concept implies that the oxygen flow is invariant and equal at each level along the respiratory system. The same is the case with the carbon dioxide flow. This condition has several physiological consequences, which are analysed. First, we briefly discuss the mechanical efficiency of exercise and the energy cost of human locomotion, as well as the roles played by aerodynamic work and frictional work. Then we analyse the equations describing the oxygen flow in lungs and in blood, the effects of ventilation and of the ventilation - perfusion inequality, and the interaction between diffusion and perfusion in the lungs. The cardiovascular responses sustaining gas flow increase in blood are finally presented. An equation linking ventilation, circulation and metabolism is developed, on the hypothesis of constant oxygen flow in mixed venous blood. This equation tells that, if the pulmonary respiratory quotient stays invariant, any increase in metabolic rate is matched by a proportional increase in ventilation, but by a less than proportional increase in cardiac output.
Collapse
|
4
|
Vinetti G, Fagoni N, Taboni A, Camelio S, di Prampero PE, Ferretti G. Effects of recovery interval duration on the parameters of the critical power model for incremental exercise. Eur J Appl Physiol 2017; 117:1859-1867. [PMID: 28687955 DOI: 10.1007/s00421-017-3662-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/11/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION We tested the linear critical power ([Formula: see text]) model for discrete incremental ramp exercise implying recovery intervals at the end of each step. METHODS Seven subjects performed incremental (power increment 25 W) stepwise ramps to subject's exhaustion, with recovery intervals at the end of each step. Ramps' slopes (S) were 0.83, 0.42, 0.28, 0.21, and 0.08 W s-1; recovery durations (t r) were 0 (continuous stepwise ramps), 60, and 180 s (discontinuous stepwise ramps). We determined the energy store component (W'), the peak power ([Formula: see text]), and [Formula: see text]. RESULTS When t r = 0 s, [Formula: see text] and W' were 187 ± 26 W and 14.5 ± 5.8 kJ, respectively. When t r = 60 or 180 s, the model for ramp exercise provided inconsistent [Formula: see text] values. A more general model, implying a quadratic [Formula: see text] versus [Formula: see text] relationship, was developed. This model yielded, for t r = 60 s, [Formula: see text] = 189 ± 48 W and W' = 18.6 ± 17.8 kJ, and for t r = 180 s, [Formula: see text] = 190 ± 34 W, and W' = 16.4 ± 16.7 kJ. These [Formula: see text] and W' did not differ from the corresponding values for t r = 0 s. Nevertheless, the overall amount of energy sustaining work above [Formula: see text], due to energy store reconstitution during recovery intervals, was higher the longer t r, whence higher [Formula: see text] values. CONCLUSIONS The linear [Formula: see text] model for ramp exercise represents a particular case (for t r = 0 s) of a more general model, accounting for energy resynthesis following oxygen deficit payment during recovery.
Collapse
Affiliation(s)
- Giovanni Vinetti
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Nazzareno Fagoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Anna Taboni
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Stefano Camelio
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Pietro Enrico di Prampero
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe 4, 33100, Udine, Italy
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Departments APSI and NEUFO, University of Geneva, 1 rue Michel Servet, 1221, Geneva 4, Switzerland
| |
Collapse
|
5
|
Effects of gravitational acceleration on cardiovascular autonomic control in resting humans. Eur J Appl Physiol 2015; 115:1417-27. [DOI: 10.1007/s00421-015-3117-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|
6
|
Abstract
Efficient gas exchange in the lung depends on the matching of ventilation and perfusion. However, the human lung is a readily deformable structure and as a result gravitational stresses generate gradients in both ventilation and perfusion. Nevertheless, the lung is capable of withstanding considerable change in the applied gravitational load before pulmonary gas exchange becomes impaired. The postural changes that are part of the everyday existence for most bipedal species are well tolerated, as is the removal of gravity (weightlessness). Increases in the applied gravitational load result only in a large impairment in pulmonary gas exchange above approximately three times that on the ground, at which point the matching of ventilation to perfusion is so impaired that efficient gas exchange is no longer possible. Much of the tolerance of the lung to alterations in gravitation stress comes from the fact that ventilation and perfusion are inextricably coupled. Deformations in the lung that alter ventilation necessarily alter perfusion, thus maintaining a degree of matching and minimizing the disruption in ventilation to perfusion ratio and thus gas exchange.
Collapse
Affiliation(s)
- G Kim Prisk
- Departments of Medicine and Radiology, University of California, San Diego, USA.
| |
Collapse
|
7
|
|
8
|
Emanuele U, Denoth J. Power-cadence relationship in endurance cycling. Eur J Appl Physiol 2011; 112:365-75. [PMID: 21573778 DOI: 10.1007/s00421-011-1987-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/27/2011] [Indexed: 11/27/2022]
Abstract
In maximal sprint cycling, the power-cadence relationship to assess the maximal power output (P (max)) and the corresponding optimal cadence (C (opt)) has been widely investigated in experimental studies. These studies have generally reported a quadratic power-cadence relationship passing through the origin. The aim of the present study was to evaluate an equivalent method to assess P (max) and C (opt) for endurance cycling. The two main hypotheses were: (1) in the range of cadences normally used by cyclists, the power-cadence relationship can be well fitted with a quadratic regression constrained to pass through the origin; (2) P (max) and C (opt) can be well estimated using this quadratic fit. We tested our hypothesis using a theoretical and an experimental approach. The power-cadence relationship simulated with the theoretical model was well fitted with a quadratic regression and the bias of the estimated P (max) and C (opt) was negligible (1.0 W and 0.6 rpm). In the experimental part, eight cyclists performed an incremental cycling test at 70, 80, 90, 100, and 110 rpm to yield power-cadence relationships at fixed blood lactate concentrations of 3, 3.5, and 4 mmol L(-1). The determined power outputs were well fitted with quadratic regressions (R (2) = 0.94-0.96, residual standard deviation = 1.7%). The 95% confidence interval for assessing individual P (max) and C (opt) was ±4.4 W and ±2.9 rpm. These theoretical and experimental results suggest that P (max), C (opt), and the power-cadence relationship around C (opt) could be well estimated with the proposed method.
Collapse
|
9
|
Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise. Eur J Appl Physiol 2011; 111:2907-17. [PMID: 21437604 DOI: 10.1007/s00421-011-1917-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G(z) axis (a (g)) ranging from 0 to 3 g. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with a (g). In contrast, heart rate increased non-linearly with a (g), whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and a (g) was described by a fourth power regression equation. Mean arterial pressure increased with a (g) non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with a (g). These data led to predict that maximal oxygen consumption would decrease drastically as a (g) is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when a (g) is around 4.5 g, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.
Collapse
|
10
|
Bonjour J, Capelli C, Antonutto G, Calza S, Tam E, Linnarsson D, Ferretti G. Determinants of oxygen consumption during exercise on cycle ergometer: the effects of gravity acceleration. Respir Physiol Neurobiol 2010; 171:128-34. [PMID: 20206305 DOI: 10.1016/j.resp.2010.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/10/2010] [Accepted: 02/24/2010] [Indexed: 11/27/2022]
Abstract
The hypothesis that changes in gravity acceleration (a(g)) affect the linear relationships between oxygen consumption VO2 and mechanical power (w ) so that at any w, VO2 increases linearly with a(g) was tested under conditions where the weight of constant-mass legs was let to vary by inducing changes in a(g) in a human centrifuge. The effects of a(g) on the VO2/w relationship were studied on 14 subjects at two pedalling frequencies (f(p), 1.0 and 1.5 Hz), during four work loads on a cycle ergometer (25, 50, 75 and 100 W) and at four a(g) levels (1.0, 1.5, 2.0 and 2.5 times normal gravity). VO2 increased linearly with w. The slope did not differ significantly at various a(g) and f(p), suggesting invariant mechanical efficiency during cycling, independent of f(p) and a(g). Conversely, the y-intercept of the VO2/w relationship, defined as constant b, increased linearly with a(g). Constant b is the sum of resting VO2 plus internal metabolic power (E (i)). Since the former was the same at all investigated a(g), the increase in constant b was entirely due to an increase in E (i). Since the VO2 versus w lines had similar slopes, the changes in E (i) entirely explained the higher VO2 at each w, as a(g) was increased. In conclusion, the effects of a(g) on VO2 are mediated through changes in E (i), and not in w or in resting VO2.
Collapse
Affiliation(s)
- Julien Bonjour
- Département de Neurosciences Fondamentales, Université de Genève, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
Trappe T, Trappe S, Lee G, Widrick J, Fitts R, Costill D. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol (1985) 2006; 100:951-7. [PMID: 16306254 DOI: 10.1152/japplphysiol.01083.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the influence of a 17-day exposure to real and simulated spaceflight (SF) on cardiorespiratory function during exercise, four male crewmembers of the STS-78 space shuttle flight and eight male volunteers were studied before, during, and after the 17-day mission and 17 days of −6° head-down-tilt bed rest (BR), respectively. Measurements of oxygen uptake, pulmonary ventilation, and heart rate were made during submaximal cycling 60, 30, and 15 days before the SF liftoff and 12 and 7 days before BR; on SF days 2, 8, and 13 and on BR days 2, 8, and 13; and on days 1, 4, 5, and 8 after return to Earth and on days 3 and 7 after BR. During 15 days before liftoff, day 4 after return, and day 8 after return and all BR testing, each subject completed a continuous exercise test to volitional exhaustion on a semirecumbent (SF) or supine (BR) cycle ergometer to determine the submaximal and maximal cardiorespiratory responses to exercise. The remaining days of the SF testing were limited to a workload corresponding to 85% of the peak pre-SF peak oxygen uptake (V̇o2 peak) workload. Exposure to and recovery from SF and BR induced similar responses to submaximal exercise at 150 W. V̇o2 peak decreased by 10.4% from pre-SF (15 days before liftoff) to day 4 after return and 6.6% from pre-BR to day 3 after return, which was partially (SF: −5.2%) or fully (BR) restored within 1 wk of recovery. Workload corresponding to 85% of the peak pre-SF V̇o2 peak showed a rapid and continued decline throughout the flight (SF day 2, −6.2%; SF day 8, −9.0%), reaching a nadir of −11.3% during testing on SF day 13. During BR, V̇o2 peak also showed a decline from pre-BR (BR day 2, −7.3%; BR day 8, −7.1%; BR day 13, −9.0%). These results suggest that the onset of and recovery from real and simulated microgravity-induced cardiorespiratory deconditioning is relatively rapid, and head-down-tilt BR appears to be an appropriate model of this effect, both during and after SF.
Collapse
Affiliation(s)
- Todd Trappe
- Human Performance Laboratory, Ball State Univ., Muncie, IN 47306, USA.
| | | | | | | | | | | |
Collapse
|