1
|
Molecular Cytogenetics in Domestic Bovids: A Review. Animals (Basel) 2023; 13:ani13050944. [PMID: 36899801 PMCID: PMC10000107 DOI: 10.3390/ani13050944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The discovery of the Robertsonian translocation (rob) involving cattle chromosomes 1 and 29 and the demonstration of its deleterious effects on fertility focused the interest of many scientific groups on using chromosome banding techniques to reveal chromosome abnormalities and verify their effects on fertility in domestic animals. At the same time, comparative banding studies among various species of domestic or wild animals were found useful for delineating chromosome evolution among species. The advent of molecular cytogenetics, particularly the use of fluorescence in situ hybridization (FISH), has allowed a deeper investigation of the chromosomes of domestic animals through: (a) the physical mapping of specific DNA sequences on chromosome regions; (b) the use of specific chromosome markers for the identification of the chromosomes or chromosome regions involved in chromosome abnormalities, especially when poor banding patterns are produced; (c) better anchoring of radiation hybrid and genetic maps to specific chromosome regions; (d) better comparisons of related and unrelated species by comparative FISH mapping and/or Zoo-FISH techniques; (e) the study of meiotic segregation, especially by sperm-FISH, in some chromosome abnormalities; (f) better demonstration of conserved or lost DNA sequences in chromosome abnormalities; (g) the use of informatic and genomic reconstructions, in addition to CGH arrays, to predict conserved or lost chromosome regions in related species; and (h) the study of some chromosome abnormalities and genomic stability using PCR applications. This review summarizes the most important applications of molecular cytogenetics in domestic bovids, with an emphasis on FISH mapping applications.
Collapse
|
2
|
Glatzer S, Merten NJ, Dierks C, Wöhlke A, Philipp U, Distl O. A Single Nucleotide Polymorphism within the Interferon Gamma Receptor 2 Gene Perfectly Coincides with Polledness in Holstein Cattle. PLoS One 2013; 8:e67992. [PMID: 23805331 PMCID: PMC3689702 DOI: 10.1371/journal.pone.0067992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
Polledness is a high impact trait in modern milk and beef production to meet the demands of animal welfare and work safety. Previous studies have mapped the polled-locus to the proximal region of the bovine chromosome 1 (BTA1) and narrowed it down to approximately 1 Mb. Sequencing of the positional candidate genes within the 1 Mb polled region and whole genome sequencing of Holsteins revealed a single nucleotide polymorphism (SNP) AC000158: g.1390292G>A within intron 3 of the interferon gamma receptor 2 gene (IFNGR2) in perfect co-segregation with polledness in Holsteins. This complete association was validated in 443 animals of the same breed. This SNP allows reliable genotyping of horned, heterozygous and homozygous polled Holsteins, even in animals that could not be resolved using the previously published haplotype for Holstein.
Collapse
Affiliation(s)
- Sabrina Glatzer
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nina Johanna Merten
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia Dierks
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anne Wöhlke
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ute Philipp
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Drögemüller C, Wöhlke A, Leeb T, Distl O. A 4 Mb high resolution BAC contig on bovine chromosome 1q12 and comparative analysis with human chromosome 21q22. Comp Funct Genomics 2010; 6:194-203. [PMID: 18629192 PMCID: PMC2447486 DOI: 10.1002/cfg.476] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 02/03/2005] [Accepted: 03/17/2005] [Indexed: 11/28/2022] Open
Abstract
The bovine RPCI-42 BAC library was screened to construct a sequence-ready ~4 Mb
single contig of 92 BAC clones on BTA 1q12. The contig covers the region between
the genes KRTAP8P1 and CLIC6. This genomic segment in cattle is of special interest
as it contains the dominant gene responsible for the hornless or polled phenotype in
cattle. The construction of the BAC contig was initiated by screening the bovine BAC
library with heterologous cDNA probes derived from 12 human genes of the syntenic
region on HSA 21q22. Contig building was facilitated by BAC end sequencing and
chromosome walking. During the construction of the contig, 165 BAC end sequences
and 109 single-copy STS markers were generated. For comparative mapping of 25
HSA 21q22 genes, genomic PCR primers were designed from bovine EST sequences
and the gene-associated STSs mapped on the contig. Furthermore, bovine BAC
end sequence comparisons against the human genome sequence revealed significant
matches to HSA 21q22 and allowed the in silico mapping of two new genes in cattle.
In total, 31 orthologues of human genes located on HSA 21q22 were directly mapped
within the bovine BAC contig, of which 16 genes have been cloned and mapped for the
first time in cattle. In contrast to the existing comparative bovine–human RH maps of
this region, these results provide a better alignment and reveal a completely conserved
gene order in this 4 Mb segment between cattle, human and mouse. The mapping of
known polled linked BTA 1q12 microsatellite markers allowed the integration of the
physical contig map with existing linkage maps of this region and also determined
the exact order of these markers for the first time. Our physical map and transcript
map may be useful for positional cloning of the putative polled gene in cattle. The
nucleotide sequence data reported in this paper have been submitted to EMBL and
have been assigned Accession Numbers AJ698510–AJ698674.
Collapse
Affiliation(s)
- Cord Drögemüller
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Hannover 30559, Germany.
| | | | | | | |
Collapse
|
4
|
Wunderlich KR, Abbey CA, Clayton DR, Song Y, Schein JE, Georges M, Coppieters W, Adelson DL, Taylor JF, Davis SL, Gill CA. A 2.5-Mb contig constructed from Angus, Longhorn and horned Hereford DNA spanning the polled interval on bovine chromosome 1. Anim Genet 2007; 37:592-4. [PMID: 17121607 DOI: 10.1111/j.1365-2052.2006.01538.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The polled locus has been mapped by genetic linkage analysis to the proximal region of bovine chromosome 1. As an intermediate step in our efforts to identify the polled locus and the underlying causative mutation for the polled phenotype, we have constructed a BAC-based physical map of the interval containing the polled locus. Clones containing genes and markers in the critical interval were isolated from the TAMBT (constructed from Angus and Longhorn genomic DNA) and CHORI-240 (constructed from horned Hereford genomic DNA) BAC libraries and ordered based on fingerprinting and the presence or absence of 80 STS markers. A single contig spanning 2.5 Mb was assembled. Comparison of the physical order of STSs to the corresponding region of human chromosome 21 revealed the same order of genes within the polled critical interval. This contig of overlapping BAC clones from horned and polled breeds is a useful resource for SNP discovery and characterization of positional candidate genes.
Collapse
Affiliation(s)
- K R Wunderlich
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Drögemüller C, Wöhlke A, Mömke S, Distl O. Fine mapping of the polled locus to a 1-Mb region on bovine chromosome 1q12. Mamm Genome 2005; 16:613-20. [PMID: 16180143 DOI: 10.1007/s00335-005-0016-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/20/2005] [Indexed: 01/21/2023]
Abstract
The absence of horns in Bos taurus is under genetic control of the autosomal dominant polled locus which has been genetically mapped to the centromeric region of cattle Chromosome 1. Recently a 4-Mb BAC contig of this chromosomal region has been constructed. Toward positional cloning of the bovine polled locus, we identified 20 additional microsatellite markers spread over the contig map by random sequencing of bacterial artificial chromosome (BAC) subclones. A total of 26 markers were genotyped in 30 two-generation half-sib families of six different German cattle breeds segregating for the hornless phenotype including 336 informative meioses for the polled character. Our fine-mapping study involving 19 recombinant haplotypes allowed us to narrow the critical region for the bovine polled locus to a 1-Mb segment with a centromeric boundary at RP42-218J17_MS1 and a telomeric boundary at BM6438. For marker-assisted selection purposes, the first evidence of informative flanking markers helps to predict polled genotypes with a higher degree of accuracy within families until testing of the causative mutation is available.
Collapse
Affiliation(s)
- Cord Drögemüller
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17 p, 30559, Hannover, Germany.
| | | | | | | |
Collapse
|
6
|
Snelling WM, Gautier M, Keele JW, Smith TPL, Stone RT, Harhay GP, Bennett GL, Ihara N, Takasuga A, Takeda H, Sugimoto Y, Eggen A. Integrating linkage and radiation hybrid mapping data for bovine chromosome 15. BMC Genomics 2004; 5:77. [PMID: 15473903 PMCID: PMC526187 DOI: 10.1186/1471-2164-5-77] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 10/08/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bovine chromosome (BTA) 15 contains a quantitative trait loci (QTL) for meat tenderness, as well as several breaks in synteny with human chromosome (HSA) 11. Both linkage and radiation hybrid (RH) maps of BTA 15 are available, but the linkage map lacks gene-specific markers needed to identify genes underlying the QTL, and the gene-rich RH map lacks associations with marker genotypes needed to define the QTL. Integrating the maps will provide information to further explore the QTL as well as refine the comparative map between BTA 15 and HSA 11. A recently developed approach to integrating linkage and RH maps uses both linkage and RH data to resolve a consensus marker order, rather than aligning independently constructed maps. Automated map construction procedures employing this maximum-likelihood approach were developed to integrate BTA RH and linkage data, and establish comparative positions of BTA 15 markers with HSA 11 homologs. RESULTS The integrated BTA 15 map represents 145 markers; 42 shared by both data sets, 36 unique to the linkage data and 67 unique to RH data. Sequence alignment yielded comparative positions for 77 bovine markers with homologs on HSA 11. The map covers approximately 32% of HSA 11 sequence in five segments of conserved synteny, another 15% of HSA 11 is shared with BTA 29. Bovine and human order are consistent in portions of the syntenic segments, but some rearrangement is apparent. Comparative positions of gene markers near the meat tenderness QTL indicate the region includes separate segments of HSA 11. The two microsatellite markers flanking the QTL peak are between defined syntenic segments. CONCLUSIONS Combining data to construct an integrated map not only consolidates information from different sources onto a single map, but information contributed from each data set increases the accuracy of the map. Comparison of bovine maps with well annotated human sequence can provide useful information about genes near mapped bovine markers, but bovine gene order may be different than human. Procedures to connect genetic and physical mapping data, build integrated maps for livestock species, and connect those maps to more fully annotated sequence can be automated, facilitating the maintenance of up-to-date maps, and providing a valuable tool to further explore genetic variation in livestock.
Collapse
Affiliation(s)
- Warren M Snelling
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Mathieu Gautier
- Biochemical Genetics and Cytogenetics Unit, Department of Animal Genetics, Laboratory of Genetics and Biochemistry, INRA-CRJ 78350 Jouy-en-Josas, France
| | - John W Keele
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Timothy PL Smith
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Roger T Stone
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Gregory P Harhay
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Gary L Bennett
- USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, Nebraska 68933-0166, USA
| | - Naoya Ihara
- Shirakawa Institute of Animal Genetics, Livestock Technology Association of Japan, Fukushima, Japan
| | - Akiko Takasuga
- Shirakawa Institute of Animal Genetics, Livestock Technology Association of Japan, Fukushima, Japan
| | - Haruko Takeda
- Shirakawa Institute of Animal Genetics, Livestock Technology Association of Japan, Fukushima, Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Livestock Technology Association of Japan, Fukushima, Japan
| | - André Eggen
- Biochemical Genetics and Cytogenetics Unit, Department of Animal Genetics, Laboratory of Genetics and Biochemistry, INRA-CRJ 78350 Jouy-en-Josas, France
| |
Collapse
|