1
|
Bumbaca B, Li Z, Shah DK. Pharmacokinetics of protein and peptide conjugates. Drug Metab Pharmacokinet 2019; 34:42-54. [PMID: 30573392 PMCID: PMC6378135 DOI: 10.1016/j.dmpk.2018.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
Abstract
Protein and peptide conjugates have become an important component of therapeutic and diagnostic medicine. These conjugates are primarily designed to improve pharmacokinetics (PK) of those therapeutic or imaging agents, which do not possess optimal disposition characteristics. In this review we have summarized preclinical and clinical PK of diverse protein and peptide conjugates, and have showcased how different conjugation approaches are used to obtain the desired PK. We have classified the conjugates into peptide conjugates, non-targeted protein conjugates, and targeted protein conjugates, and have highlighted diagnostic and therapeutic applications of these conjugates. In general, peptide conjugates demonstrate very short half-life and rapid renal elimination, and they are mainly designed to achieve high contrast ratio for imaging agents or to deliver therapeutic agents at sites not reachable by bulky or non-targeted proteins. Conjugates made from non-targeted proteins like albumin are designed to increase the half-life of rapidly eliminating therapeutic or imaging agents, and improve their delivery to tissues like solid tumors and inflamed joints. Targeted protein conjugates are mainly developed from antibodies, antibody derivatives, or endogenous proteins, and they are designed to improve the contrast ratio of imaging agents or therapeutic index of therapeutic agents, by enhancing their delivery to the site-of-action.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA.
| |
Collapse
|
2
|
The pharmacokinetic and pharmacodynamic properties of site-specific pegylated genetically modified recombinant human interleukin-11 in normal and thrombocytopenic monkeys. Eur J Pharm Biopharm 2017; 119:185-191. [PMID: 28596035 DOI: 10.1016/j.ejpb.2017.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
Abstract
In order to improve the pharmacokinetic and pharmacodynamic properties of recombinant human interleukin-11 mutein (mIL-11) and to reduce the frequency of administration, we examined the feasibility of chemical modification of mIL-11 by methoxy polyethylene glycol succinimidyl carbonate (mPEG-SC). PEG-mIL-11 was prepared by a pH controlled amine specific method. Bioactivity of the protein was determined in a IL-11-dependent in vitro bioassay, its pharmacodynamic and pharmacokinetic properties were investigated by using normal and thrombocytopenic monkey models. N-terminus sequencing and peptide mapping analysis revealed that Lys33 is the PEGylated position for PEG-mIL-11. Bioactivity of PEG-mIL-11 assessed by B9-11 cell proliferation assay was comparable to that of mIL-11. More than 79-fold increase in area-under-the curve (AUC) and 26-fold increase in maximum plasma concentration (Cmax) was observed in pharmacokinetic analysis. Single dose administration of the PEG-mIL-11 induced blood platelets number increase and the effect duration were comparable to that of 7 to 10 consecutive daily administration of mIL-11 to the normal and thrombocytopenic monkey models. PEG-mIL-11 is a promising therapeutic for thrombocytopenia.
Collapse
|
3
|
Däpp S, García Garayoa E, Maes V, Brans L, Tourwé DA, Müller C, Schibli R. PEGylation of (99m)Tc-labeled bombesin analogues improves their pharmacokinetic properties. Nucl Med Biol 2011; 38:997-1009. [PMID: 21982571 DOI: 10.1016/j.nucmedbio.2011.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/17/2011] [Accepted: 02/27/2011] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Radiolabeled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumors in which BN(2)/gastrin-releasing peptide (GRP) receptors are overexpressed. However, the low in vivo stability of BN conjugates may limit their clinical application. In an attempt to improve their pharmacokinetics and counteract their rapid enzymatic degradation, we prepared a series of polyethylene glycol (PEG)-ylated BN(7-14) analogues for radiolabeling with (99m)Tc(CO)(3) and evaluated them in vitro and in vivo. METHODS Derivatization of a stabilized (N(α)His)Ac-BN(7-14)[Cha(13),Nle(14)] analogue with linear PEG molecules of various sizes [5 kDa (PEG(5)), 10 kDa (PEG(10)) and 20 kDa (PEG(20))] was performed by PEGylation of the ɛ-amino group of a β(3)hLys-βAla-βAla spacer between the stabilized BN sequence and the (N(α)His)Ac chelator. The analogues were then radiolabeled by employing the (99m)Tc-tricarbonyl technique. Binding affinity and internalization/externalization studies were performed in vitro in human prostate carcinoma PC-3 cells. Stability was investigated in vitro in human plasma and in vivo in Balb/c mice. Finally, single photon emission computed tomography (SPECT)/X-ray computed tomography studies were performed in nude mice bearing PC-3 tumor xenografts. RESULTS PEGylation did not affect the binding affinity of BN analogues, as the binding affinity for BN(2)/GRP receptors remained high (K(d)<0.9 nM). However, in vitro binding kinetics of the PEGylated analogues were slower. Steady-state condition was reached after 4 h, and the total cell binding was 10 times lower than that for the non-PEGylated counterpart. Besides, PEGylation improved the stability of BN conjugates in vitro and in vivo. The BN derivative conjugated with a PEG(5) molecule showed the best pharmacokinetics in vivo, i.e., faster blood clearance and preferential renal excretion. The tumor uptake of the (99m)Tc-PEG(5)-Lys-BN conjugate was slightly higher compared to that of the non-PEGylated analogue (3.91%±0.44% vs. 2.80%±0.28% injected dose per gram 1 h postinjection, p.i.). Tumor retention was also increased, resulting in a threefold higher amount of radioactivity in the tumor at 24 h p.i. Furthermore, decreased hepatobiliary excretion and increased tumor-to-nontarget ratios (tumor-to-blood: 17.1 vs. 2.1; tumor-to-kidney: 1.1 vs. 0.4; tumor-to-liver: 5.8 vs. 1.0, 24 h p.i.) were observed and further confirmed via small-animal SPECT images 1 h p.i. CONCLUSION PEGylation proved to be an effective strategy to enhance the tumor-targeting potential of (99m)Tc-labeled BN-based radiopharmaceuticals and probably other radiolabeled peptides.
Collapse
Affiliation(s)
- Simone Däpp
- Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, CH-5232 Villigen-PSI, Switzerland
| | | | | | | | | | | | | |
Collapse
|
4
|
He XL, Yin HL, Wu J, Zhang K, Liu Y, Yuan T, Rao HL, Li L, Yang G, Zhang XM. A multiple-dose pharmacokinetics of polyethylene glycol recombinant human interleukin-6 (PEG-rhIL-6) in rats. J Zhejiang Univ Sci B 2011; 12:32-9. [PMID: 21194184 PMCID: PMC3017414 DOI: 10.1631/jzus.b1000085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/29/2010] [Indexed: 01/24/2023]
Abstract
Radiation therapy has been widely applied in cancer treatment. However, it often causes thrombocytopenia (deficiency of white blood cells) as an adverse effect. Recombinant human interleukin-6 (rhIL-6) has been found to be a very effective way against this thrombocytopenia, but IL-6 has low stability in blood, which reduces its efficacy. To increases the stability and half-life of rhIL-6, it was modified by polyethylene glycol (PEG). The pharmacokinetics and the tissue distribution of PEG-rhIL-6 labeled with (125)I were examined after subcutaneous injection in rats. The pharmacokinetic pattern of PEG-rhIL-6 was defined with linear-kinetics, and we fitted a one-compartment model with half-lives of 10.44-11.37 h (absorption, t(1/2Ka)) and 19.77-21.53 h (elimination, t(1/2Ke)), and peak concentrations at 20.51-21.96 h (t(peak)) in rats. Half-lives and t(peak) of PEG-rhIL-6 were longer than those of rhIL-6 previously reported. In the present study, for deposition of PEG-rhIL-6 in rats, the tissue distribution examination showed that blood was the major organ involved, rather than liver. However, as to the elimination of PEG-rhIL-6, the major organ was the kidney. The excretion fraction of the injection dose recovered from urine was 23.32% at 192 h after subcutaneous administration. Less than 6% of PEG-rhIL-6 was eliminated via the feces at 192 h. These results indicate that PEG-rhIL-6 is a good candidate drug formulation for patients with cancer.
Collapse
Affiliation(s)
- Xue-ling He
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Hai-lin Yin
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Jiang Wu
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Ke Zhang
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Yan Liu
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Tao Yuan
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Hai-lin Rao
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| | - Liang Li
- Institute of Biomedical Engineering, West China Center of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Laboratory Animal Center of Sichuan University, Chengdu 610041, China
| | - Xue-mei Zhang
- Chengdu Institute of Biological Products, China National Biotic Group (CNBG), Chengdu 610023, China
| |
Collapse
|
5
|
Saito-Yabe M, Kasuya Y, Yoshigae Y, Yamamura N, Suzuki Y, Fukuda N, Honma M, Yano K, Mochizuki SI, Okada F, Okada A, Nagayama Y, Tsuda E, Fischer T, Höpner U, Zaja S, Mueller J, Okada J, Kurihara A, Ikeda T, Okazaki O. PEGylation of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) results in decreased uptake into rats and human liver. J Pharm Pharmacol 2010; 62:985-94. [PMID: 20663032 DOI: 10.1111/j.2042-7158.2010.01120.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Our aim was to investigate the effect of PEGylation on the uptake of osteoprotegerin/osteoclastogenesis inhibitory factor (OPG/OCIF) into rat liver, kidney and spleen, and human liver. METHODS Copolymer of polyethyleneglycol allylmethylether and maleamic acid sodium salt with OCIF (poly(PEG)-OCIF) (0.5 mg/kg) was administered to rats and the concentrations of poly(PEG)-OCIF in the liver, kidney and spleen at 15 min after administration were measured by ELISA. For human liver uptake, the liver perfusion of OCIF and (3)H-labelled poly(PEG)-OCIF was conducted using fresh human liver block. KEY FINDINGS The tissue uptake of poly(PEG)-OCIF in rats was significantly lower compared with that of OCIF. In fresh human liver perfusion, (3)H-poly(PEG)-OCIF was rarely taken up into the liver. On the other hand, more than 50% of the perfused OCIF was taken up. CONCLUSIONS PEGylation of OCIF using poly(PEG) dramatically suppressed the uptake of OCIF into human liver as well as into rat liver and could be a promising approach for improving the pharmacokinetic and pharmacological effects of OCIF in the clinical setting.
Collapse
Affiliation(s)
- Motoko Saito-Yabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Enhanced pharmacological activity of recombinant human interleukin-11 (rhIL11) by chemical modification with polyethylene glycol. J Control Release 2007; 119:271-8. [PMID: 17490774 DOI: 10.1016/j.jconrel.2007.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 03/07/2007] [Accepted: 03/15/2007] [Indexed: 11/19/2022]
Abstract
In order to improve the pharmacological efficacy of recombinant human interleukin-11 (rhIL11) and to reduce the frequency of administration, we examined the feasibility of chemical modification of rhIL11 by polyethylene glycol. The rhIL11 was chemically modified by using branched type (PEG2), or linear type (PEG) polyethylene glycol-N-hydroxysuccinimide with various molecular weights. Plasma profiles of immunoreactive rhIL11 after i.v. injection of the 20 kDa PEG2 conjugated rhIL11 (PEG2 (20 K)-rhIL11) were determined by ELISA. Peripheral platelet counts after the administration of the various conjugates were measured. Pharmacokinetic analysis revealed that the mean residence time of PEG2 (20 K)-rhIL11 after i.v. injection extensively increased by a factor of ca 60 compared with the native rhIL11. Maximum peripheral platelet increase of 67% for PEG2 (20 K)-rhIL11 and that of 50% for PEG (20 K)-rhIL11 over the control was observed whereas no significant change was associated with the bolus i.v. injection of native rhIL11. On the other hand, the remaining biological activity of these PEGylated-rhIL11s was 14-16% of native rhIL11, suggesting that retention of rhIL11 in plasma is much effective in order to potentiate the pharmacological efficacy of the cytokine. Chemical modification of rhIL11 by PEG is a promising approach for improving the clinical efficacy of rhIL11 by prolonged retention in plasma.
Collapse
|
7
|
Abstract
Interleukin-6 (IL-6) is a cytokine, which plays an important role in many chronic inflammatory diseases. IL-6 belongs to a family of 10 cytokines, which all act via receptor complexes containing the cytokine receptor subunit gp130. On cells, IL-6 first binds to a specific membrane-bound IL-6R and the complex of IL-6 and IL-6R interacts with gp130 leading to signal initiation. Whereas gp130 is widely expressed throughout the body, the IL-6R is only found on some cells including hepatocytes and some leucocytes. A soluble form of the IL-6R is an agonist capable of transmitting signals through interaction with the gp130 protein. In vivo, the IL-6/soluble IL-6R complex stimulates several types of target cells, which are unresponsive to IL-6 alone, as they do not express the membrane-bound IL-6R. We have named this process trans-signalling. We provided evidence that a soluble form of the IL-6 family signalling receptor subunit gp130 is the natural inhibitor of IL-6 trans-signalling responses. We showed that in chronic inflammatory diseases such as inflammatory bowel disease, peritonitis, rheumatoid arthritis, asthma as well as in colon cancer, IL-6 trans-signalling is critically involved in the maintenance of the disease state. Moreover, in all these animal models, the progression of the disease can be interrupted by specifically interfering with IL-6 trans-signalling using recombinant-soluble gp130Fc protein. The pathophysiologic mechanisms by which the IL-6/soluble IL-6R complex perpetuates the inflammatory state are discussed.
Collapse
Affiliation(s)
- J Scheller
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | | |
Collapse
|
8
|
Shi Y, Li LC. Current advances in sustained-release systems for parenteral drug delivery. Expert Opin Drug Deliv 2005; 2:1039-58. [PMID: 16296808 DOI: 10.1517/17425247.2.6.1039] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Major progresses in the development of parenteral sustained-release systems have been made in recent years as evidenced by the regulatory approval and market launch of several new products. Both the availability of novel carrier materials and the advances in method of fabrication have contributed to these commercial successes. With the formulation challenges associated with biologics, new delivery systems have also been evolved specifically to address the unmet needs in the parenteral sustained release of proteins. In this review paper, different new carriers systems and preparation methods are discussed with special focus on their applications to biologicals.
Collapse
Affiliation(s)
- Yi Shi
- Abbott Laboratories, Global Pharmaceutical Research & Development, Abbott Park, IL 60064, USA
| | | |
Collapse
|
9
|
Abstract
With the success of the human genome project, the focus of life science research has shifted to the functional and structural analyses of proteins, such as proteomics and structural genomics. These analyses of proteins including newly identified proteins are expected to contribute to the identification of therapeutically applicable proteins for various diseases. Thus, pharmaco-proteomic-based drug discovery and development for protein therapies, including gene therapy, cell therapy, and vaccine therapy, is attracting current attention. However, there is clinical difficulty in using almost all bioactive proteins, because of their very low stability and pleiotropic actions in vivo. To promote pharmaco-proteomic-based drug discovery and development, we have attempted to develop drug delivery systems (DDSs), such as the protein-drug innovation system and the optimal cell therapeutic system. In this review, we introduce our original DDSs.
Collapse
Affiliation(s)
- Tadanori Mayumi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.
| |
Collapse
|
10
|
Kamada H, Tsutsumi Y, Yoshioka Y, Yamamoto Y, Kodaira H, Tsunoda SI, Okamoto T, Mukai Y, Shibata H, Nakagawa S, Mayumi T. Design of a pH-Sensitive Polymeric Carrier for Drug Release and Its Application in Cancer Therapy. Clin Cancer Res 2004; 10:2545-50. [PMID: 15073135 DOI: 10.1158/1078-0432.ccr-03-0544] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In this study, to optimize the polymeric drug delivery system for cancer chemotherapy, we developed a new pH-sensitive polymeric carrier, poly(vinylpyrrolidone-co-dimethylmaleic anhydride) [PVD], that could gradually release native form of drugs with full activity, from the conjugates in response to changes in pH. We examined the usefulness of PVD as a polymeric drug carrier. EXPERIMENTAL DESIGN PVD was radically synthesized with vinylpyrrolidone and 2,3-dimethylmaleic anhydride, which is known to be a pH-reversible amino-protecting reagent. Conjugates between PVD and other drugs, such as Adriamycin (ADR), were prepared under the slightly basic conditions (pH 8.5). The drug-release pattern and the antitumor activity of PVD were examined. RESULTS At pH 8.5, the release of the drugs from the conjugate was not observed. In contrast, PVD could release fully active drugs in the native form in response to the change in pH near neutrality, and gradually released drugs at neutral pH (7.0) and slightly acidic pH (6.0). The drug-release pattern in serum was almost similar to that observed during these physiological conditions. The PVD-conjugated ADR showed superior antitumor activity against sarcoma-180 solid tumor in mice, and it had less toxic side effects than free ADR. This enhancement in the antitumor therapeutic window may be due to not only the improvement of plasma half-lives and tumor accumulation of ADR, but also its controlled and sustained release from the conjugates in vivo. CONCLUSIONS These results indicate that PVD is an effective polymeric carrier for optimizing cancer therapy.
Collapse
Affiliation(s)
- Haruhiko Kamada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kamada H, Tsutsumi Y, Sato-Kamada K, Yamamoto Y, Yoshioka Y, Okamoto T, Nakagawa S, Nagata S, Mayumi T. Synthesis of a poly(vinylpyrrolidone-co-dimethyl maleic anhydride) co-polymer and its application for renal drug targeting. Nat Biotechnol 2003; 21:399-404. [PMID: 12612587 DOI: 10.1038/nbt798] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2002] [Accepted: 12/23/2002] [Indexed: 11/08/2022]
Abstract
We have synthesized a polymeric drug carrier, polyvinylpyrrolidone-co-dimethyl maleic anhydride [poly(VP-co-DMMAn)], for use in renal drug delivery. About 80% of the 10-kDa poly(VP-co-DMMAn) selectively accumulated in the kidneys 24 h after intravenous administration to mice. Although this accumulated poly(VP-co-DMMAn) was gradually excreted in the urine, about 40% remained in the kidneys 96 h after treatment. Poly(VP-co-DMMAn) was taken up by the renal proximal tubular epithelial cells and no cytotoxicity was noted. Higher doses did not produce toxicity in the kidneys or other tissues. In contrast, polyvinylpyrrolidone of the same molecular weight did not show any tissue-specific distribution. Poly(VP-co-DMMAn)-modified superoxide dismutase accumulated in the kidneys after intravenous administration and accelerated recovery from acute renal failure in a mouse model. In contrast, polyvinylpyrrolidone-modified superoxide dismutase and native superoxide dismutase were not as effective. Thus, poly(VP-co-DMMAn) is a useful candidate as a targeting carrier for renal drug delivery systems.
Collapse
Affiliation(s)
- Haruhiko Kamada
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yasukawa K, Tsuchiya S, Ekida T, Iida H, Ide T, Miki D, Yagame H, Murayama K, Ishiguro T. Fusion protein of interleukin-6 and interleukin-6 receptor without a polypeptide linker. J Biosci Bioeng 2003. [DOI: 10.1016/s1389-1723(03)90094-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Degelmann A, Müller F, Sieber H, Jenzelewski V, Suckow M, Strasser AW, Gellissen G. Strain and process development for the production of human cytokines inHansenula polymorpha. FEMS Yeast Res 2002. [DOI: 10.1111/j.1567-1364.2002.tb00104.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|