1
|
Nguyen HD, Bisson M, Scott M, Boire G, Bouchard L, Roux S. miR profile in pagetic osteoclasts: from large-scale sequencing to gene expression study. J Mol Med (Berl) 2021; 99:1771-1781. [PMID: 34609560 DOI: 10.1007/s00109-021-02128-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Paget's disease of bone (PDB) is characterized by excessive and disorganized bone remodeling, in which bone-resorbing osteoclasts play a key role. We investigated microRNA (miR) expression in osteoclasts derived from the blood of 40 PDB patients and 30 healthy controls. By deep sequencing, a preliminary analysis identified differentially expressed miRs in a discovery cohort of 9 PDB patients and 9 age and sex-matched healthy controls. Six mature miRs, miR-29b1-3p, miR-15b-5p, miR-181a-5p, let-7i-3p, miR-500b-5p, and miR-1246, were found to be significantly decreased in pagetic overactive osteoclasts. The differential expression of the miRs was confirmed by the analysis of a larger independent cohort using qPCR. In an integrative network biology analysis of the miR candidates, we identified strong validated interactions between the miRs and some pathways, primarily apoptosis, and major osteoclast signaling pathways including PI3K/Akt, IFNγ, or TGFβ, as well as c-Fos, a transcription factor, and MMP-9, a metalloprotease. In addition, other genes like CCND2, CCND1, WEE1, SAMHD1, and AXIN2 were revealed in this network of interactions. Our results enhance the understanding of osteoclast biology in PDB; our work may also provide fresh perspectives on the research or therapeutic development of other bone diseases. KEY MESSAGES: miR profile in overactive osteoclasts from patients with Paget's disease of bone. Six mature miRs were significantly decreased in pagetic osteoclasts vs controls. miRs of interest: let7i-3p, miR-15b-5p, -29b1-3p, -181a-5p, -500b-5p, and -1246. Target genes and enriched pathways highlight the importance of apoptotic pathways.
Collapse
Affiliation(s)
- Hoang Dong Nguyen
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada
| | - Martine Bisson
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada
| | - Michelle Scott
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada
| | - Gilles Boire
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada
| | - Luigi Bouchard
- Clinical Department of Laboratory Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Chicoutimi, PQ, Canada
| | - Sophie Roux
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada.
| |
Collapse
|
2
|
Oikawa T, Kuroda Y, Matsuo K. Regulation of osteoclasts by membrane-derived lipid mediators. Cell Mol Life Sci 2013; 70:3341-53. [PMID: 23296124 PMCID: PMC3753467 DOI: 10.1007/s00018-012-1238-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022]
Abstract
Osteoclasts are bone-resorbing cells of monocytic origin. An imbalance between bone formation and resorption can lead to osteoporosis or osteopetrosis. Osteoclastogenesis is triggered by RANKL- and IP3-induced Ca2+ influx followed by activation of NFATc1, a master transcription factor for osteoclastogenic gene regulation. During differentiation, osteoclasts undergo cytoskeletal remodeling to migrate and attach to the bone surface. Simultaneously, they fuse with each other to form multinucleated cells. These processes require PI3-kinase-dependent cytoskeletal protein activation to initiate cytoskeletal remodeling, resulting in the formation of circumferential podosomes and fusion-competent protrusions. In multinucleated osteoclasts, circumferential podosomes mature into stabilized actin rings, which enables the formation of a ruffled border where intensive membrane trafficking is executed. Membrane lipids, especially phosphoinositides, are key signaling molecules that regulate osteoclast morphology and act as second messengers and docking sites for multiple important effectors. We examine the critical roles of phosphoinositides in the signaling cascades that regulate osteoclast functions.
Collapse
Affiliation(s)
- Tsukasa Oikawa
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | | | | |
Collapse
|
3
|
Abstract
Osteopetrosis is the generic name for a group of diseases caused by deficient formation or function of osteoclasts, inherited in either autosomal recessive or dominant fashion. Osteopetrosis varies in severity from a disease that may kill infants to an incidental radiological finding in adults. It is increasingly clear that prognosis is governed by which gene is affected, making detailed elucidation of the cause of the disease a critical component of optimal care, including the decision on whether hematopoietic stem cell transplantation is appropriate. This article reviews the characteristics and management of osteopetrosis.
Collapse
Affiliation(s)
- Colin G Steward
- Department of Cellular & Molecular Medicine, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int 2009; 84:1-12. [PMID: 19082854 DOI: 10.1007/s00223-008-9196-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/07/2008] [Indexed: 02/06/2023]
Abstract
Human recessive osteopetrosis (ARO) represents a group of diseases in which, due to a defect in osteoclasts, bone resorption is prevented. The deficit could arise either from failure in osteoclast differentiation or from inability to perform resorption by mature, multinucleated, but nonfunctional cells. Historically, osteopetrosis due to both these mechanisms was found in spontaneous and artificially created mouse mutants, but the first five genes identified in human ARO (CA-II, TCIRG1, ClCN7, OSTM1, and PLEKHM1) were all involved in the effector function of mature osteoclasts, being linked to acidification of the cell/bone interface or to intracellular processing of the resorbed material. Differentiation defects in human ARO have only recently been described, following the identification of mutations in both RANKL and RANK, which define a new form of osteoclast-poor ARO, as expected from biochemical, cellular, and animal studies. The molecular dissection of ARO has prognostic and therapeutic implications. RANKL-dependent patients, in particular, represent an interesting subset which could benefit from mesenchymal cell transplant and/or administration of soluble RANKL cytokine.
Collapse
Affiliation(s)
- Anna Villa
- Istituto di Tecnologie Biomediche, CNR, via Cervi 93, Segrate, Italy.
| | | | | | | | | |
Collapse
|
5
|
Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet 2008; 124:561-77. [DOI: 10.1007/s00439-008-0583-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/28/2008] [Indexed: 02/05/2023]
|
6
|
Coxon FP, Taylor A. Vesicular trafficking in osteoclasts. Semin Cell Dev Biol 2008; 19:424-33. [DOI: 10.1016/j.semcdb.2008.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 11/24/2022]
|
7
|
Abstract
PURPOSE OF REVIEW This review focuses on human and murine pathologies involving both osteoclasts and immune cells. These diseases have been relevant to the discovery of novel interactions and pathways shared between these two types of cells. RECENT FINDINGS Interactions between immune cells and osteoclasts were originally shown in murine models by gene targeting of molecules involved in the early steps of osteoclast differentiation, since receptor activator of nuclear factor kappa-B ligand (RANKL), RANK and TNFR-associated factor 6 knockout mice bore abnormalities of both bone resorption and immune system. Subsequently, osteoclast stimulation by RANKL secreted by lymphocytes in autoimmune diseases, such as rheumatoid arthritis, was found. More recently, the identification of immunoreceptor tyrosine-based activation motif receptors and adaptors important for both dendritic cells and osteoclast function has established a link between innate and adaptive immunity and bone. Finally, osteoclasts are also important for hematopoietic stem-cell mobilization, providing a further level of regulation of lymphoid cells. SUMMARY These findings open up a new field of research, osteoimmunology, which will unravel previously unsuspected links between bone remodelling and the immune response.
Collapse
Affiliation(s)
- Anna Villa
- Istituto Tecnologie Biomediche, CNR, Segrate, Italy.
| | | | | |
Collapse
|
8
|
Helfrich MH, Crockett JC, Hocking LJ, Coxon FP. The pathogenesis of osteoclast diseases: Some knowns, but still many unknowns. ACTA ACUST UNITED AC 2007. [DOI: 10.1138/20060249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int 2005; 77:263-74. [PMID: 16307387 DOI: 10.1007/s00223-005-0027-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 04/08/2005] [Indexed: 12/15/2022]
Abstract
The osteopetroses are a heterogeneous group of bone remodeling disorders characterized by an increase in bone density due to a defect in osteoclastic bone resorption. In humans, several types can be distinguished and a classification has been made based on their mode of inheritance, age of onset, severity, and associated clinical symptoms. The best-known forms of osteopetrosis are the malignant and intermediate autosomal recessive forms and the milder autosomal dominant subtypes. In addition to these forms, a restricted number of cases have been reported in which additional clinical features unrelated to the increased bone mass occur. During the last years, molecular genetic studies have resulted in the identification of several disease-causing gene mutations. Thus far, all genes associated with a human osteopetrosis encode proteins that participate in the functioning of the differentiated osteoclast. This contributed substantially to the understanding of osteoclast functioning and the pathogenesis of the human osteopetroses and will provide deeper insights into the molecular pathways involved in other bone pathologies, including osteoporosis.
Collapse
Affiliation(s)
- W Balemans
- Department of Medical Genetics, University and University Hospital of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
10
|
Dempster DW, Hughes-Begos CE, Plavetic-Chee K, Brandao-Burch A, Cosman F, Nieves J, Neubort S, Lu SS, Iida-Klein A, Arnett T, Lindsay R. Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts. J Cell Biochem 2005; 95:139-48. [PMID: 15723294 DOI: 10.1002/jcb.20388] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevailing view for many years has been that osteoclasts do not express parathyroid hormone (PTH) receptors and that PTH's effects on osteoclasts are mediated indirectly via osteoblasts. However, several recent reports suggest that osteoclasts express PTH receptors. In this study, we tested the hypothesis that human osteoclasts formed in vitro express functional PTH type 1 receptors (PTH1R). Peripheral blood monocytes (PBMC) were cultured on bone slices or plastic culture dishes with human recombinant RANK ligand (RANKL) and recombinant human macrophage colony-stimulating factor (M-CSF) for 16-21 days. This resulted in a mixed population of mono- and multi-nucleated cells, all of which stained positively for the human calcitonin receptor. The cells actively resorbed bone, as assessed by release of C-terminal telopeptide of type I collagen and the formation of abundant resorption pits. We obtained evidence for the presence of PTH1R in these cells by four independent techniques. First, using immunocytochemistry, positive staining for PTH1R was observed in both mono- and multi-nucleated cells intimately associated with resorption cavities. Second, PTH1R protein expression was demonstrated by Western blot analysis. Third, the cells expressed PTH1R mRNA at 21 days and treatment with 10(-7) M hPTH (1-34) reduced PTH1R mRNA expression by 35%. Finally, bone resorption was reproducibly increased by two to threefold when PTH (1-34) was added to the cultures. These findings provide strong support for a direct stimulatory action of PTH on human osteoclasts mediated by PTH1R. This suggests a dual regulatory mechanism, whereby PTH acts both directly on osteoclasts and also, indirectly, via osteoblasts.
Collapse
Affiliation(s)
- David W Dempster
- Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York 10993, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Driessen GJA, Gerritsen EJA, Fischer A, Fasth A, Hop WCJ, Veys P, Porta F, Cant A, Steward CG, Vossen JM, Uckan D, Friedrich W. Long-term outcome of haematopoietic stem cell transplantation in autosomal recessive osteopetrosis: an EBMT report. Bone Marrow Transplant 2003; 32:657-63. [PMID: 13130312 DOI: 10.1038/sj.bmt.1704194] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A retrospective analysis was made of 122 children who had received an allogeneic haematopoietic stem cell transplantation (HSCT) for autosomal recessive osteopetrosis between 1980 and 2001. The actuarial probabilities of 5 years disease free survival were 73% for recipients of a genotype HLA-identical HSCT (n=40), 43% for recipients of a phenotype HLA-identical or one HLA-antigen mismatch graft from a related donor (n=21), 40% for recipients of a graft from a matched unrelated donor (n=20) and 24% for patients who received a graft from an HLA-haplotype-mismatch related donor (n=41). In the latter group, a trend towards improvement was achieved at the end of the study period (17% before 1994, 45% after 1994, P=0.11). Causes of death after HSCT were graft failure and early transplant-related complications. Severe visual impairment was present in 42% of the children before HSCT. Conservation of vision was better in children transplanted before the age of 3 months. Final height was related to height at the time of HSCT and better preserved in children transplanted early. Most children attended regular school or education for the visually handicapped. At present, HSCT is the only curative treatment for autosomal recessive osteopetrosis and should be offered as early as possible.
Collapse
Affiliation(s)
- G J A Driessen
- Department of Pediatrics, Medical Center Rijnmond-Zuid, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Osteoclasts are the only cells capable of resorbing mineralised bone, dentine and cartilage. Osteoclasts act in close concert with bone forming osteoblasts to model the skeleton during embryogenesis and to remodel it during later life. A number of inherited human conditions are known that are primarily caused by a defect in osteoclasts. Most of these are rare monogenic disorders, but others, such as the more common Paget's disease, are complex diseases, where genetic and environmental factors combine to result in the abnormal osteoclast phenotype. Where the genetic defect gives rise to ineffective osteoclasts, such as in osteopetrosis and pycnodysostosis, the result is the presence of too much bone. However, the phenotype in many osteoclast diseases is a combination of osteosclerosis with osteolytic lesions. In such conditions, the primary defect is hyperactivity of osteoclasts, compensated by a secondary increase in osteoblast activity. Rapid progress has been made in recent years in the identification of the causative genes and in the understanding of the biological role of the proteins encoded. This review discusses the known osteoclast diseases with particular emphasis on the genetic causes and the resulting osteoclast phenotype. These human diseases highlight the critical importance of specific proteins or signalling pathways in osteoclasts.
Collapse
Affiliation(s)
- Miep H Helfrich
- Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, AB25 2ZD United Kingdom.
| |
Collapse
|
13
|
Abstract
The osteopetroses are caused by reduced activity of osteoclasts which results in defective remodelling of bone and increased bone density. They range from a devastating neurometabolic disease, through severe malignant infantile osteopetrosis (OP) to two more benign conditions principally affecting adults [autosomal dominant OP (ADO I and II)]. In many patients the disease is caused by defects in either the proton pump [the a3 subunit of vacuolar-type H(+)-ATPase, encoded by the gene variously termed ATP6i or TCIRG1] or the ClC-7 chloride channel (ClCN7 gene). These pumps are responsible for acidifying the bone surface beneath the osteoclast. Although generally thought of as bone diseases, the most serious consequences of the osteopetroses are seen in the nervous system. Cranial nerves, blood vessels and the spinal cord are compressed by either gradual occlusion or lack of growth of skull foramina. Most patients with OP have some degree of optic atrophy and many children with severe forms of autosomal recessive OP are rendered blind; optic decompression is frequently attempted to prevent the latter. Auditory, facial and trigeminal nerves may also be affected, and hydrocephalus can develop. Stenosis of both arterial supply (internal carotid and vertebral arteries) and venous drainage may occur. The least understood form of the disease is neuronopathic OP [OP and infantile neuroaxonal dystrophy, MIM (Mendelian inheritance in man) 600329] which causes rapid neurodegeneration and death within the first year. Although characterized by the finding of widespread axonal spheroids and accumulation of ceroid lipofuscin, the biochemical basis of this disease remains unknown. The neurological complications of this disease and other variants are presented in the context of the latest classification of the disease.
Collapse
Affiliation(s)
- C G Steward
- BMT Unit, Royal Hospital for Children, Bristol, UK.
| |
Collapse
|
14
|
Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, Dionisi-Vici C, Pinto RM, Francalanci P, Boldrini R, Lanino E, Dini G, Morreale G, Ralston SH, Villa A, Vezzoni P, Del Principe D, Cassiani F, Palumbo G, Teti A. Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:57-68. [PMID: 12507890 PMCID: PMC1851135 DOI: 10.1016/s0002-9440(10)63798-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autosomal-recessive osteopetrosis is a severe genetic disease caused by osteoclast failure. Approximately 50% of the patients harbor mutations of the ATP6i gene, encoding for the osteoclast-specific a3 subunit of V-ATPase. We found inactivating ATP6i mutations in four patients, and three of these were novel. Patients shared macrocephaly, growth retardation and optic nerve alteration, osteosclerotic and endobone patterns, and high alkaline phosphatase and parathyroid hormone levels. Bone biopsies revealed primary spongiosa lined with active osteoblasts and high numbers of tartrate-resistant acid phosphatase (TRAP)-positive, a3 subunit-negative, morphologically unremarkable osteoclasts, some of which located in shallow Howship lacunae. Scarce hematopoietic cells and abundant fibrous tissue containing TRAP-positive putative osteoclast precursors were noted. In vitro osteoclasts were a3-negative, morphologically normal, with prominent clear zones and actin rings, and TRAP activity more elevated than in control patients. Podosomes, alphaVbeta3 receptor, c-Src, and PYK2 were unremarkable. Consistent with the finding in the bone biopsies, these cells excavated pits faintly stained with toluidine blue, indicating inefficient bone resorption. Bone marrow transplantation was successful in all patients, and posttransplant osteoclasts showed rescue of a3 subunit immunoreactivity.
Collapse
Affiliation(s)
- Anna Taranta
- Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|