1
|
Lazaridis K, Fernandez-Santoscoy M, Baltatzidou V, Andersson JO, Christison R, Grünberg J, Tzartos S, Löwenadler B, Fribert C. A Recombinant Acetylcholine Receptor α1 Subunit Extracellular Domain Is a Promising New Drug Candidate for Treatment Of Myasthenia Gravis. Front Immunol 2022; 13:809106. [PMID: 35720339 PMCID: PMC9204200 DOI: 10.3389/fimmu.2022.809106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aims Myasthenia gravis (MG) is a T-cell dependent antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen, comprising several T and B cell auto-epitopes. We hypothesized that an efficacious drug candidate for antigen-specific therapy in MG should comprise a broad range of these auto-epitopes and be administered in a noninflammatory and tolerogenic context. Methods We used a soluble mutated form of the extracellular domain of the α1 chain of the AChR (α1-ECDm), which represents the major portion of auto-epitopes involved in MG, and investigated, in a well-characterized rat model of experimental autoimmune myasthenia gravis (EAMG) whether its intravenous administration could safely and efficiently treat the autoimmune disease. Results We demonstrated that intravenous administration of α1-ECDm abrogates established EAMG, in a dose and time dependent manner, as assessed by clinical symptoms, body weight, and compound muscle action potential (CMAP) decrement. Importantly, the effect was more pronounced compared to drugs representing current standard of care for MG. The protein had a short plasma half-life, most of what could be recovered was sequestered in the liver, kidneys and spleen. Further, we did not observe any signs of toxicity or intolerability in animals treated with α1-ECDm. Conclusion We conclude that intravenous treatment with α1-ECDm is safe and effective in suppressing EAMG. α1-ECDm is in preclinical development as a promising new drug candidate for MG.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece.,Tzartos NeuroDiagnostics, Athens, Greece
| | | | | |
Collapse
|
2
|
Li Z, Li M, Wood K, Hettwer S, Muley SA, Shi FD, Liu Q, Ladha SS. Engineered agrin attenuates the severity of experimental autoimmune myasthenia gravis. Muscle Nerve 2018; 57:814-820. [PMID: 29193204 DOI: 10.1002/mus.26025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Agrin is essential for the formation and maintenance of neuromuscular junctions (NMJs). NT-1654 is a C-terminal fragment of mouse neural agrin. In this study, we determined the effects of NT-1654 on the severity of experimental autoimmune myasthenia gravis (EAMG). METHODS EAMG was induced in female Lewis rats by immunization with the Torpedo acetylcholine receptor (tAChR) and complete Freund's adjuvant (CFA). NT-1654 was dissolved in phosphate-buffered saline (PBS) and injected daily subcutaneously into tAChR immunized rats during the first 10 days after immunization, and then every other day for the following 20 days. RESULTS We showed that NT-1654 attenuated clinical severity, effectively promoted the clustering of AChRs at NMJs, and alleviated the impairment of NMJ transmission and the reduction of muscle-specific kinase (MuSK) in EAMG rats. DISCUSSION We demonstrated that NT-1654 attenuated clinical severity, effectively promoted the clustering of AChRs at NMJs, and alleviated the impairment of NMJ transmission and the reduction of muscle-specific kinase (MuSK) in EAMG rats. Muscle Nerve 57: 814-820, 2018.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Minshu Li
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kristofer Wood
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA
| | | | - Suraj A Muley
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA
| | - Fu-Dong Shi
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shafeeq S Ladha
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, 85013, USA
| |
Collapse
|
3
|
Sharma S, Malmeström C, Lindberg C, Meisel S, Schön K, Verolin M, Lycke NY. A Sensitive Method for Detecting Peptide-specific CD4 + T Cell Responses in Peripheral Blood from Patients with Myasthenia Gravis. Front Immunol 2017; 8:1370. [PMID: 29114250 PMCID: PMC5660702 DOI: 10.3389/fimmu.2017.01370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 01/04/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neurological disorder typified by skeletal muscle fatigue and most often production of autoantibodies against the nicotinic acetylcholine receptor (AChR). The present study was undertaken to assess the extent of AChR-peptide recognition in MG patients using co-culturing (DC:TC) of autologous monocyte-derived dendritic cells (moDCs) and highly enriched CD4+ T cells from the blood as compared to the traditional whole peripheral blood mononuclear cell (PBMC) cultures. We found that the DC:TC cultures were highly superior to the PBMC cultures for detection of reactivity toward HLA-DQ/DR-restricted AChR-peptides. In fact, whereas DC:TC cultures identified recognition in all MG patients the PBMC cultures failed to detect responsiveness in around 40% of the patients. Furthermore, reactivity to multiple peptides was evident in DC:TC cultures, while PBMC cultures mostly exhibited reactivity to a single peptide. No healthy control (HC) CD4+ T cells responded to the peptides in either culture system. Interestingly, whereas spontaneous production of IFNγ and IL-17 was observed in the DC:TC cultures from MG patients, recall responses to peptides enhanced IL-10 production in 9/13 MG patients, while little increase in IFNγ and IL-17 was seen. HCs did not produce cytokines to peptide stimulations. We conclude that the DC: TC culture system is significantly more sensitive and better identifies the extent of responsiveness in MG patients to AChR-peptides than traditional PBMC cultures.
Collapse
Affiliation(s)
- Sapna Sharma
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Laboratory for Clinical Immunology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Sarah Meisel
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Nils Yngve Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Consonni A, Sharma S, Schön K, Lebrero-Fernández C, Rinaldi E, Lycke NY, Baggi F. A Novel Approach to Reinstating Tolerance in Experimental Autoimmune Myasthenia Gravis Using a Targeted Fusion Protein, mCTA1-T146. Front Immunol 2017; 8:1133. [PMID: 28959261 PMCID: PMC5604076 DOI: 10.3389/fimmu.2017.01133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Reinstating tissue-specific tolerance has attracted much attention as a means to treat autoimmune diseases. However, despite promising results in rodent models of autoimmune diseases, no established tolerogenic therapy is clinically available yet. In the experimental autoimmune myasthenia gravis (EAMG) model several protocols have been reported that induce tolerance against the prime disease-associated antigen, the acetylcholine receptor (AChR) at the neuromuscular junction. Using the whole AChR, the extracellular part or peptides derived from the receptor, investigators have reported variable success with their treatments, though, usually relatively large amounts of antigen has been required. Hence, there is a need for better formulations and strategies to improve on the efficacy of the tolerance-inducing therapies. Here, we report on a novel targeted fusion protein carrying the immunodominant peptide from AChR, mCTA1–T146, which given intranasally in repeated microgram doses strongly suppressed induction as well as ongoing EAMG disease in mice. The results corroborate our previous findings, using the same fusion protein approach, in the collagen-induced arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal treatment with mCTA1–T146. Amelioration of EAMG disease was accompanied by reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We believe this targeted highly effective fusion protein mCTA1–T146 is a promising candidate for clinical evaluation in myasthenia gravis patients.
Collapse
Affiliation(s)
- Alessandra Consonni
- Neurology IV, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sapna Sharma
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elena Rinaldi
- Neurology IV, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nils Yngve Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fulvio Baggi
- Neurology IV, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
5
|
|
6
|
Abstract
Myasthenia gravis is an autoimmune neuromuscular disorder. There are several treatment options, including symptomatic treatment (acetylcholinesterase inhibitors), short-term immunosuppression (corticosteroids), long-term immunosuppression (azathioprine, cyclosporine, cyclophosphamide, methotrexate, mycophenolate mofetil, rituximab, tacrolimus), rapid acting short-term immunomodulation (intravenous immunoglobulin, plasma exchange), and long-term immunomodulation (thymectomy). This review explores in detail these different treatment options. Potential future treatments are also discussed.
Collapse
|
7
|
Luo J, Kuryatov A, Lindstrom JM. Specific immunotherapy of experimental myasthenia gravis by a novel mechanism. Ann Neurol 2010; 67:441-51. [PMID: 20437579 DOI: 10.1002/ana.21901] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Myasthenia gravis (MG) and its animal model, experimental autoimmune myasthenia gravis (EAMG), are antibody (Ab)-mediated autoimmune diseases, in which autoantibodies bind to and cause loss of muscle nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. To develop a specific immunotherapy of MG, we treated rats with ongoing EAMG by intraperitoneal injection of bacterially-expressed human muscle AChR constructs. METHODS Rats with ongoing EAMG received intraperitoneal treatment with the constructs weekly for 5 weeks beginning after the acute phase. Autoantibody concentration, subclassification, and specificity were analyzed to address the underlying therapeutic mechanism. RESULTS EAMG was specifically suppressed by diverting autoantibody production away from pathologically relevant specificities directed at epitopes on the extracellular surface of muscle AChRs toward pathologically irrelevant epitopes on the cytoplasmic domain. A mixture of subunit cytoplasmic domains was more effective than a mixture containing both extracellular and cytoplasmic domains or than only the extracellular domain of alpha1 subunits. INTERPRETATION Therapy using only cytoplasmic domains, which lack pathologically relevant epitopes, avoids the potential liability of boosting the pathological response. Use of a mixture of bacterially-expressed human muscle AChR cytoplasmic domains for antigen-specific immunosuppression of myasthenia gravis has the potential to be specific, robust, and safe.
Collapse
Affiliation(s)
- Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA 19104-6074, USA
| | | | | |
Collapse
|
8
|
Souroujon MC, Brenner T, Fuchs S. Development of novel therapies for MG: Studies in animal models. Autoimmunity 2010; 43:446-60. [DOI: 10.3109/08916930903518081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Bai Y, Liu R, Huang D, La Cava A, Tang YY, Iwakura Y, Campagnolo DI, Vollmer TL, Ransohoff RM, Shi FD. CCL2 recruitment of IL-6-producing CD11b+ monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol 2008; 38:1877-88. [PMID: 18581322 DOI: 10.1002/eji.200737973] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development and function of Th17 cells are influenced in part by the cytokines TGF-beta, IL-23 and IL-6, but the mechanisms that govern recruitment and activity of Th17 cells during initiation of autoimmunity remain poorly defined. We show here that the development of autoreactive Th17 cells in secondary lymphoid organs in experimental autoimmune myasthenia gravis--an animal model of human myasthenia gravis--is modulated by IL-6-producing CD11b(+) cells via the CC chemokine ligand 2 (CCL2). Notably, acetylcholine receptor (AChR)-reactive Th17 cells provide help for the B cells to produce anti-AChR antibodies, which are responsible for the impairment of the neuromuscular transmission that contributes to the clinical manifestations of autoimmunity, as indicated by a lack of disease induction in IL-17-deficient mice. Thus, Th17 cells can promote humoral autoimmunity via a novel mechanism that involves CCL2.
Collapse
Affiliation(s)
- Ying Bai
- Institute of Neuroinformatics and Laboratory for Brain and Mind, Dalian University of Technology, Dalian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by antibodies to nicotinic acetylcholine receptor (AChR) interfering with the neuromuscular transmission. Experimental autoimmune MG serves as an excellent animal model to study possible therapeutic modalities for MG. This review will focus on the different ways to turn off the autoimmune response to AChR, which results in suppression of myasthenia. This paper will describe the use of fragments or peptides derived from the AChR, antigen-presenting cells and anti-T cell receptor antibodies, and will discuss the underlying mechanisms of action. Finally, the authors propose new promising therapeutic prospects, including treatment based on the modulation of regulatory T cells, which have recently been found to be functionally defective in MG patients.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- CNRS UMR 8078, Universite Paris Sud, IPSC Hôpital Marie Lannelongue, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France Tel: +33 1 45 37 15 51; Fax: +33 1 46 30 45 64; E-mail:
- The Weizmann Institute of Science, Department of Immunology, Rehovot 76100, Israel Tel: +972 8 934 2618; Fax: +972 8 934 4141; E-mail:
| | - Sara Fuchs
- The Weizmann Institute of Science, Department of Immunology, Rehovot 76100, Israel Tel: +972 8 934 2618; Fax: +972 8 934 4141; E-mail:
| | - Miriam C Souroujon
- The Weizmann Institute of Science, Department of Immunology, Rehovot 76100, Israel Tel: +972 8 934 2618; Fax: +972 8 934 4141; E-mail:
- The Open University of Israel, Raanana 43104, Israel Tel: +972 9 778 1758; E-mail:
| |
Collapse
|
11
|
Xiao BG, Duan RS, Link H, Huang YM. Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells. Cell Immunol 2003; 223:63-9. [PMID: 12914759 DOI: 10.1016/s0008-8749(03)00118-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dendritic cells (DC) are usually regarded as antigen-presenting cells involved in T cell activation, but DC also directly and indirectly affect B cell activation, antibody synthesis, and isotype switch. In the present study, bone marrow (BM)-derived DC from healthy rats were pulsed in vitro with acetylcholine receptor (AChR) and injected subcutaneously into healthy Lewis rats. No clinical signs of the first phase of experimental autoimmune myasthenia gravis (EAMG) were observed during 3 weeks of observation. Upon immunization with AChR and complete Freund's adjuvant, the rats that had received AChR-pulsed DC did not develop clinical EAMG. This tolerance of rats injected with AChR-pulsed DC was associated with reduced expression of B cell-activating factor (BAFF) and by reduced numbers of B cells among splenic mononuclear cells (MNC) compared to rats injected with medium or unpulsed DC. Anti-AChR IgG antibody-secreting cells were decreased, while the ratio of IgG1:IgG2b isotypes was enhanced in rats treated with AChR-pulsed DC compared to control EAMG rats. These results demonstrate that AChR-pulsed DC induce peripheral tolerance to EAMG by possibly inhibiting the expression of BAFF and production of anti-AChR antibodies, providing a possible potential for immunotherapy of antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Bao-Guo Xiao
- NEUROTEC Department, Karolinska Institute, Alfred Nobels Alle 10, SE-141 83, Stockholm, Sweden.
| | | | | | | |
Collapse
|
12
|
Duan RS, Link H, Xiao BG. Dehydroepiandrosterone therapy ameliorates experimental autoimmune myasthenia gravis in Lewis rats. J Clin Immunol 2003; 23:100-6. [PMID: 12757262 DOI: 10.1023/a:1022572727408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To detect a possible effect of dehydroepiandrosterone (DHEA) in the pathogenesis of experimental autoimmune myasthenia gravis (EAMG), DHEA (0.5 mg/rat) was administrated intraperitoneally to Lewis rats every other day from day 4 postimmunization (p.i.) to day 35 p.i. with Torpedo acetylcholine receptor (AChR) and Freund's complete adjuvant. Rats treated with DHEA had a lower clinical score (mean clinic score, 2 versus 0.5 on day 37 p.i.) and a lower body weight loss (mean body weight, 169 versus 142 g on day 37 p.i.) compared with control EAMG rats. DHEA treatment decreased serum anti-AChR IgG and IgG2b antibody titers on days 7, 14, and 21 p.i. and inhibited the levels of anti-AChR IgG antibody secreting cells (60%), accompanied by decreased IL-4 (33%) and augmented TGF-beta1-positive cells (41%) among lymph node mononuclear cells. These results obtained from EAMG in Lewis rats further encourage us to study DHEA treatment in human MG.
Collapse
Affiliation(s)
- Rui-Sheng Duan
- Division of Neurology, Unit of Experimental Neurology R54, Karolinska Institute, Huddinge University Hospital, SE 141 86 Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Duan RS, Wang HB, Yang JS, Scallon B, Link H, Xiao BG. Anti-TNF-alpha antibodies suppress the development of experimental autoimmune myasthenia gravis. J Autoimmun 2002; 19:169-74. [PMID: 12473237 DOI: 10.1006/jaut.2002.0618] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the role of TNF-alpha in the induction of experimental autoimmune myasthenia gravis (EAMG) and detect a possible effect of anti-TNF-alpha antibodies in the treatment of EAMG, anti-TNF-alpha antibodies were administrated intraperitoneally to Lewis rats twice per week for 5 weeks from the day of immunization with Torpedo AChR and complete Freund's adjuvant (CFA). Administration of anti-TNF-alpha antibodies resulted in lower incidence of EAMG, and in delayed onset and only mild muscle weakness compared with control EAMG rats. These mild clinical signs were accompanied by lower AChR-specific lymphocyte proliferation, down-regulated IFN-gamma and IL-10, and up-regulated TGF-beta. The lower levels of anti-AChR IgG, Ig2a and IgG2b and decreased anti-AChR IgG affinity were found in rats treated with anti-TNF-alpha antibodies. These results demonstrate that anti-TNF-alpha antibodies can suppress the induction and development of EAMG.
Collapse
Affiliation(s)
- Rui-Sheng Duan
- Division of Neurology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Im SH, Barchan D, Maiti PK, Raveh L, Souroujon MC, Fuchs S. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18. FASEB J 2001; 15:2140-8. [PMID: 11641240 DOI: 10.1096/fj.01-0072com] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.
Collapse
MESH Headings
- Abatacept
- Animals
- Antibodies/therapeutic use
- Antigens, CD
- Antigens, Differentiation/biosynthesis
- B-Lymphocytes/immunology
- CD40 Ligand/metabolism
- CTLA-4 Antigen
- Cells, Cultured
- Cytokines/biosynthesis
- Disease Progression
- Female
- Hypersensitivity, Delayed/therapy
- Immunoconjugates
- Immunoglobulin G/biosynthesis
- Interleukin-18/antagonists & inhibitors
- Interleukin-18/immunology
- Kinetics
- Lymphocyte Activation
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/therapy
- Rats
- Rats, Inbred Lew
- Receptors, Nicotinic/immunology
- T-Lymphocytes/immunology
- Th1 Cells/immunology
- Transforming Growth Factor beta/biosynthesis
Collapse
Affiliation(s)
- S H Im
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Im SH, Barchan D, Maiti PK, Fuchs S, Souroujon MC. Blockade of CD40 Ligand Suppresses Chronic Experimental Myasthenia Gravis by Down-Regulation of Th1 Differentiation and Up-Regulation of CTLA-4. THE JOURNAL OF IMMUNOLOGY 2001; 166:6893-8. [PMID: 11359850 DOI: 10.4049/jimmunol.166.11.6893] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myasthenia gravis (MG) and experimental autoimmune MG (EAMG) are T cell-dependent Ab-mediated autoimmune disorders, in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1-type cells and costimulatory factors such as CD40 ligand (CD40L) contribute to disease pathogenesis by producing proinflammatory cytokines and by activating autoreactive B cells. In this study we demonstrate the capacity of CD40L blockade to modulate EAMG, and analyze the mechanism underlying this disease suppression. Anti-CD40L Abs given to rats at the chronic stage of EAMG suppress the clinical progression of the autoimmune process and lead to a decrease in the AChR-specific humoral response and delayed-type hypersensitivity. The cytokine profile of treated rats suggests that the underlying mechanism involves down-regulation of AChR-specific Th1-regulated responses with no significant effect on Th2- and Th3-regulated AChR-specific responses. EAMG suppression is also accompanied by a significant up-regulation of CTLA-4, whereas a series of costimulatory factors remain unchanged. Adoptive transfer of splenocytes from anti-CD40L-treated rats does not protect recipient rats against subsequently induced EAMG. Thus it seems that the suppressed progression of chronic EAMG by anti-CD40L treatment does not induce a switch from Th1 to Th2/Th3 regulation of the AChR-specific immune response and does not induce generation of regulatory cells. The ability of anti-CD40L treatment to suppress ongoing chronic EAMG suggests that blockade of CD40L may serve as a potential approach for the immunotherapy of MG and other Ab-mediated autoimmune diseases.
Collapse
MESH Headings
- Abatacept
- Animals
- Antibody Specificity
- Antigens, CD
- Antigens, Differentiation/biosynthesis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD40 Ligand/immunology
- CTLA-4 Antigen
- Cell Differentiation/immunology
- Cells, Cultured
- Chronic Disease
- Cytokines/biosynthesis
- Down-Regulation/immunology
- Female
- Humans
- Hypersensitivity, Delayed/immunology
- Immune Sera/administration & dosage
- Immunoconjugates
- Immunoglobulin G/biosynthesis
- Immunoglobulin Isotypes/biosynthesis
- Immunosuppressive Agents/administration & dosage
- Injections, Intraperitoneal
- Injections, Subcutaneous
- Lymphocyte Activation/immunology
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/prevention & control
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/administration & dosage
- Receptors, Cholinergic/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Torpedo/immunology
- Up-Regulation/immunology
Collapse
Affiliation(s)
- S H Im
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
16
|
Slavin AJ, Maron R, Weiner HL. Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. Int Immunol 2001; 13:825-33. [PMID: 11369711 DOI: 10.1093/intimm/13.6.825] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IL-10 is an immunoregulatory cytokine that can modulate immune processes, inhibiting the expression of inflammatory T(h)1 type responses as well as affecting antigen-presenting cell function. In addition, IL-10 has been shown to be active at mucosal surfaces. In the present study, we examined the role of IL-10 on orally and nasally induced tolerance. Treatment of (PL/J x SJL)F(1) mice with low-dose oral myelin basic protein (MBP) (0.5 mg) and simultaneous oral IL-10 given 3 times reduced the severity and incidence of experimental autoimmune encephalomyelitis (EAE), whereas administration of oral IL-10 alone or MBP alone given in these doses had no effect. Lymphocytes from mice treated orally with MBP and IL-10 proliferated less, and produced decreased amounts of IFN-gamma and IL-2 and increased amounts of IL-10 and transforming growth factor-beta upon in vitro stimulation with MBP. Nasal administration of antigen and IL-10 reduced proliferative responses and IFN-gamma production, increased IL-10 production, and enhanced protection from EAE. In addition, oral IL-10 combined with oral myelin oligodendrocyte glycoprotein (MOG) 35-55 reduced relapses in MOG-induced EAE in the NOD mouse, as well as enhanced the protective effect of oral insulin in the NOD model of diabetes. These results demonstrate that IL-10 is biologically active at mucosal surfaces and can act synergistically to enhance the tolerogenic effects of mucosally administered antigen.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Administration, Oral
- Animals
- Cell Division/immunology
- Cells, Cultured
- Cytokines/antagonists & inhibitors
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/prevention & control
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Immune Tolerance
- Immunity, Mucosal
- Immunosuppressive Agents/administration & dosage
- Injections, Subcutaneous
- Interleukin-10/administration & dosage
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mice
- Mice, Inbred NOD
- Mice, Inbred Strains
- Mouth Mucosa/immunology
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/pharmacology
- Myelin Proteins
- Myelin-Associated Glycoprotein/administration & dosage
- Myelin-Oligodendrocyte Glycoprotein
- Nasal Mucosa/immunology
- Recurrence
Collapse
Affiliation(s)
- A J Slavin
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Wang HB, Shi FD, Li H, Chambers BJ, Link H, Ljunggren HG. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6430-6. [PMID: 11342669 DOI: 10.4049/jimmunol.166.10.6430] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CTLA-4 appears to be a negative regulator of T cell activation and is implicated in T cell-mediated autoimmune diseases. Experimental autoimmune myasthenia gravis (EAMG), induced by immunization of C57BL/6 mice with acetylcholine receptor (AChR) in adjuvant, is an autoantibody-mediated disease model for human myasthenia gravis (MG). The production of anti-AChR Abs in MG and EAMG is T cell dependent. In the present study, we demonstrate that anti-CTLA-4 Ab treatment enhances T cell responses to AChR, increases anti-AChR Ab production, and provokes a rapid onset and severe EAMG. To address possible mechanisms underlying the enhanced autoreactive T cell responses after anti-CTLA-4 Ab treatment, mice were immunized with the immunodominant peptide alpha(146-162) representing an extracellular sequence of the ACHR: Anti-CTLA-4 Ab, but not control Ab, treatment subsequent to peptide immunization results in clinical EAMG with diversification of the autoantibody repertoire as well as enhanced T cell proliferation against not only the immunizing alpha(146-162) peptide, but also against other subdominant epitopes. Thus, treatment with anti-CTLA-4 Ab appears to induce determinant spreading, diversify the autoantibody repertoire, and enhance B cell-mediated autoimmune disease in this murine model of MG.
Collapse
MESH Headings
- Abatacept
- Adjuvants, Immunologic/administration & dosage
- Amino Acid Sequence
- Animals
- Antibodies/administration & dosage
- Antibody Diversity
- Antigens, CD
- Antigens, Differentiation/immunology
- Autoantibodies/biosynthesis
- CTLA-4 Antigen
- Disease Models, Animal
- Disease Progression
- Epitopes, T-Lymphocyte/metabolism
- Female
- Immunization
- Immunoconjugates
- Immunodominant Epitopes/metabolism
- Immunoglobulin G/biosynthesis
- Injections, Subcutaneous
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Myasthenia Gravis/etiology
- Myasthenia Gravis/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Receptors, Cholinergic/administration & dosage
- Receptors, Cholinergic/immunology
- Receptors, Cholinergic/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- H B Wang
- Experimental Neurology Unit, Division of Neurology, and Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Bai XF, Link H. Nasal tolerance induction as a potential means of immunotherapy for autoimmune diseases: implications for clinical medicine. Clin Exp Allergy 2000; 30:1688-96. [PMID: 11122206 DOI: 10.1046/j.1365-2222.2000.00972.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- X F Bai
- Karolinska Institute, Division of Neurology, Neuroimmunology Unit, Huddinge University Hospital, Stockholm, Sweden
| | | |
Collapse
|
19
|
Im SH, Barchan D, Fuchs S, Souroujon MC. Mechanism of nasal tolerance induced by a recombinant fragment of acetylcholine receptor for treatment of experimental myasthenia gravis. J Neuroimmunol 2000; 111:161-8. [PMID: 11063834 DOI: 10.1016/s0165-5728(00)00395-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholine receptor (AChR) is the major autoantigen in myasthenia gravis (MG) and experimental autoimmune MG (EAMG). Here we analyze the mechanisms involved in suppression of ongoing EAMG in rats by nasal administration of a recombinant fragment from the human AChR alpha-subunit. We demonstrate that such a fragment, expressed without a fusion partner, confers nasal tolerance that can be adoptively transferred. Our observations suggest that the underlying mechanism of this nasal tolerance is active suppression involving a shift from a Th1 to a Th2/Th3-regulated AChR-specific response which may be mediated by down regulation of costimulatory factors.
Collapse
Affiliation(s)
- S H Im
- Department of Immunology, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | | | |
Collapse
|
20
|
Im SH, Barchan D, Souroujon MC, Fuchs S. Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3599-605. [PMID: 11034361 DOI: 10.4049/jimmunol.165.7.3599] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently demonstrated that oral or nasal administration of recombinant fragments of the acetylcholine receptor (AChR) prevents the induction of experimental autoimmune myasthenia gravis (EAMG) and suppresses ongoing EAMG in rats. We have now studied the role of spatial conformation of these recombinant fragments in determining their tolerogenicity. Two fragments corresponding to the extracellular domain of the human AChR alpha-subunit and differing in conformation were tested: Halpha1-205 expressed with no fusion partner and Halpha1-210 fused to thioredoxin (Trx), and designated Trx-Halpha1-210. The conformational similarity of the fragments to intact AChR was assessed by their reactivity with alpha-bungarotoxin and with anti-AChR mAbs, specific for conformation-dependent epitopes. Oral administration of the more native fragment, Trx-Halpha1-210, at the acute phase of disease led to exacerbation of EAMG, accompanied by an elevation of AChR-specific humoral and cellular reactivity, increased levels of Th1-type cytokines (IL-2, IL-12), decreased levels of Th2 (IL-10)- or Th3 (TGF-beta)-type cytokines, and higher expression of costimulatory factors (CD28, CTLA4, B7-1, B7-2, CD40L, and CD40). On the other hand, oral administration of the less native fragments Halpha1-205 or denatured Trx-Halpha1-210 suppressed ongoing EAMG and led to opposite changes in the immunological parameters. It thus seems that native conformation of AChR-derived fragments renders them immunogenic and immunopathogenic and therefore not suitable for treatment of myasthenia gravis. Conformation of tolerogens should therefore be given careful attention when considering oral tolerance for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- S H Im
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
21
|
Wang HB, Li H, Shi FD, Chambers BJ, Link H, Ljunggren HG. Tumor necrosis factor receptor-1 is critically involved in the development of experimental autoimmune myasthenia gravis. Int Immunol 2000; 12:1381-8. [PMID: 11007755 DOI: 10.1093/intimm/12.10.1381] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis factor receptor-1 (TNFR1, CD120a) has been implicated in the pathogenesis of several experimental models of T cell-mediated autoimmune disorders, but its role in antibody-mediated autoimmune diseases has not been addressed. Experimental autoimmune myasthenia gravis (EAMG), an autoantibody-mediated T cell-dependent neuromuscular disorder, represents an animal model for myasthenia gravis in human. To investigate the role of TNFR1 in the pathogenesis of EAMG, TNFR1(-/-) and wild-type mice were immunized with TORPEDO: acetylcholine receptor (AChR) in complete Freund's adjuvant. TNFR1(-/-) mice failed to develop EAMG. Lymphoid cells from TNFR1(-/-) mice produced low amounts of T(h)1 (IFN-gamma, IL-2 and IL-12)-type cytokines, but elevated levels of T(h)2 (IL-4 and IL-10)-type cytokines compared with lymphoid cells of wild-type mice. Accordingly, the levels of anti-AChR IgG2 antibodies were severely reduced and the level of anti-AChR IgG1 antibodies were moderately reduced. Co-injection of recombinant mouse IL-12 with AChR in adjuvant restored T cell responses to AChR and promoted development of EAMG in TNFR1(-/-) mice. These results demonstrate that the TNF/TNFR1 system is required for the development of EAMG. The lack of a functional TNF/TNFR1 system can, at least in part, be substituted by IL-12 at the stage of initial priming with AChR and adjuvant.
Collapse
Affiliation(s)
- H B Wang
- Experimental Neurology Unit, Division of Neurology, Karolinska Institutet, Huddinge University Hospital, 14186 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
Xu LY, Yang JS, Huang YM, Levi M, Link H, Xiao BG. Combined nasal administration of encephalitogenic myelin basic protein peptide 68-86 and IL-10 suppressed incipient experimental allergic encephalomyelitis in Lewis rats. Clin Immunol 2000; 96:205-11. [PMID: 10964538 DOI: 10.1006/clim.2000.4895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mucosal administration of low doses of myelin basic protein (MBP) peptide 68-86 (MBP 68-86) or anti-inflammatory cytokine IL-10 effectively prevented experimental allergic encephalomyelitis (EAE), but failed to suppress the disease if given after 7 days postimmunization (p.i.), i.e., after T cell priming had occurred. We anticipated that combined administration of autoantigen and IL-10 can treat incipient EAE. Lewis rats with EAE actively induced with MBP 68-86 and complete Freund's adjuvant received 120 microg MBP 68-86 + 200 ng IL-10 per rat per day from day 7 p.i. and for 5 consecutive days. These rats showed later onset, lower clinical scores, less body weight loss, and shorter duration of EAE than rats receiving MBP 68-86 or IL-10 only or PBS. EAE amelioration was associated with decreased infiltration of ED1(+) macrophages and CD4(+) T cells within the central nervous system and with decreased proliferative responses of lymph node cells, indicating that combined administration of MBP 68-86 and IL-10 induced immune hyporesponsiveness. IFN-gamma secretion as well as IFN-gamma, TNF-alpha, IL-4, and IL-10 mRNA expression by lymph node MNC was down-regulated in the treated rats. Immune hyporesponsiveness, rather than immune deviation or regulatory mechanisms, seems to be responsible for the protection of EAE after autoantigen + IL-10 administration by the nasal route.
Collapse
MESH Headings
- Administration, Intranasal
- Administration, Oral
- Animals
- Antigens/pharmacology
- Cytokines/genetics
- Drug Therapy, Combination
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Immune Tolerance/drug effects
- Immunohistochemistry
- Interferon-gamma/metabolism
- Interleukin-10/administration & dosage
- Interleukin-10/therapeutic use
- Lymph Nodes/cytology
- Lymphocyte Activation/drug effects
- Monocytes/chemistry
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/therapeutic use
- Peptide Fragments/administration & dosage
- Peptide Fragments/therapeutic use
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Th1 Cells/metabolism
Collapse
Affiliation(s)
- L Y Xu
- Experimental Neurobiology Unit and Neuroimmunology Unit, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Xu LY, Huang YM, Yang JS, Van Der Meide PH, Link H, Xiao BG. Suppression of ongoing experimental allergic encephalomyelitis (EAE) in Lewis rats: synergistic effects of myelin basic protein (MBP) peptide 68-86 and IL-4. Clin Exp Immunol 2000; 120:526-31. [PMID: 10844533 PMCID: PMC1905554 DOI: 10.1046/j.1365-2249.2000.01233.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mucosal myelin autoantigen administration effectively prevented EAE, but mostly failed to treat ongoing EAE. Patients with multiple sclerosis (MS), for which EAE is considered an animal model, did not benefit from oral treatment with bovine myelin. We anticipated that autoantigen, administered together with a cytokine that counteracts Th1 cell responses, might ameliorate Th1-driven autoimmune disease, and that nasal administration might considerably reduce the amounts of antigen + cytokine needed for treatment purposes. Lewis rats with EAE actively induced with myelin basic protein peptide (MBP 68-86) and Freund's complete adjuvant (FCA), received from day 7 post-immunization, i.e. after T cell priming had occurred, 120 microg MBP 68-86 + 100 ng IL-4 per rat per day for 5 consecutive days. These rats showed later onset, lower clinical scores, less body weight loss and shorter EAE duration compared with rats receiving MBP 68-86 or IL-4 only, or PBS. EAE amelioration was associated with decreased infiltration of ED1+ macrophages and CD4+ T cells within the central nervous system, and with decreased interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha) and enhanced IL-4, IL-10 and transforming growth factor-beta (TGF-beta) responses by lymph node cells. Simultaneous administration of encephalitogenic peptide + IL-4 by the nasal route thus suppressed ongoing EAE and induced IL-4, IL-10 and TGF-beta-related regulatory elements.
Collapse
Affiliation(s)
- L Y Xu
- Units of Experimental Neurobiology and Neuroimmunology, Division of Neurology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Myasthenia gravis (MG) is an antibody-mediated, autoimmune neuromuscular disease. Animal models of experimental autoimmune myasthenia gravis (EAMG) can be induced in vertebrates by immunization with Torpedo californica acetylcholine receptors (AChR) in complete Freund's adjuvant. The MHC class II genes influence the cellular and humoral immune response to AChR and are involved in the development of clinical EAMG in mice. A dominant epitope within the AChR alpha146-162 region activates MHC class II-restricted CD4 cells and is involved in the production of pathogenic anti-AChR antibodies by B cells. Neonatal or adult tolerance to this T-cell epitope could prevent EAMG. During an immune response to AChR in vivo, multiple TCR genes are used. The CD28-B7 and CD40L-CD40 interaction is required during the primary immune response to AChR. However, CTLA-4 blockade augmented T- and B-cell immune response to AChR and disease. Cytokines IFN-gamma and IL-12 upregulate, while IFN-alpha downregulates, EAMG pathogenesis. However, the Th2 cytokine IL-4 fails to play a significant role in the development of antibody-mediated EAMG. Systemic or mucosal tolerance to AChR or its dominant peptide(s) has prevented EAMG in an antigen-specific manner. Antigen-specific tolerance and downregulation of pathogenic cytokines could achieve effective therapy of EAMG and probably MG.
Collapse
Affiliation(s)
- P Christadoss
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-1070, USA
| | | | | |
Collapse
|
25
|
Im SH, Barchan D, Fuchs S, Souroujon MC. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J Clin Invest 1999; 104:1723-30. [PMID: 10606626 PMCID: PMC409886 DOI: 10.1172/jci8121] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disorder in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. In an attempt to develop an antigen-specific therapy for MG, we administered a nonmyasthenogenic recombinant fragment of AChR orally to rats. This fragment, corresponding to the extracellular domain of the human AChR alpha-subunit (Halpha1-205), protected rats from subsequently induced experimental autoimmune myasthenia gravis (EAMG) and suppressed ongoing EAMG when treatment was initiated during either the acute or chronic phases of disease. Prevention and suppression of EAMG were accompanied by a significant decrease in AChR-specific humoral and cellular responses. The underlying mechanism for the Halpha1-205-induced oral tolerance seems to be active suppression, mediated by a shift from a T-helper 1 (Th1) to a Th2/Th3 response. This shift was assessed by changes in the cytokine profile, a deviation of anti-AChR IgG isotypes from IgG2 to IgG1, and a suppressed AChR-specific delayed-type hypersensitivity response. Our results in experimental myasthenia suggest that oral administration of AChR-specific recombinant fragments may be considered for antigen-specific immunotherapy of myasthenia gravis.
Collapse
Affiliation(s)
- S H Im
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
26
|
Abstract
Defining the mechanisms whereby transforming growth factor-beta (TGF-beta) controls physiologic inflammation and the immune response and how it contributes to pathology when it is dysregulated is critical to our ability to manipulate the levels and activity of this potent cytokine for therapeutic benefit. In keeping with its dichotomous nature, recent evidence suggests that overproduction and/or activation contribute to persistent inflammation and that antagonists of TGF-beta delivered locally can break the cycle of leukocyte recruitment and fibrotic sequelae. On the other hand, systemic routing of TGF-beta can also inhibit inflammatory pathogenesis by multiple mechanisms as exemplified by systemic injections of the protein and by recent gene transfer studies. In addition, enhanced levels of circulating endogenous TGF-beta appear to be an instrument of suppression during the development of oral tolerance, cyclosporin treatment, and following administration of retinoic acid. Although treatment of autoimmune and chronic inflammatory diseases is an important goal, the multiplicity of actions of TGF-beta and the nearly ubiquitous expression of TGF-beta and its receptors dictate a cautious approach to the use of this powerful cytokine as a therapeutic agent.
Collapse
Affiliation(s)
- W Chen
- Cellular Immunology Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
27
|
Baggi F, Andreetta F, Caspani E, Milani M, Longhi R, Mantegazza R, Cornelio F, Antozzi C. Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis. J Clin Invest 1999; 104:1287-95. [PMID: 10545527 PMCID: PMC409818 DOI: 10.1172/jci7121] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/1999] [Accepted: 09/22/1999] [Indexed: 11/17/2022] Open
Abstract
The mucosal administration of the native antigen or peptide fragments corresponding to immunodominant regions is effective in preventing or treating several T cell-dependent models of autoimmune disease. No data are yet available on oral tolerance with immunodominant T-cell peptides in experimental autoimmune myasthenia gravis (EAMG), an animal model of B cell-dependent disease. We report that oral administration of the T-cell epitope alpha146-162 of the Torpedo californica acetylcholine receptor (TAChR) alpha-subunit suppressed T-cell responses to AChR and ameliorated the disease in C57Bl/6 (B6) mice. Protection from EAMG was associated with reduced serum Ab's to mouse AChR and reduced AChR loss in muscle. The effect of Talpha146-162 feeding was specific; treatment with a control peptide did not affect EAMG manifestations. The protective effect induced by peptide Talpha146-162 was mediated by reduced production of IFN-gamma, IL-2, and IL-10 by TAChR-reactive cells, suggesting T-cell anergy. TGF-beta-secreting Th3 cells did not seem to be involved in tolerance induction. We therefore demonstrate that feeding a single immunodominant epitope can prevent an Ab-mediated experimental model of autoimmune disease.
Collapse
Affiliation(s)
- F Baggi
- Department of Neuromuscular Diseases, National Neurological Institute "C. Besta," 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang HB, Li H, He B, Bakheit M, Levi M, Wahren B, Berglöf A, Sandstedt K, Link H, Shi FD. The role of B-cells in experimental myasthenia gravis in mice. Biomed Pharmacother 1999; 53:227-33. [PMID: 10424244 DOI: 10.1016/s0753-3322(99)80093-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Myasthenia gravis (MG) and experimental autoimmune myasthenia gravis (EAMG) are caused by auto-antibodies against the nicotinic acetylcholine receptor (AChR) at the postsynaptic membrane. To evaluate the extent to which the humoral immune response against AChR operates in the pathogenesis of EAMG, we immunized B-cell knockout (microMT) and wild type C57BL/6 mice with AChR in complete Freund's adjuvant. The ability of AChR-primed lymph node cells to proliferate and secrete IFN-gamma in response to AChR and its dominant peptide alpha 146-162 were intact in microMT as in wild type mice. Similar levels of mRNA for IFN-gamma, IL-4 and IL-10 in AChR-reactive lymph node cells were detected in microMT and wild type mice. However, microMT mice had no detectable anti-AChR antibodies and never developed clinical EAMG. We conclude that B-cells are critically required for the genesis of clinical EAMG, but not for AChR-specific T-cell priming.
Collapse
Affiliation(s)
- H B Wang
- Division of Neurology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shi FD, Li H, Wang H, Bai X, van der Meide PH, Link H, Ljunggren HG. Mechanisms of Nasal Tolerance Induction in Experimental Autoimmune Myasthenia Gravis: Identification of Regulatory Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.5757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Autoantigen administration via nasal mucosal tissue can induce systemic tolerance more effectively than oral administration in a number of experimental autoimmune diseases, including Ab-mediated experimental autoimmune myasthenia gravis, a murine model of myasthenia gravis. The mechanisms underlying nasal tolerance induction are not clear. In this study, we show that nasal administration of acetylcholine receptor (AChR) in C57BL/6 mice, before immunizations with AChR in adjuvant, results in delayed onset and reduced muscle weakness compared with control mice. The delayed onset and reduced muscle weakness were associated with decreased AChR-specific lymphocyte proliferation and decreased levels of anti-AChR Abs of the IgG2a and IgG2b isotypes in serum. The clinical and immunological changes in the AChR-pretreated C57BL/6 wild-type (wt) mice were comparable with those observed in AChR-pretreated CD8−/− mice, indicating that CD8+ T cells were not required for the generation of nasal tolerance. AChR-pretreated wt and CD8−/− mice showed augmented TGF-β and reduced IFN-γ responses, whereas levels of IL-4 were unaltered. Splenocytes from AChR-pretreated wt and CD8−/− mice, but not from CD4−/− mice, suppressed AChR-specific lymphocyte proliferation. This suppression could be blocked by Abs against TGF-β. Thus, our results demonstrate that the suppression induced in the present model is independent of CD8+ T cells and suggest the involvement of Ag-specific CD4+ Th3 cells producing TGF-β.
Collapse
Affiliation(s)
- Fu-Dong Shi
- *Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden
| | - Hulun Li
- †Division of Neurology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden; and
| | - Huabing Wang
- †Division of Neurology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden; and
| | - Xuefeng Bai
- †Division of Neurology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden; and
| | - Peter H. van der Meide
- ‡Section of Cytokine Biology, Biomedical Primate Research Center, Rijswijk, The Netherlands
| | - Hans Link
- †Division of Neurology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden; and
| | | |
Collapse
|
30
|
Laliotou B, Duncan L, Dick AD. Intranasal administration of retinal antigens induces transient T cell activation and apoptosis within drainage lymph nodes but not spleen. J Autoimmun 1999; 12:145-55. [PMID: 10222024 DOI: 10.1006/jaut.1998.0269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms of mucosal tolerance induction, including anergy/deletion and active suppression are frequently described as mutually exclusive; dependent upon nature, dose and route of antigen administration. We have previously described induction of low-dose tolerance with administration of retinal autoantigens via the nasorespiratory tract which is antigen-specific, suppresses both cell mediated immunity and ultimately tissue destruction in experimental autoimmune uveoretinitis (EAU) and is mediated by splenic-derived regulatory cells. The present data further shows that splenocytes or fractionated splenic T cells, which secrete IL-4 and IL-10 when stimulated with retinal antigen in vitro, and not regional drainage lymph node cells transfer tolerance to naïve animals. Analysis of apparent mechanistic differences shows that during intranasal antigen administration, the proportion of CD4(+)T cells within drainage lymph nodes increases, concurrent with a burst of IFN-gamma. Following subsequent antigen challenge, T cells downregulate alphabetaTCR expression and undergo apoptosis in regional drainage lymph nodes. An increase in functional Th2 cytokine activity was noted in both Con-A and retinal antigen stimulated lymph node cultures in tolerized animals. T cells from tolerized animals secreted IL-4, whereas IL-10 was secreted predominantly by the non-T cell population present equally in control and tolerized animals. Therefore, spleen derived regulatory cells which suppress Th1 responses and T cell deletion/apoptosis in regional drainage lymph nodes are mechanisms which co-exist in tolerant rats. Th2 cytokine production after immunization appears consequential to tolerance-induced Th1 suppression.
Collapse
Affiliation(s)
- B Laliotou
- Department of Ophthalmology, University of Aberdeen Medical School, Aberdeen, Foresterhill, AB25 2ZD, UK
| | | | | |
Collapse
|
31
|
Laliotou B, Dick AD. Modulating phenotype and cytokine production of leucocytic retinal infiltrate in experimental autoimmune uveoretinitis following intranasal tolerance induction with retinal antigens. Br J Ophthalmol 1999; 83:478-85. [PMID: 10434874 PMCID: PMC1723017 DOI: 10.1136/bjo.83.4.478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIM Nasal administration of retinal antigens induces systemic tolerance which results in suppression of experimental autoimmune uveoretinitis (EAU) when subsequently exposed to antigen. The aim was to establish if tolerance induction alters retinal infiltrating leucocyte phenotype and cytokine profile in tolerised animals when there is significantly reduced tissue destruction despite immunisation with retinal antigen. METHODS Female Lewis rats were tolerised by intranasal administration with retinal extract (RE) before immunisation with RE to induce EAU. Control animals were administered phosphate buffered saline (PBS) intranasally. Post immunisation, daily clinical responses were recorded and at the height of disease, retinas were removed and either infiltrating leucocytes isolated for flow cytometric phenotype assessment and intracellular cytokine production, or chorioretina processed for immunohistochemistry. Fellow eyes were assessed for cytokine mRNA by semiquantitative RT-PCR. RESULTS Flow cytometric analysis showed that before clinical onset of EAU there is no evidence of macrophage infiltration and no significant difference in circulating T cell populations within the retina. By day 14 a reduced retinal infiltrate in tolerised animals was observed and in particular a reduction in numbers of "activated" (with respect to CD4 and MHC class II expression) macrophages. Immunohistochemistry confirmed these findings and additionally minimal rod outer segment destruction was observed histologically. Cytokine analysis revealed that both IL-10 mRNA and intracellular IL-10 production was increased in tolerised eyes 7 days post immunisation. Although by day 14 post immunisation, IL-10 production was equivalent in both groups, a reduced percentage of IFN-gamma + macrophages and IFN-gamma + CD4+ T cells with increased percentage of IL-4+ CD4+ T cells were observed in tolerised animals. CONCLUSIONS Leucocytic infiltrate is not only reduced in number but its distinct phenotype compared with controls implies a reduced activation status of infiltrating monocyts to accompany increased IL-10 and reduced IFN-gamma production in tolerised animals. This modulation may in turn contribute towards protection against target organ destruction in EAU.
Collapse
Affiliation(s)
- B Laliotou
- Department of Ophthalmology, University of Aberdeen Medical School
| | | |
Collapse
|
32
|
Shi FD, He B, Li H, Matusevicius D, Link H, Ljunggren HG. Differential requirements for CD28 and CD40 ligand in the induction of experimental autoimmune myasthenia gravis. Eur J Immunol 1998; 28:3587-93. [PMID: 9842901 DOI: 10.1002/(sici)1521-4141(199811)28:11<3587::aid-immu3587>3.0.co;2-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interactions of CD28-B7 and CD40-CD40 ligand (CD40L) pathways in T cell costimulation and autoimmune disease are incompletely understood. We sought to address this issue by investigation of the genesis of acetylcholine receptor (AChR)-induced antibody-mediated experimental autoimmune myasthenia gravis (EAMG) in CD28- and CD40L-deficient mice (CD28-/-, CD40L-/-). Compared to wild-type mice, the CD28-/- mice became less susceptible, and CD40L-/- mice were completely resistant to EAMG induction. Analysis of T helper functions, reflected by cytokine responses, revealed a switch to a Th1 profile in CD28-/- mice. Consistently, levels of serum AChR-specific antibodies of the IgG1 isotype were decreased in CD28-/- mice. In the CD40L-/- mice, both Th1 and Th2 cytokine responses were diminished, and T cell-dependent AChR-reactive B cell responses were more severely impaired than in the CD28-/- mice. Thus, CD28 and CD40L are differentially required for induction of EAMG.
Collapse
Affiliation(s)
- F D Shi
- Division of Neurology, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|