1
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Alorini M, Alnasser SM, Elhasadi I, El-Nagdy SA. Trigonelline Chloride Ameliorated Triphenyltin-Induced Testicular Autophagy, Inflammation, and Apoptosis: Role of Recovery. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:133-150. [PMID: 38156731 DOI: 10.1093/micmic/ozad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Triphenyltin chloride (TPT-Cl) is an organometallic organotin. This study aimed to investigate the role of trigonelline (TG) along with the impact of TPT withdrawal on the testicular toxicity induced by TPT-Cl. Thirty-six adult male albino rats were divided into control, TG (40 mg/kg/day), TPT-Cl (0.5 mg/kg/day), TG + TPT-Cl, and recovery groups. Animals were daily gavaged for 12 weeks. Both TG and TPT-Cl withdrawal improved TPT-Cl-induced testicular toxicity features involving testis and relative testis weight reduction, luteinizing hormone, follicular stimulating hormone, and sex hormone-binding globulin elevation, reduction of inhibin B, free testosterone levels, and sperm count reduction with increased abnormal sperm forms. Moreover, both TG and TPT-Cl withdrawal reduced inflammatory activin A, follistatin, tumor necrosis factor α, interleukin-1β, and proapoptotic Bax and elevated antiapoptotic Bcl2 in testicular tissues mediated by TPT-Cl. TG and TPT-Cl withdrawal restored the excessive autophagy triggered by TPT-Cl via elevation of mTOR, AKT, PI3K, and P62/SQSTM1 and reduction of AMPK, ULK1, Beclin1, and LC3 mRNA gene expressions and regained the deteriorated testicular structure. In conclusion, TG and TPT-Cl withdrawal had an ameliorative role in partially reversing TPT-Cl-induced testicular toxicity. However, the findings indicated that the use of TG as an adjunctive factor is more favorable than TPT-Cl withdrawal, suggesting the capability of the testis for partial self-improvement.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 51911, Saudi Arabia
| | - Ibtesam Elhasadi
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Samah A El-Nagdy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Manohar-Sindhu S, Merfeld-Clauss S, Goddard Y, March KL, Traktuev DO. Diminished vasculogenesis under inflammatory conditions is mediated by Activin A. Angiogenesis 2023; 26:423-436. [PMID: 36977946 DOI: 10.1007/s10456-023-09873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Severe inflammatory stress often leads to vessel rarefaction and fibrosis, resulting in limited tissue recovery. However, signaling pathways mediating these processes are not completely understood. Patients with ischemic and inflammatory conditions have increased systemic Activin A level, which frequently correlates with the severity of pathology. Yet, Activin A's contribution to disease progression, specifically to vascular homeostasis and remodeling, is not well defined. This study investigated vasculogenesis in an inflammatory environment with an emphasis on Activin A's role. Exposure of endothelial cells (EC) and perivascular cells (adipose stromal cells, ASC) to inflammatory stimuli (represented by blood mononuclear cells from healthy donors activated with lipopolysaccharide, aPBMC) dramatically decreased EC tubulogenesis or caused vessel rarefaction compared to control co-cultures, concurrent with increased Activin A secretion. Both EC and ASC upregulated Inhibin Ba mRNA and Activin A secretion in response to aPBMC or their secretome. We identified TNFα (in EC) and IL-1β (in EC and ASC) as the exclusive inflammatory factors, present in aPBMC secretome, responsible for induction of Activin A. Similar to ASC, brain and placental pericytes upregulated Activin A in response to aPBMC and IL-1β, but not TNFα. Both these cytokines individually diminished EC tubulogenesis. Blocking Activin A with neutralizing IgG mitigated detrimental effects of aPBMC or TNFα/IL-1β on tubulogenesis in vitro and vessel formation in vivo. This study delineates the signaling pathway through which inflammatory cells have a detrimental effect on vessel formation and homeostasis, and highlights the central role of Activin A in this process. Transitory interference with Activin A during early phases of inflammatory or ischemic insult, with neutralizing antibodies or scavengers, may benefit vasculature preservation and overall tissue recovery.
Collapse
Affiliation(s)
- Sahana Manohar-Sindhu
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Stephanie Merfeld-Clauss
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Yana Goddard
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Keith L March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA
| | - Dmitry O Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, UF College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Evans ET, Horst B, Arend RC, Mythreye K. Evolving roles of activins and inhibins in ovarian cancer pathophysiology. Am J Physiol Cell Physiol 2023; 324:C428-C437. [PMID: 36622068 PMCID: PMC9902228 DOI: 10.1152/ajpcell.00178.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023]
Abstract
Activins and inhibins are unique members of the transforming growth factor-β (TGFβ) family of growth factors, with the ability to exert autocrine, endocrine, and paracrine effects in a wide range of complex physiologic and pathologic processes. Although first isolated within the pituitary, emerging evidence suggests broader influence beyond reproductive development and function. Known roles of activin and inhibin in angiogenesis and immunity along with correlations between gene expression and cancer prognosis suggest potential roles in tumorigenesis. Here, we present a review of the current understanding of the biological role of activins and inhibins as it relates to ovarian cancers, summarizing the underlying signaling mechanisms and physiologic influence, followed by detailing their roles in cancer progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Elizabeth T Evans
- Department of Gynecologic Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Ben Horst
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rebecca C Arend
- Department of Gynecologic Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, Alabama
| | - Karthikeyan Mythreye
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Ebe Y, Nakamura T, Hasegawa-Nakamura K, Noguchi K. Effect of interleukin-1β on bone morphogenetic protein-9-induced osteoblastic differentiation of human periodontal ligament fibroblasts. Eur J Oral Sci 2021; 129:e12792. [PMID: 33945653 DOI: 10.1111/eos.12792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023]
Abstract
Bone morphogenetic protein-9 (BMP-9) has been shown to potently induce osteoblastic differentiation of periodontal ligament fibroblasts (PDLFs) and may be a candidate therapeutic agent for periodontal tissue healing/regeneration, but the effect of the inflammatory environment of periodontitis on such approaches is unclear. We investigated whether interleukin-1β (IL-1β) affected BMP-9-mediated osteoblastic differentiation of human (h) PDLFs. IL-1β suppressed BMP-9-induced osteogenic differentiation of hPDLFs, as evidenced by reduced alkaline phosphatase (ALP) activity and mineralization, and the downregulated expression of BMP-9-mediated bone-related genes, RUNX2, SP7, IBSP, and SPP1. In hPDLFs, with or without BMP-9, IL-1β increased the protein expression of activin A, a BMP-9 antagonist, and decreased follistatin protein, an antagonist of activin A. Similarly, IL-1β upregulated the expression of the activin A gene and downregulated that of the follistatin gene. Notably, follistatin re-established BMP-9-induced ALP activity suppressed by IL-1β. Activin A inhibited the expression of BMP-9-responsive genes and BMP-9-induced ALP activity, while follistatin re-established them. Finally, extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and nuclear factor-kappa B (NF-κB) inhibition significantly blocked IL-1β-induced activin A gene expression. Our data indicate that IL-1β inhibits BMP-9-induced osteoblastic differentiation of hPDLFs, possibly by promoting activin A production via the ERK1/2, p38, and NF-κB pathways.
Collapse
Affiliation(s)
- Yukari Ebe
- Division of Clinical Engineering, Department of Dental Hygiene, Kagoshima University Hospital, Kagoshima, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kozue Hasegawa-Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
5
|
Diller M, Frommer K, Dankbar B, Tarner I, Hülser ML, Tsiklauri L, Hasseli R, Sauerbier M, Pap T, Rehart S, Müller-Ladner U, Neumann E. The activin-follistatin anti-inflammatory cycle is deregulated in synovial fibroblasts. Arthritis Res Ther 2019; 21:144. [PMID: 31182152 PMCID: PMC6558802 DOI: 10.1186/s13075-019-1926-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/26/2019] [Indexed: 12/25/2022] Open
Abstract
Background Activin A and follistatin exhibit immunomodulatory functions, thus affecting autoinflammatory processes as found in rheumatoid arthritis (RA). The impact of both proteins on the behavior of synovial fibroblasts (SF) in RA as well as in osteoarthritis (OA) is unknown. Methods Immunohistochemical analyses of synovial tissue for expression of activin A and follistatin were performed. The influence of RASF overexpressing activin A on cartilage invasion in a SCID mouse model was examined. RASF and OASF were stimulated with either IL-1β or TNFα in combination with or solely with activin A, activin AB, or follistatin. Protein secretion was measured by ELISA and mRNA expression by RT-PCR. Smad signaling was confirmed by western blot. Results In human RA synovial tissue, the number of activin A-positive cells as well as its extracellular presence was higher than in the OA synovium. Single cells within the tissue expressed follistatin in RA and OA synovial tissue. In the SCID mouse model, activin A overexpression reduced RASF invasion. In human RASF, activin A was induced by IL-1β and TNFα. Activin A slightly increased IL-6 release by unstimulated RASF, but decreased protein and mRNA levels of follistatin. Conclusion The observed decrease of cartilage invasion by RASF overexpressing activin A in the SCID mouse model appears to be mediated by an interaction between activin/follistatin and other local cells indirectly affecting RASF because activin A displayed certain pro-inflammatory effects on RASF. Activin A even inhibits production and release of follistatin in RASF and therefore prevents itself from being blocked by its inhibitory binding protein follistatin in the local inflammatory joint environment. Electronic supplementary material The online version of this article (10.1186/s13075-019-1926-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magnus Diller
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Benekestr: 2-8, 61231, Bad Nauheim, Germany
| | - Klaus Frommer
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Benekestr: 2-8, 61231, Bad Nauheim, Germany
| | - Berno Dankbar
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Ingo Tarner
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Benekestr: 2-8, 61231, Bad Nauheim, Germany
| | - Marie-Lisa Hülser
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Benekestr: 2-8, 61231, Bad Nauheim, Germany
| | - Lali Tsiklauri
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Benekestr: 2-8, 61231, Bad Nauheim, Germany
| | - Rebecca Hasseli
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Benekestr: 2-8, 61231, Bad Nauheim, Germany
| | - Michael Sauerbier
- Department of Plastic, Hand and Reconstructive Surgery, BGU Frankfurt, Frankfurt, Germany
| | - Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Münster, Germany
| | - Stefan Rehart
- Department of Orthopaedics and Trauma Surgery, Agaplesion Markus Hospital, Frankfurt, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Benekestr: 2-8, 61231, Bad Nauheim, Germany
| | - Elena Neumann
- Department of Rheumatology and Clinical Immunology, Justus Liebig University Giessen, Campus Kerckhoff, Bad Nauheim, Benekestr: 2-8, 61231, Bad Nauheim, Germany.
| |
Collapse
|
6
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
7
|
Ravazzolo R, Cappato S, Bocciardi R. Hints on transcriptional control of essential players in heterotopic ossification of Fibrodysplasia Ossificans Progressiva. Bone 2018; 109:187-191. [PMID: 29100956 DOI: 10.1016/j.bone.2017.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Abstract
Signaling of the Bone Morphogenetic Protein (BMP) pathway is influenced by the level of expression of its components, in particular receptors, intracellular molecules and target genes which largely depends on gene transcription. One peculiar aspect of Fibrodysplasia Ossificans Progressiva (FOP) relates to the cell types in which the genetic mutation exerts its effects, then not only those involved in the heterotopic ossification processes but also others that participate in the inflammatory phases preceding and triggering heterotopic ossification. Such effects are in part detectable as variation in gene expression, which is also variably manifesting in term of time of appearance in different phases of the inflammatory or ossification processes.
Collapse
Affiliation(s)
- Roberto Ravazzolo
- DINOGMI Department, University of Genova, Genova, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, Genova, Italy.
| | | | - Renata Bocciardi
- DINOGMI Department, University of Genova, Genova, Italy; Medical Genetics Unit, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
8
|
Pegylated Interferon-α Modulates Liver Concentrations of Activin-A and Its Related Proteins in Normal Wistar Rat. Mediators Inflamm 2015; 2015:414207. [PMID: 26236109 PMCID: PMC4506924 DOI: 10.1155/2015/414207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023] Open
Abstract
Aims. To measure the expression of activin βA-subunit, activin IIA and IIB receptors, Smad4, Smad7, and follistatin in the liver and the liver and serum concentrations of mature activin-A and follistatin in normal rat following treatment with pegylated interferon-α (Peg-INF-α) and ribavirin (RBV). Materials and Methods. 40 male Wistar rats were divided equally into 4 groups: “control,” “Peg-only” receiving 4 injections of Peg-INF-α (6 µg/rat/week), “RBV-only” receiving ribavirin (4 mg/rat/day) orally, and “Peg & RBV” group receiving both drugs. The expression of candidate molecules in liver was measured by immunohistochemistry and quantitative PCR. The concentrations of mature proteins in serum and liver homogenate samples were measured using ELISA. Results. Peg-INF-α ± RBV altered the expression of all candidate molecules in the liver at the gene and protein levels (P < 0.05) and decreased activin-A and increased follistatin in serum and liver homogenates compared with the other groups (P < 0.05). There were also significant correlations between serum and liver activin-A and follistatin. Conclusion. Peg-INF-α modulates the hepatic production of activin-A and follistatin, which can be detected in serum. Further studies are needed to explore the role of Peg-INF-α on the production of activins and follistatin by the liver and immune cells.
Collapse
|
9
|
The effects of pegylated interferon-α and ribavirin on liver and serum concentrations of activin-A and follistatin in normal Wistar rat: a preliminary report. BMC Res Notes 2015; 8:265. [PMID: 26112013 PMCID: PMC4481076 DOI: 10.1186/s13104-015-1253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 06/18/2015] [Indexed: 12/22/2022] Open
Abstract
Background Activin-A and follistatin regulate the liver and the immune system. Aims To measure the effects of treatment with pegylated-interferon-α (Peg-IFN-α) and ribavirin on the concentrations of mature activin-A and follistatin in serum and liver tissue homogenates in rats. Methods A total of 28 male Wistar rats were divided equally into four groups as follow: ‘Control group’ (n = 7), ‘PEG only group’ consisted of those that only received a weekly injection of Peg-IFN-α (6 µg/rat) for 4 weeks, ‘RBV only group’ received ribavirin only (4 mg/rat/day) orally for 35 days and the last group received both Peg-IFN-α and ribavirin ‘PEG & RBV group’. The concentrations of candidate proteins in serum and liver samples were measured using ELISA. Results Pegylated-interferon-α decreased activin-A and increased follistatin significantly in serum and liver of ‘PEG only’ and ‘PEG & RBV’ groups compared with the ‘Control’ and ‘RBV only’ groups (P < 0.05). There was no significant difference between the ‘RBV only’ and ‘Control’ groups (P > 0.05) in the concentrations of candidate proteins. A significant positive correlations between serum and liver activin-A (r = 0.727; P = 0.02 × 10−3) and follistatin (r = 0.540; P = 0.01) was also detected. Conclusion Pegylated-interferon-α modulates the production of activin-A and follistatin by the liver, which is reflected and can be detected at the serum level. Further studies are needed to explore the role of Peg-IFN-α based therapy on the production of activins and follistatin by the liver and immune cells.
Collapse
|
10
|
Refaat B, Ashshi AM, El-Shemi AG, Azhar E. Activins and Follistatin in Chronic Hepatitis C and Its Treatment with Pegylated-Interferon-α Based Therapy. Mediators Inflamm 2015; 2015:287640. [PMID: 25969625 PMCID: PMC4417604 DOI: 10.1155/2015/287640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/12/2022] Open
Abstract
Pegylated-interferon-α based therapy for the treatment of chronic hepatitis C (CHC) is considered suboptimal as not all patients respond to the treatment and it is associated with several side effects that could lead to dose reduction and/or termination of therapy. The currently used markers to monitor the response to treatment are based on viral kinetics and their performance in the prediction of treatment outcome is moderate and does not combine accuracy and their values have several limitations. Hence, the development of new sensitive and specific predictor markers could provide a useful tool for the clinicians and healthcare providers, especially in the new era of interferon-free therapy, for the classification of patients according to their response to the standard therapy and only subscribing the novel directly acting antiviral drugs to those who are anticipated not to respond to the conventional therapy and/or have absolute contraindications for its use. The importance of activins and follistatin in the regulation of immune system, liver biology, and pathology has recently emerged. This review appraises the up-to-date knowledge regarding the role of activins and follistatin in liver biology and immune system and their role in the pathophysiology of CHC.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
| | - Ahmed Mohamed Ashshi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 6515, Egypt
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
11
|
Loomans HA, Andl CD. Intertwining of Activin A and TGFβ Signaling: Dual Roles in Cancer Progression and Cancer Cell Invasion. Cancers (Basel) 2014; 7:70-91. [PMID: 25560921 PMCID: PMC4381251 DOI: 10.3390/cancers7010070] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/23/2014] [Indexed: 12/22/2022] Open
Abstract
In recent years, a significant amount of research has examined the controversial role of activin A in cancer. Activin A, a member of the transforming growth factor β (TGFβ) superfamily, is best characterized for its function during embryogenesis in mesoderm cell fate differentiation and reproduction. During embryogenesis, TGFβ superfamily ligands, TGFβ, bone morphogenic proteins (BMPs) and activins, act as potent morphogens. Similar to TGFβs and BMPs, activin A is a protein that is highly systemically expressed during early embryogenesis; however, post-natal expression is overall reduced and remains under strict spatiotemporal regulation. Of importance, normal post-natal expression of activin A has been implicated in the migration and invasive properties of various immune cell types, as well as endometrial cells. Aberrant activin A signaling during development results in significant morphological defects and premature mortality. Interestingly, activin A has been found to have both oncogenic and tumor suppressor roles in cancer. Investigations into the role of activin A in prostate and breast cancer has demonstrated tumor suppressive effects, while in lung and head and neck squamous cell carcinoma, it has been consistently shown that activin A expression is correlated with increased proliferation, invasion and poor patient prognosis. Activin A signaling is highly context-dependent, which is demonstrated in studies of epithelial cell tumors and the microenvironment. This review discusses normal activin A signaling in comparison to TGFβ and highlights how its dysregulation contributes to cancer progression and cell invasion.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Claudia D Andl
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Sugii H, Maeda H, Tomokiyo A, Yamamoto N, Wada N, Koori K, Hasegawa D, Hamano S, Yuda A, Monnouchi S, Akamine A. Effects of Activin A on the phenotypic properties of human periodontal ligament cells. Bone 2014; 66:62-71. [PMID: 24928494 DOI: 10.1016/j.bone.2014.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 02/05/2023]
Abstract
Periodontal ligament (PDL) tissue plays an important role in tooth preservation by structurally maintaining the connection between the tooth root and the bone. The mechanisms involved in the healing and regeneration of damaged PDL tissue, caused by bacterial infection, caries and trauma, have been explored. Accumulating evidence suggests that Activin A, a member of the transforming growth factor-β (TGF-β) superfamily and a dimer of inhibinβa, contributes to tissue healing through cell proliferation, migration, and differentiation of various target cells. In bone, Activin A has been shown to exert an inhibitory effect on osteoblast maturation and mineralization. However, there have been no reports examining the expression and function of Activin A in human PDL cells (HPDLCs). Thus, we aimed to investigate the biological effects of Activin A on HPDLCs. Activin A was observed to be localized in HPDLCs and rat PDL tissue. When PDL tissue was surgically damaged, Activin A and IL-1β expression increased and the two proteins were shown to be co-localized around the lesion. HPDLCs treated with IL-1β or TNF-α also up-regulated the expression of the gene encoding inhibinβa. Activin A promoted chemotaxis, migration and proliferation of HPDLCs, and caused an increase in fibroblastic differentiation of these cells while down-regulating their osteoblastic differentiation. These osteoblastic inhibitory effects of Activin A, however, were only noted during the early phase of HPDLC osteoblastic differentiation, with later exposures having no effect on differentiation. Collectively, our results suggest that Activin A could be used as a therapeutic agent for healing and regenerating PDL tissue in response to disease, trauma or surgical reconstruction.
Collapse
Affiliation(s)
- Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Atsushi Tomokiyo
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, SA 5005, Australia
| | - Naohide Yamamoto
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naohisa Wada
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuaki Koori
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daigaku Hasegawa
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Asuka Yuda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Monnouchi
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akifumi Akamine
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
13
|
Effects of chronic hepatitis C genotype 1 and 4 on serum activins and follistatin in treatment naïve patients and their correlations with interleukin-6, tumour necrosis factor-α, viral load and liver damage. Clin Exp Med 2014; 15:293-302. [DOI: 10.1007/s10238-014-0297-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/10/2014] [Indexed: 02/08/2023]
|
14
|
Lee WH, Chung MH, Tsai YH, Chang JL, Huang HM. Interferon-γ suppresses activin A/NF-E2 induction of erythroid gene expression through the NF-κB/c-Jun pathway. Am J Physiol Cell Physiol 2013; 306:C407-14. [PMID: 24336657 DOI: 10.1152/ajpcell.00312.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interferon (IFN)-γ is a proinflammatory cytokine that is linked to erythropoiesis inhibition and may contribute to anemia. However, the mechanism of IFN-γ-inhibited erythropoiesis is unknown. Activin A, a member of the transforming growth factor (TGF)-β superfamily, induces the erythropoiesis of hematopoietic progenitor cells. In this study, a luciferase reporter assay showed that IFN-γ suppressed activin A-induced ζ-globin promoter activation in K562 erythroblast cells in a dose-dependent manner. Activin A reversed the suppressive effect of IFN-γ on the luciferase activity of ζ-globin promoter in a dose-dependent manner. IFN-γ also suppressed the activation of activin A-induced α-globin promoter. IFN-γ reduced the mRNA expression of α-globin, ζ-globin, NF-E2p45, and GATA-1 induced by activin A. The results also showed that IFN-γ induced c-Jun expression when NF-κBp65 and c-Jun bound to two AP-1-binding sites on the c-Jun promoter. The luciferase activity of α-globin and ζ-globin promoters were enhanced by wild-type c-Jun and eliminated by dominant-negative (DN) c-Jun. The suppressive effects of IFN-γ on the mRNA expression of α-globin and ζ-globin were absent in cells expressing DN c-Jun. The ability of NF-E2 to enhance activin A-induced ζ-globin promoter activation decreased when c-Jun was present, and IFN-γ treatment further enhanced the decreasing effect of c-Jun. Chromatin immunoprecipitation revealed that NF-E2p45 bound to the upstream regulatory element (HS-40) of the α-globin gene cluster in response to activin A, whereas c-Jun eliminated this binding. These results suggest that IFN-γ modulates NF-κB/c-Jun to antagonize activin A-mediated NF-E2 transcriptional activity on globin gene expression.
Collapse
Affiliation(s)
- Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Hedger MP, de Kretser DM. The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev 2013; 24:285-95. [PMID: 23541927 DOI: 10.1016/j.cytogfr.2013.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/05/2013] [Indexed: 02/05/2023]
Abstract
The activins, as members of the transforming growth factor-β superfamily, are pleiotrophic regulators of cell development and function, including cells of the myeloid and lymphoid lineages. Clinical and animal studies have shown that activin levels increase in both acute and chronic inflammation, and are frequently indicators of disease severity. Moreover, inhibition of activin action can reduce inflammation, damage, fibrosis and morbidity/mortality in various disease models. Consequently, activin A and, more recently, activin B are emerging as important diagnostic tools and therapeutic targets in inflammatory and fibrotic diseases. Activin antagonists such as follistatin, an endogenous activin-binding protein, offer considerable promise as therapies in conditions as diverse as sepsis, liver fibrosis, acute lung injury, asthma, wound healing and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- M P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
16
|
Arai KY, Ono M, Kudo C, Fujioka A, Okamura R, Nomura Y, Nishiyama T. IL-1beta stimulates activin betaA mRNA expression in human skin fibroblasts through the MAPK pathways, the nuclear factor-kappaB pathway, and prostaglandin E2. Endocrinology 2011; 152:3779-90. [PMID: 21828177 DOI: 10.1210/en.2011-0255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During mouse skin wound healing, mRNAs encoding IL-1, activins, and TGF-βs significantly increased. To elucidate involvement of IL-1 in the regulation of activins and related factors in the wounded skin, human foreskin fibroblasts were stimulated with IL-1β, and levels of mRNAs encoding activins, TGF-βs, and follistatin family proteins were examined by quantitative real-time PCR. IL-1β increased activin βA (INHBA) and follistatin (FST) mRNA expression within 6 h. A p38 MAPK inhibitor, SB202190, a MAPK/ERK kinase inhibitor, U0126, and an nuclear factor κB pathway inhibitor, SC-514, significantly suppressed the IL-1β-stimulated INHBA and FST mRNA expression. A prostaglandin-endoperoxide synthase inhibitor indomethacin, a potent inhibitor of prostaglandin E(2) (PGE(2)) synthesis, also significantly suppressed the IL-1β-stimulated INHBA but not FST mRNA expression. Furthermore, stimulation of fibroblasts with PGE(2) significantly increased INHBA mRNA. The PGE(2)-induced INHBA mRNA expression was significantly suppressed by U0126 and a protein kinase C inhibitor, Gö 6983. Although IL-1β stimulated FST mRNA in an acute phase, long-term exposure of fibroblasts to IL-1β revealed time-dependent stimulatory and inhibitory effects of IL-1β on FST mRNA expression. On the other hand, coculture with keratinocytes significantly increased INHBA mRNA expression in dermal equivalents. In summary, the present study indicates that the p38 MAPK, the MAPK/ERK kinase, the nuclear factor κB pathway, and PGE(2) mediate the effects of IL-1β on INHBA mRNA expression. Furthermore, it is indicated that keratinocyte-derived factor of factors stimulate INHBA mRNA expression during wound healing.
Collapse
Affiliation(s)
- Koji Y Arai
- Division of Matrix Biology, Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hedger MP, Winnall WR, Phillips DJ, de Kretser DM. The regulation and functions of activin and follistatin in inflammation and immunity. VITAMINS AND HORMONES 2011; 85:255-97. [PMID: 21353885 DOI: 10.1016/b978-0-12-385961-7.00013-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The activins are members of the transforming growth factor β superfamily with broad and complex effects on cell growth and differentiation. Activin A has long been known to be a critical regulator of inflammation and immunity, and similar roles are now emerging for activin B, with which it shares 65% sequence homology. These molecules and their binding protein, follistatin, are widely expressed, and their production is increased in many acute and chronic inflammatory conditions. Synthesis and release of the activins are stimulated by inflammatory cytokines, Toll-like receptor ligands, and oxidative stress. The activins interact with heterodimeric serine/threonine kinase receptor complexes to activate SMAD transcription factors and the MAP kinase signaling pathways, which mediate inflammation, stress, and immunity. Follistatin binds to the activins with high affinity, thereby obstructing the activin receptor binding site, and targets them to cell surface proteoglycans and lysosomal degradation. Studies on transgenic mice and those with gene knockouts, together with blocking studies using exogenous follistatin, have established that activin A plays critical roles in the onset of cachexia, acute and chronic inflammatory responses such as septicemia, colitis and asthma, and fibrosis. However, activin A also directs the development of monocyte/macrophages, myeloid dendritic cells, and T cell subsets to promote type 2 and regulatory immune responses. The ability of both endogenous and exogenous follistatin to block the proinflammatory and profibrotic actions of activin A has led to interest in this binding protein as a potential therapeutic for limiting the severity of disease and to improve subsequent damage associated with inflammation and fibrosis. However, the ability of activin A to sculpt the subsequent immune response as well means that the full range of effects that might arise from blocking activin bioactivity will need to be considered in any therapeutic applications.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
18
|
When versatility matters: activins/inhibins as key regulators of immunity. Immunol Cell Biol 2011; 90:137-48. [DOI: 10.1038/icb.2011.32] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 2011; 117:5092-101. [PMID: 21389328 DOI: 10.1182/blood-2010-09-306993] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
M-CSF favors the generation of folate receptor β-positive (FRβ⁺), IL-10-producing, immunosuppressive, M2-polarized macrophages [M2 (M-CSF)], whereas GM-CSF promotes a proinflammatory, M1-polarized phenotype [M1 (GM-CSF)]. In the present study, we found that activin A was preferentially released by M1 (GM-CSF) macrophages, impaired the acquisition of FRβ and other M2 (M-CSF)-specific markers, down-modulated the LPS-induced release of IL-10, and mediated the tumor cell growth-inhibitory activity of M1 (GM-CSF) macrophages, in which Smad2/3 is constitutively phosphorylated. The contribution of activin A to M1 (GM-CSF) macrophage polarization was evidenced by the capacity of a blocking anti-activin A antibody to reduce M1 (GM-CSF) polarization markers expression while enhancing FRβ and other M2 (M-CSF) markers mRNA levels. Moreover, an inhibitor of activin receptor-like kinase 4/5/7 (ALK4/5/7 or SB431542) promoted M2 (M-CSF) marker expression but limited the acquisition of M1 (GM-CSF) polarization markers, suggesting a role for Smad2/3 activation in macrophage polarization. In agreement with these results, expression of activin A and M2 (M-CSF)-specific markers was oppositely regulated by tumor ascites. Therefore, activin A contributes to the proinflammatory macrophage polarization triggered by GM-CSF and limits the acquisition of the anti-inflammatory phenotype in a Smad2-dependent manner. Our results demonstrate that activin A-initiated Smad signaling skews macrophage polarization toward the acquisition of a proinflammatory phenotype.
Collapse
|
20
|
Ebert S, Nau R, Michel U. Role of activin in bacterial infections: a potential target for immunointervention? Immunotherapy 2010; 2:673-84. [DOI: 10.2217/imt.10.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Severe bacterial infections such as sepsis and meningitis still kill or severely injure people despite the use of bactericidal antibiotics. Therefore, new strategies for a better therapy are needed. Activin A, a member of the TGF-β superfamily and its binding protein follistatin (FS) are released by various cell types during acute and chronic inflammatory processes. Until now, a clear definition of conditions in which activin A exerts either its pro- or anti-inflammatory functions is lacking. The activin/FS-system participates in the fine-tuning of the host’s inflammatory response upon infectious stimuli. This response is on the one hand necessary for fighting pathogens, but on the other hand can negatively affect the host. This article focuses on the role of activin A and FS in infection and after acute inflammatory stimuli. The therapeutic potentials of blocking or promoting activin actions are discussed.
Collapse
Affiliation(s)
| | - Roland Nau
- Department of Neuropathology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
21
|
Hardy CL, Lemasurier JS, Olsson F, Dang T, Yao J, Yang M, Plebanski M, Phillips DJ, Mollard R, Rolland JM, O'Hehir RE. Interleukin-13 regulates secretion of the tumor growth factor-{beta} superfamily cytokine activin A in allergic airway inflammation. Am J Respir Cell Mol Biol 2009; 42:667-75. [PMID: 19635933 DOI: 10.1165/rcmb.2008-0429oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activin A is a member of the TGF-beta superfamily and plays a role in allergic inflammation and asthma pathogenesis. Recent evidence suggests that activin A regulates proinflammatory cytokine production and is regulated by inflammatory mediators. In a murine model of acute allergic airway inflammation, we observed previously that increased activin A concentrations in bronchoalveolar lavage (BAL) fluid coincide with Th2 cytokine production in lung-draining lymph nodes and pronounced mucus metaplasia in bronchial epithelium. We therefore hypothesized that IL-13, the key cytokine for mucus production, regulates activin A secretion into BAL fluid in experimental asthma. IL-13 increased BAL fluid activin A concentrations in naive mice and dose dependently induced activin A secretion from cultured human airway epithelium. A key role for IL-13 in the secretion of activin A into the BAL fluid during allergic airway inflammation was confirmed in IL-13-deficient mice. Eosinophils were not involved in this response because there was no difference in BAL fluid activin A concentrations between wild-type and eosinophil-deficient mice. Our data highlight an important role for IL-13 in the regulation of activin A intraepithelially and in BAL fluid in naive mice and during allergic airway inflammation. Given the immunomodulatory and fibrogenic effects of activin A, our findings suggest an important role for IL-13 regulation of activin A in asthma pathogenesis.
Collapse
Affiliation(s)
- Charles L Hardy
- Department of Immunology, Monash University, Commercial Road, Melbourne, VIC 3004 Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sarkar S, Zaretskaia MV, Zaretsky DV, Moreno M, DiMicco JA. Stress- and lipopolysaccharide-induced c-fos expression and nNOS in hypothalamic neurons projecting to medullary raphe in rats: a triple immunofluorescent labeling study. Eur J Neurosci 2007; 26:2228-38. [PMID: 17927775 DOI: 10.1111/j.1460-9568.2007.05843.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurons in the rostral raphe pallidus (rRP) have been proposed to mediate experimental stress-induced tachycardia and fever in rats, and projections from the dorsomedial hypothalamus (DMH) may signal their activation in these settings. Thus, we examined c-fos expression evoked by air jet/restraint stress and restraint stress or by systemic administration of lipopolysaccharide (10 microg/kg and 100 microg/kg) as well as the distribution of the neuronal nitric oxide synthase (nNOS) in neurons retrogradely labeled from the raphe with cholera toxin B in key hypothalamic regions. Many neurons in the medial preoptic area and the dorsal area of the DMH were retrogradely labeled, and approximately half of those in the medial preoptic area and moderate numbers in the dorsal DMH were also positive for nNOS. Either stress paradigm or dose of lipopolysaccharide increased the number of c-fos-positive neurons and nNOS/c-fos double-labeled neurons in all regions examined. However, retrogradely labeled neurons positive for c-fos were increased only in the dorsal DMH and adjoining region in both stressed and lipopolysaccharide-treated groups, and triple-labeled neurons were found only in this area in rats subjected to either stress paradigm. Thus, hypothalamic neurons that project to the rRP and express c-fos in response to either experimental stress or systemic inflammation are found only in the dorsal DMH, and many of those activated by stress contain nNOS, suggesting that nitric oxide may play a role in signaling in this pathway.
Collapse
Affiliation(s)
- Sumit Sarkar
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
23
|
Chang DM, Liu SH, Lee HS, Lai JH, Chen CH. Activin A suppresses interleukin-1-induced matrix metalloproteinase 3 secretion in human chondrosarcoma cells. Rheumatol Int 2007; 27:1049-55. [PMID: 17436000 DOI: 10.1007/s00296-007-0350-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Accepted: 03/25/2007] [Indexed: 10/23/2022]
Abstract
The objective was to investigate the effect of activin A on matrix metalloproteinase 3 (MMP-3) production and to identify the role of activin A in chondroprotection. SW1353 cells, a human chondrosarcoma cell line, were stimulated with interleukin (IL) 1alpha and tumor necrosis factor (TNF) alpha, and the concentrations of activin A, follistatin, and MMP-3 secreted into the culture media were measured by enzyme-linked immunosorbent assay (ELISA). Activin A was added to cell cultures in the presence of IL-1alpha or TNFalpha to determine its effect on the production of MMP-3 and sulfated glycosaminoglycan (sGAG) (measured by Alcian blue assay). To study the mechanism responsible for the chondroprotective effects of activin A, the production of IL-1 receptor antagonist (IL-1ra) and tissue inhibitor for metalloproteinases 1 (TIMP-1) was examined by ELISA. Addition of IL-1alpha did not affect the production of activin A by cultured SW1353 cells. IL-1alpha and activin A inhibited the production of follistatin. Stimulation of SW1353 cells with activin A suppressed IL-1alpha-induced, but not TNFalpha-induced, MMP-3 expression. Activin A had no effect on the production of sGAG, IL-1ra, or TIMP-1, although it suppressed the induction of TIMP-1 and IL-1ra by IL-1alpha. This novel finding of MMP-3 inhibition by activin A suggests a new role of activin A in cartilage remodeling. Activin A may have therapeutic potential for preventing cartilage degradation.
Collapse
Affiliation(s)
- Deh-Ming Chang
- Department of Rheumatology, Immunology and Allergy, Tri-Service General Hospital, National Defense Medical Center, #325 Cheng-Kung Road, Section 2, Neihu 114, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
24
|
Lin SD, Kawakami T, Ushio A, Sato A, Sato SI, Iwai M, Endo R, Takikawa Y, Suzuki K. Ratio of circulating follistatin and activin A reflects the severity of acute liver injury and prognosis in patients with acute liver failure. J Gastroenterol Hepatol 2006; 21:374-80. [PMID: 16509861 DOI: 10.1111/j.1440-1746.2005.04036.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM The activin A-follistatin system is known to play a critical role in hepatocyte regeneration during the repair of liver tissue. However, the relationship between blood levels of these compounds and the severity and prognosis of acute liver injury remains unclear. The aim of this study was to evaluate the clinical significance of circulating activin A and follistatin in patients with acute liver disease. METHODS Serum activin A and plasma follistatin levels were determined on admission by enzyme-linked immunosorbent assay in 32 patients with acute hepatitis (AH), 23 patients with acute severe hepatitis (ASH) and 16 patients with acute liver failure (ALF). RESULTS Both serum activin A and plasma follistatin levels were significantly elevated in patients with ASH and ALF when compared with those in patients with AH and normal controls (NC). Although plasma follistatin levels were significantly and positively correlated with serum activin A levels (r = 0.413, P < 0.001), the follistatin and activin A (F/A) ratio showed distinct deviation from NC between AH and ALF patients. The F/A ratio in AH patients was significantly elevated when compared with NC, but was significantly reduced in ALF patients. Furthermore, the F/A ratio in non-surviving ALF patients was significantly lower than that in survivors. Levels of serum activin A and plasma follistatin were significantly and negatively correlated with prothrombin time (PT) and normotest (NT) levels, while the F/A ratio showed significant and positive correlations with PT and NT. CONCLUSIONS Decreased blood F/A ratio in ALF patients may be a reliable indicator of the severity of acute liver injury and prognosis in ALF.
Collapse
Affiliation(s)
- Shi De Lin
- First Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Activin and follistatin were initially identified in the follicular fluid based on their effects on pituitary FSH secretion in the mid-1980s. It is now evident that activin, follistatin and activin receptors are widely expressed in many tissues where they function as autocrine/paracrine regulators of a variety of physiological processes including reproduction. The major function of follistatin is to bind to activin with high affinity and block activin binding to its receptors. Total activin A and follistatin are also found in the maternal circulation throughout pregnancy. Activin A levels are increased in abnormal pregnancies such as pre-eclampsia, fetal growth restriction and gestational hypertension. The placenta, vascular endothelial cells and activated peripheral mononuclear cells (PBMC) may all contribute to the raised levels of activin A in pre-eclampsia with unaltered follistatin in pre-eclamptic placenta, PBMCs or vascular endothelial cells suggesting the availability of 'free' activin A that could be biologically active in these cells.
Collapse
Affiliation(s)
- Shanthi Muttukrishna
- Department of Obstetrics and Gynaecology, Royal Free University College Medical School, 86-96 Chenies Mews, London WC1E 6HX, UK
| | | | | | | |
Collapse
|
26
|
Welt C, Sidis Y, Keutmann H, Schneyer A. Activins, inhibins, and follistatins: from endocrinology to signaling. A paradigm for the new millennium. Exp Biol Med (Maywood) 2002; 227:724-52. [PMID: 12324653 DOI: 10.1177/153537020222700905] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It has been 70 years since the name inhibin was used to describe a gonadal factor that negatively regulated pituitary hormone secretion. The majority of this period was required to achieve purification and definitive characterization of inhibin, an event closely followed by identification and characterization of activin and follistatin (FS). In contrast, the last 15-20 years saw a virtual explosion of information regarding the biochemistry, physiology, and biosynthesis of these proteins, as well as identification of activin receptors, and a unique mechanism for FS action-the nearly irreversible binding and neutralization of activin. Many of these discoveries have been previously summarized; therefore, this review will cover the period from the mid 1990s to present, with particular emphasis on emerging themes and recent advances. As the field has matured, recent efforts have focused more on human studies, so the endocrinology of inhibin, activin, and FS in the human is summarized first. Another area receiving significant recent attention is local actions of activin and its regulation by both FS and inhibin. Because activin and FS are produced in many tissues, we chose to focus on a few particular examples with the most extensive experimental support, the pituitary and the developing follicle, although nonreproductive actions of activin and FS are also discussed. At the cellular level, it now seems that activin acts largely as an autocrine and/or paracrine growth factor, similar to other members of the transforming growh factor beta superfamily. As we discuss in the next section, its actions are regulated extracellularly by both inhibin and FS. In the final section, intracellular mediators and modulators of activin signaling are reviewed in detail. Many of these are shared with other transforming growh factor beta superfamily members as well as unrelated molecules, and in a number of cases, their physiological relevance to activin signal propagation remains to be elucidated. Nevertheless, taken together, recent findings suggest that it may be more appropriate to consider a new paradigm for inhibin, activin, and FS in which activin signaling is regulated extracellularly by both inhibin and FS whereas a number of intracellular proteins act to modulate cellular responses to these activin signals. It is therefore the balance between activin and all of its modulators, rather than the actions of any one component, that determines the final biological outcome. As technology and model systems become more sophisticated in the next few years, it should become possible to test this concept directly to more clearly define the role of activin, inhibin, and FS in reproductive physiology.
Collapse
Affiliation(s)
- Corrine Welt
- Reproductive Endocrine Unit and Endocrine Unit, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|