1
|
Fernández-Álvarez A. Beyond tradition: exploring the non-canonical functions of telomeres in meiosis. Front Cell Dev Biol 2023; 11:1278571. [PMID: 38020928 PMCID: PMC10679444 DOI: 10.3389/fcell.2023.1278571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The telomere bouquet is a specific chromosomal configuration that forms during meiosis at the zygotene stage, when telomeres cluster together at the nuclear envelope. This clustering allows cytoskeleton-induced movements to be transmitted to the chromosomes, thereby facilitating homologous chromosome search and pairing. However, loss of the bouquet results in more severe meiotic defects than can be attributed solely to recombination problems, suggesting that the bouquet's full function remains elusive. Despite its transient nature and the challenges in performing in vivo analyses, information is emerging that points to a remarkable suite of non-canonical functions carried out by the bouquet. Here, we describe how new approaches in quantitative cell biology can contribute to establishing the molecular basis of the full function and plasticity of the bouquet, and thus generate a comprehensive picture of the telomeric control of meiosis.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Institute of Functional Biology and Genomics (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Shah S, Mittal P, Kumar D, Mittal A, Ghosh SK. Evidence of kinesin motors involved in stable kinetochore assembly during early meiosis. Mol Biol Cell 2023; 34:ar107. [PMID: 37556230 PMCID: PMC10559306 DOI: 10.1091/mbc.e22-12-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
During mitosis, the budding yeast, kinetochores remain attached to microtubules, except for a brief period during S phase. Sister-kinetochores separate into two clusters (bilobed organization) upon stable end-on attachment to microtubules emanating from opposite spindle poles. However, in meiosis, the outer kinetochore protein (Ndc80) reassembles at the centromeres much later after prophase I, establishing new kinetochore-microtubule attachments. Perhaps due to this, despite homolog bi-orientation, we observed that the Ndc80 are linearly dispersed between spindle poles during metaphase I of meiosis. The presence of end-on attachment marker Dam1 as a cluster near each pole suggests one of the other possibilities that the pole-proximal and pole-distal kinetochores are attached end-on and laterally to the microtubules, respectively. Colocalization studies of kinetochores and kinesin motors suggest that budding yeast kinesin 5, Cin8, and Kip1 perhaps localize to the end-on attached kinetochores while kinesin 8 and Kip3 resides at all the kinetochores. Our findings, including kinesin 5 and Ndc80 coappearance after prophase I and reduced Ndc80 levels in cin8 null mutant, suggest that kinesin motors are crucial for kinetochore reassembly and stability during early meiosis. Thus, this work reports yet another meiosis specific function of kinesin motors.
Collapse
Affiliation(s)
- Seema Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Priyanka Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Deepanshu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Anjani Mittal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Santanu K. Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
3
|
Schalbetter SA, Fudenberg G, Baxter J, Pollard KS, Neale MJ. Principles of meiotic chromosome assembly revealed in S. cerevisiae. Nat Commun 2019; 10:4795. [PMID: 31641121 PMCID: PMC6805904 DOI: 10.1038/s41467-019-12629-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
During meiotic prophase, chromosomes organise into a series of chromatin loops emanating from a proteinaceous axis, but the mechanisms of assembly remain unclear. Here we use Saccharomyces cerevisiae to explore how this elaborate three-dimensional chromosome organisation is linked to genomic sequence. As cells enter meiosis, we observe that strong cohesin-dependent grid-like Hi-C interaction patterns emerge, reminiscent of mammalian interphase organisation, but with distinct regulation. Meiotic patterns agree with simulations of loop extrusion with growth limited by barriers, in which a heterogeneous population of expanding loops develop along the chromosome. Importantly, CTCF, the factor that imposes similar features in mammalian interphase, is absent in S. cerevisiae, suggesting alternative mechanisms of barrier formation. While grid-like interactions emerge independently of meiotic chromosome synapsis, synapsis itself generates additional compaction that matures differentially according to telomere proximity and chromosome size. Collectively, our results elucidate fundamental principles of chromosome assembly and demonstrate the essential role of cohesin within this evolutionarily conserved process.
Collapse
Affiliation(s)
- Stephanie A Schalbetter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Geoffrey Fudenberg
- Gladstone Institutes for Data Science and Biotechnology, San Francisco, USA.
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Katherine S Pollard
- Gladstone Institutes for Data Science and Biotechnology, San Francisco, USA.
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
4
|
Subramanian VV, Zhu X, Markowitz TE, Vale-Silva LA, San-Segundo PA, Hollingsworth NM, Keeney S, Hochwagen A. Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nat Commun 2019; 10:970. [PMID: 30814509 PMCID: PMC6393486 DOI: 10.1038/s41467-019-08875-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022] Open
Abstract
Faithful meiotic chromosome inheritance and fertility rely on the stimulation of meiotic crossover recombination by potentially genotoxic DNA double-strand breaks (DSBs). To avoid excessive damage, feedback mechanisms down-regulate DSBs, likely in response to initiation of crossover repair. In Saccharomyces cerevisiae, this regulation requires the removal of the conserved DSB-promoting protein Hop1/HORMAD during chromosome synapsis. Here, we identify privileged end-adjacent regions (EARs) spanning roughly 100 kb near all telomeres that escape DSB down-regulation. These regions retain Hop1 and continue to break in pachynema despite normal synaptonemal complex deposition. Differential retention of Hop1 requires the disassemblase Pch2/TRIP13, which preferentially removes Hop1 from telomere-distant sequences, and is modulated by the histone deacetylase Sir2 and the nucleoporin Nup2. Importantly, the uniform size of EARs among chromosomes contributes to disproportionately high DSB and repair signals on short chromosomes in pachynema, suggesting that EARs partially underlie the curiously high recombination rate of short chromosomes.
Collapse
Affiliation(s)
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Amazon AI, Seattle, WA, 98101, USA
| | - Tovah E Markowitz
- Department of Biology, New York University, New York, NY, 10003, USA.,Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Luis A Vale-Silva
- Department of Biology, New York University, New York, NY, 10003, USA.,BioQuant Center, Heidelberg University, 69120, Heidelberg, Germany
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007, Salamanca, Spain
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
5
|
The unconventional kinetoplastid kinetochore: from discovery toward functional understanding. Biochem Soc Trans 2017; 44:1201-1217. [PMID: 27911702 PMCID: PMC5095916 DOI: 10.1042/bst20160112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that drives chromosome segregation in eukaryotes. Its most fundamental function is to connect centromeric DNA to dynamic spindle microtubules. Studies in popular model eukaryotes have shown that centromere protein (CENP)-A is critical for DNA-binding, whereas the Ndc80 complex is essential for microtubule-binding. Given their conservation in diverse eukaryotes, it was widely believed that all eukaryotes would utilize these components to make up a core of the kinetochore. However, a recent study identified an unconventional type of kinetochore in evolutionarily distant kinetoplastid species, showing that chromosome segregation can be achieved using a distinct set of proteins. Here, I review the discovery of the two kinetochore systems and discuss how their studies contribute to a better understanding of the eukaryotic chromosome segregation machinery.
Collapse
|
6
|
Sepsi A, Higgins JD, Heslop-Harrison JSP, Schwarzacher T. CENH3 morphogenesis reveals dynamic centromere associations during synaptonemal complex formation and the progression through male meiosis in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:235-249. [PMID: 27624968 DOI: 10.1111/tpj.13379] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 05/02/2023]
Abstract
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues.
Collapse
Affiliation(s)
- Adél Sepsi
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - James D Higgins
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Trude Schwarzacher
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
7
|
Challa K, Lee MS, Shinohara M, Kim KP, Shinohara A. Rad61/Wpl1 (Wapl), a cohesin regulator, controls chromosome compaction during meiosis. Nucleic Acids Res 2016; 44:3190-203. [PMID: 26825462 PMCID: PMC4838362 DOI: 10.1093/nar/gkw034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/12/2016] [Indexed: 11/12/2022] Open
Abstract
Meiosis-specific cohesin, required for the linking of the sister chromatids, plays a critical role in various chromosomal events during meiotic prophase I, such as chromosome morphogenesis and dynamics, as well as recombination. Rad61/Wpl1 (Wapl in other organisms) negatively regulates cohesin functions. In this study, we show that meiotic chromosome axes are shortened in the budding yeast rad61/wpl1 mutant, suggesting that Rad61/Wpl1 negatively regulates chromosome axis compaction. Rad61/Wpl1 is required for efficient resolution of telomere clustering during meiosis I, indicating a positive effect of Rad61/Wpl1 on the cohesin function required for telomere dynamics. Additionally, we demonstrate distinct activities of Rad61/Wpl1 during the meiotic recombination, including its effects on the efficient processing of intermediates. Thus, Rad61/Wpl1 both positively and negatively regulates various cohesin-mediated chromosomal processes during meiosis.
Collapse
Affiliation(s)
- Kiran Challa
- Institute for Protein Research, Graduate School of Science, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Min-Su Lee
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Miki Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Akira Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Kakui Y, Sato M. Differentiating the roles of microtubule-associated proteins at meiotic kinetochores during chromosome segregation. Chromosoma 2015; 125:309-20. [PMID: 26383111 DOI: 10.1007/s00412-015-0541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/30/2022]
Abstract
Meiosis is a specialised cell division process for generating gametes. In contrast to mitosis, meiosis involves recombination followed by two consecutive rounds of cell division, meiosis I and II. A vast field of research has been devoted to understanding the differences between mitotic and meiotic cell divisions from the viewpoint of chromosome behaviour. For faithful inheritance of paternal and maternal genetic information to offspring, two events are indispensable: meiotic recombination, which generates a physical link between homologous chromosomes, and reductional segregation, in which homologous chromosomes move towards opposite poles, thereby halving the ploidy. The cytoskeleton and its regulators play specialised roles in meiosis to accomplish these divisions. Recent studies have shown that microtubule-associated proteins (MAPs), including tumour overexpressed gene (TOG), play unique roles during meiosis. Furthermore, the conserved mitotic protein kinase Polo modulates MAP localisation in meiosis I. As Polo is a well-known regulator of reductional segregation in meiosis, the evidence suggests that Polo constitutes a plausible link between meiosis-specific MAP functions and reductional segregation. Here, we review the latest findings on how the localisation and regulation of MAPs in meiosis differ from those in mitosis, and we discuss conservation of the system between yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Chromosome Segregation Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsucho, Shinjuku, Tokyo, 162-0056, Japan.
| |
Collapse
|
9
|
Meyer RE, Chuong HH, Hild M, Hansen CL, Kinter M, Dawson DS. Ipl1/Aurora-B is necessary for kinetochore restructuring in meiosis I in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2986-3000. [PMID: 26157162 PMCID: PMC4551314 DOI: 10.1091/mbc.e15-01-0032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022] Open
Abstract
In mitosis, the centromeres of sister chromosomes are pulled toward opposite poles of the spindle. In meiosis I, the opposite is true: the sister centromeres move together to the same pole, and the homologous chromosomes are pulled apart. This change in segregation patterns demands that between the final mitosis preceding meiosis and the first meiotic division, the kinetochores must be restructured. In budding yeast, unlike mammals, kinetochores are largely stable throughout the mitotic cycle. In contrast, previous work with budding and fission yeast showed that some outer kinetochore proteins are lost in early meiosis. We use quantitative mass spectrometry methods and imaging approaches to explore the kinetochore restructuring process that occurs in meiosis I in budding yeast. The Ndc80 outer kinetochore complex, but not other subcomplexes, is shed upon meiotic entry. This shedding is regulated by the conserved protein kinase Ipl1/Aurora-B and promotes the subsequent assembly of a kinetochore that will confer meiosis-specific segregation patterns on the chromosome.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Hoa H Chuong
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Marrett Hild
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Christina L Hansen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Michael Kinter
- Program in Free Radical Biology and Aging, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
10
|
Chou CC, Patel MT, Gartenberg MR. A series of conditional shuttle vectors for targeted genomic integration in budding yeast. FEMS Yeast Res 2015; 15:fov010. [PMID: 25736914 DOI: 10.1093/femsyr/fov010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 01/05/2023] Open
Abstract
The capacity of Saccharomyces cerevisiae to repair exposed DNA ends by homologous recombination has long been used by experimentalists to assemble plasmids from DNA fragments in vivo. While this approach works well for engineering extrachromosomal vectors, it is not well suited to the generation, recovery and reuse of integrative vectors. Here, we describe the creation of a series of conditional centromeric shuttle vectors, termed pXR vectors, that can be used for both plasmid assembly in vivo and targeted genomic integration. The defining feature of pXR vectors is that the DNA segment bearing the centromere and origin of replication, termed CEN/ARS, is flanked by a pair of loxP sites. Passaging the vectors through bacteria that express Cre recombinase reduces the loxP-CEN/ARS-loxP module to a single loxP site, thereby eliminating the ability to replicate autonomously in yeast. Each vector also contains a selectable marker gene, as well as a fragment of the HO locus, which permits targeted integration at a neutral genomic site. The pXR vectors provide a convenient and robust method to assemble DNAs for targeted genomic modifications.
Collapse
Affiliation(s)
- Chia-Ching Chou
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University Piscataway, NJ 08854, USA
| | - Michael T Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University Piscataway, NJ 08854, USA
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Abstract
The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux; Institut de Biochimie et Génétique Cellulaires; Bordeaux, France; CNRS; UMR5095 Bordeaux France; Bordeaux, France
| | - Isabelle Sagot
- Université de Bordeaux; Institut de Biochimie et Génétique Cellulaires; Bordeaux, France; CNRS; UMR5095 Bordeaux France; Bordeaux, France
| |
Collapse
|
12
|
Kim S, Meyer R, Chuong H, Dawson DS. Dual mechanisms prevent premature chromosome segregation during meiosis. Genes Dev 2013; 27:2139-46. [PMID: 24115770 PMCID: PMC3850097 DOI: 10.1101/gad.227454.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In meiosis I, homologous chromosomes pair and then attach to the spindle so that the homologs can be pulled apart at anaphase I. The segregation of homologs before pairing would be catastrophic. We describe two mechanisms that prevent this. First, in early meiosis, Ipl1, the budding yeast homolog of the mammalian Aurora B kinase, triggers shedding of a kinetochore protein, preventing microtubule attachment. Second, Ipl1 localizes to the spindle pole bodies (SPBs), where it blocks spindle assembly. These processes are reversed upon expression of Ndt80. Previous studies have shown that Ndt80 is expressed when homologs have successfully partnered, and this triggers a rise in the levels of cyclin-dependent kinase (CDK). We found that CDK phosphorylates Ipl1, delocalizing it from SPBs, triggering spindle assembly. At the same time, kinetochores reassemble. Thus, dual mechanisms controlled by Ipl1 and Ntd80 coordinate chromosome and spindle behaviors to prevent the attachment of unpartnered chromosomes to the meiotic spindle.
Collapse
Affiliation(s)
- Seoyoung Kim
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
13
|
Obeso D, Pezza RJ, Dawson D. Couples, pairs, and clusters: mechanisms and implications of centromere associations in meiosis. Chromosoma 2013; 123:43-55. [PMID: 24126501 DOI: 10.1007/s00412-013-0439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.
Collapse
Affiliation(s)
- David Obeso
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | | |
Collapse
|
14
|
Meyer RE, Dawson DS. Attaching to spindles before they form: do early incorrect chromosome-microtubule attachments promote meiotic segregation fidelity? Cell Cycle 2013; 12:2011-5. [PMID: 23759585 DOI: 10.4161/cc.25252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The proper partitioning of the genome during meiosis depends on the correct segregation of chromosomes. Errors in this process result in the production of aneuploid gametes, a major cause of birth defects and infertility in humans. In order to segregate properly in meiosis, homologous chromosome partners must attach to microtubules that emanate from opposites poles of the spindle. However, a recent study in yeast has shown that, remarkably, the initial attachments between microtubules and the chromosomes are usually incorrect, which would lead to catastrophic segregation errors, but they are nearly always corrected through the detachment and reattachment of the microtubules. Here we review the reasons for the initial incorrect attachments, which stem from the timing of their formation early in the spindle assembly process, and the fact that the microtubule organizers, called spindle pole bodies in yeast, are not equal. One spindle pole body is older and better able to produce microtubules that attach to the chromosomes. We draw parallels to recent findings in animal cells and suggest that these early microtubule attachments, while often incorrect, may serve an important role in spindle assembly, which, in the long-term, promotes high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Régis E Meyer
- Cell Cycle and Cancer Biology; Oklahoma Medical Research Foundation; Oklahoma City, OK, USA
| | | |
Collapse
|
15
|
Meyer RE, Kim S, Obeso D, Straight PD, Winey M, Dawson DS. Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 2013; 339:1071-4. [PMID: 23371552 DOI: 10.1126/science.1232518] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules so that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. We imaged live yeast cells to elucidate the stages of chromosome-microtubule interactions and their regulation by Ipl1 and Mps1 through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations after meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections, whereas Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle could prevent catastrophic chromosome segregation errors in meiosis.
Collapse
Affiliation(s)
- Régis E Meyer
- Department of Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
16
|
Lee CY, Conrad MN, Dresser ME. Meiotic chromosome pairing is promoted by telomere-led chromosome movements independent of bouquet formation. PLoS Genet 2012; 8:e1002730. [PMID: 22654677 PMCID: PMC3359977 DOI: 10.1371/journal.pgen.1002730] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/11/2012] [Indexed: 11/19/2022] Open
Abstract
Chromosome pairing in meiotic prophase is a prerequisite for the high fidelity of chromosome segregation that haploidizes the genome prior to gamete formation. In the budding yeast Saccharomyces cerevisiae, as in most multicellular eukaryotes, homologous pairing at the cytological level reflects the contemporaneous search for homology at the molecular level, where DNA double-strand broken ends find and interact with templates for repair on homologous chromosomes. Synapsis (synaptonemal complex formation) stabilizes pairing and supports DNA repair. The bouquet stage, where telomeres have formed a transient single cluster early in meiotic prophase, and telomere-promoted rapid meiotic prophase chromosome movements (RPMs) are prominent temporal correlates of pairing and synapsis. The bouquet has long been thought to contribute to the kinetics of pairing, but the individual roles of bouquet and RPMs are difficult to assess because of common dependencies. For example, in budding yeast RPMs and bouquet both require the broadly conserved SUN protein Mps3 as well as Ndj1 and Csm4, which link telomeres to the cytoskeleton through the intact nuclear envelope. We find that mutants in these genes provide a graded series of RPM activity: wild-type>mps3-dCC>mps3-dAR>ndj1Δ>mps3-dNT = csm4Δ. Pairing rates are directly correlated with RPM activity even though only wild-type forms a bouquet, suggesting that RPMs promote homologous pairing directly while the bouquet plays at most a minor role in Saccharomyces cerevisiae. A new collision trap assay demonstrates that RPMs generate homologous and heterologous chromosome collisions in or before the earliest stages of prophase, suggesting that RPMs contribute to pairing by stirring the nuclear contents to aid the recombination-mediated homology search.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael N. Conrad
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael E. Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
17
|
Hiraga SI, Botsios S, Donze D, Donaldson AD. TFIIIC localizes budding yeast ETC sites to the nuclear periphery. Mol Biol Cell 2012; 23:2741-54. [PMID: 22496415 PMCID: PMC3395662 DOI: 10.1091/mbc.e11-04-0365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic genomes contain multiple extra TFIIIC (ETC) sites that bind the TFIIIC transcription factor without recruiting RNA polymerase. TFIIIC directs the localization of Saccharomyces cerevisiae ETC sites to the nuclear periphery. Remarkably, however, perinuclear localization is not required for ETC sites to act as chromatin boundaries. Chromatin function requires specific three-dimensional architectures of chromosomes. We investigated whether Saccharomyces cerevisiae extra TFIIIC (ETC) sites, which bind the TFIIIC transcription factor but do not recruit RNA polymerase III, show specific intranuclear positioning. We show that six of the eight known S. cerevisiae ETC sites localize predominantly at the nuclear periphery, and that ETC sites retain their tethering function when moved to a new chromosomal location. Several lines of evidence indicate that TFIIIC is central to the ETC peripheral localization mechanism. Mutating or deleting the TFIIIC-binding consensus ablated ETC -site peripheral positioning, and inducing degradation of the TFIIIC subunit Tfc3 led to rapid release of an ETC site from the nuclear periphery. We find, moreover, that anchoring one TFIIIC subunit at an ectopic chromosomal site causes recruitment of others and drives peripheral tethering. Localization of ETC sites at the nuclear periphery also requires Mps3, a Sad1-UNC-84–domain protein that spans the inner nuclear membrane. Surprisingly, we find that the chromatin barrier and insulator functions of an ETC site do not depend on correct peripheral localization. In summary, TFIIIC and Mps3 together direct the intranuclear positioning of a new class of S. cerevisiae genomic loci positioned at the nuclear periphery.
Collapse
Affiliation(s)
- Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | | | | |
Collapse
|
18
|
Rao HBDP, Shinohara M, Shinohara A. Mps3 SUN domain is important for chromosome motion and juxtaposition of homologous chromosomes during meiosis. Genes Cells 2012; 16:1081-96. [PMID: 22017544 DOI: 10.1111/j.1365-2443.2011.01554.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In budding yeast, Mps3 is essential for duplicating the spindle pole body (SPB) and is critical for promoting chromosome motion during meiosis. It is a member of the SUN (Sad1-Unc-84) domain family of proteins that localizes to the inner nuclear envelope (NE) in many eukaryotic organisms and preferentially localizes to the SPB in vegetative growth; in meiotic prophase I, it redistributes to many sites within the NE. We constructed an mps3 mutant, mps3-sun, which completely lacks the SUN domain. Surprisingly, the mps3-sun mutation does not disrupt SPB duplication or Mps3 localization to the NE in meiosis. However, it confers several defects during meiotic prophase I including reduced chromosome motion, premature synapsis between homologous chromosomes, and reduced levels of closely juxtaposed homologous loci in pachytene. These findings suggest that in meiosis, the Mps3 SUN domain is important for modulating chromosome motion events that act in meiotic chromosome juxtaposition and by extension, promoting proper morphogenesis of the synaptonemal complex.
Collapse
Affiliation(s)
- Hanumanthu B D Prasada Rao
- Institute for Protein Research, Graduate School of Science, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
19
|
Horigome C, Okada T, Shimazu K, Gasser SM, Mizuta K. Ribosome biogenesis factors bind a nuclear envelope SUN domain protein to cluster yeast telomeres. EMBO J 2011; 30:3799-811. [PMID: 21822217 DOI: 10.1038/emboj.2011.267] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 07/07/2011] [Indexed: 11/09/2022] Open
Abstract
Two interacting ribosome biogenesis factors, Ebp2 and Rrs1, associate with Mps3, an essential inner nuclear membrane protein. Both are found in foci along the nuclear periphery, like Mps3, as well as in the nucleolus. Temperature-sensitive ebp2 and rrs1 mutations that compromise ribosome biogenesis displace the mutant proteins from the nuclear rim and lead to a distorted nuclear shape. Mps3 is known to contribute to the S-phase anchoring of telomeres through its interaction with the silent information regulator Sir4 and yKu. Intriguingly, we find that both Ebp2 and Rrs1 interact with the C-terminal domain of Sir4, and that conditional inactivation of either ebp2 or rrs1 interferes with both the clustering and silencing of yeast telomeres, while telomere tethering to the nuclear periphery remains intact. Importantly, expression of an Ebp2-Mps3 fusion protein in the ebp2 mutant suppresses the defect in telomere clustering, but not its defects in growth or ribosome biogenesis. Our results suggest that the ribosome biogenesis factors Ebp2 and Rrs1 cooperate with Mps3 to mediate telomere clustering, but not telomere tethering, by binding Sir4.
Collapse
Affiliation(s)
- Chihiro Horigome
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | | | | | | | | |
Collapse
|
20
|
Ruault M, De Meyer A, Loïodice I, Taddei A. Clustering heterochromatin: Sir3 promotes telomere clustering independently of silencing in yeast. ACTA ACUST UNITED AC 2011; 192:417-31. [PMID: 21300849 PMCID: PMC3101097 DOI: 10.1083/jcb.201008007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A general feature of the nucleus is the organization of repetitive deoxyribonucleic acid sequences in clusters concentrating silencing factors. In budding yeast, we investigated how telomeres cluster in perinuclear foci associated with the silencing complex Sir2-Sir3-Sir4 and found that Sir3 is limiting for telomere clustering. Sir3 overexpression triggers the grouping of telomeric foci into larger foci that relocalize to the nuclear interior and correlate with more stable silencing in subtelomeric regions. Furthermore, we show that Sir3's ability to mediate telomere clustering can be separated from its role in silencing. Indeed, nonacetylable Sir3, which is unable to spread into subtelomeric regions, can mediate telomere clustering independently of Sir2-Sir4 as long as it is targeted to telomeres by the Rap1 protein. Thus, arrays of Sir3 binding sites at telomeres appeared as the sole requirement to promote trans-interactions between telomeres. We propose that similar mechanisms involving proteins able to oligomerize account for long-range interactions that impact genomic functions in many organisms.
Collapse
Affiliation(s)
- Myriam Ruault
- Unité Mixte de Recherche 218, Centre National de la Recherche Scientifique, F-75248 Paris, Cedex 05, France
| | | | | | | |
Collapse
|
21
|
Abstract
Recombination in first meiotic prophase is initiated by endogenous breaks in double-stranded DNA (DSBs) which occurs during a time when chromosomes are remodeled and proteinaceous cores (axes) are assembled along their length. DSBs are instrumental in homologue recognition and underlie the crossovers that form between parental chromosomes to ensure genome haploidization during the following two successive meiotic divisions. Advances in fluorescence microscopy and genetic engineering of GFP-tagged fusion proteins have made it possible to observe the behavior of entire chromosomes and specific subregions in live cells of the yeast Saccharomyces cerevisiae. In meiosis we observed that telomeres are dynamic and move about the entire nuclear periphery, only interrupted by their fleeting clustering at the spindle pole body (the centrosome equivalent), known as bouquet formation. This mobility translates to whole chromosomes and nuclei during the entire prophase I. Here we describe a simple setup for live cell microscopy that we used to observe chromosome movements during a time when DSBs are formed and transform into crossover and non-crossover products.
Collapse
Affiliation(s)
- Harry Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany.
| | | |
Collapse
|
22
|
Bardhan A, Chuong H, Dawson DS. Meiotic cohesin promotes pairing of nonhomologous centromeres in early meiotic prophase. Mol Biol Cell 2010; 21:1799-809. [PMID: 20375150 PMCID: PMC2877639 DOI: 10.1091/mbc.e09-05-0392] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 02/18/2010] [Accepted: 03/25/2010] [Indexed: 12/01/2022] Open
Abstract
A period of pairing between nonhomologous centromeres occurs early in meiosis in a diverse collection of organisms. This early, homology-independent, centromere pairing, referred to as centromere coupling in budding yeast, gives way to an alignment of homologous centromeres as homologues synapse later in meiotic prophase. The regulation of centromere coupling and its underlying mechanism have not been elucidated. In budding yeast, the protein Zip1p is a major component of the central element of the synaptonemal complex in pachytene of meiosis, and earlier, is essential for centromere coupling. The experiments reported here demonstrate that centromere coupling is mechanistically distinct from synaptonemal complex assembly. Zip2p, Zip3p, and Red1p are all required for the assembly of Zip1 into the synaptonemal complex but are dispensable for centromere coupling. However, the meiotic cohesin Rec8p is required for centromere coupling. Loading of meiotic cohesins to centromeres and cohesin-associated regions is required for the association of Zip1 with these sites, and the association of Zip1 with the centromeres then promotes coupling. These findings reveal a mechanism that promotes associations between centromeres before the assembly of the synaptonemal complex, and they demonstrate that chromosomes are preloaded with Zip1p in a manner that may promote synapsis.
Collapse
Affiliation(s)
- Amit Bardhan
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Hoa Chuong
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Dean S. Dawson
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
23
|
Obeso D, Dawson DS. Temporal characterization of homology-independent centromere coupling in meiotic prophase. PLoS One 2010; 5:e10336. [PMID: 20428251 PMCID: PMC2859069 DOI: 10.1371/journal.pone.0010336] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/26/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Over the past thirty years several reports of the pairing or association of non-homologous centromeres during meiotic prophase have appeared in the literature. Recently, the homology-independent pairwise association of centromeres, termed centromere coupling, was also reported in budding yeast. It seems paradoxical that centromeres would pair with non-homologous partners during a process intended to align homologous chromosomes, yet the conservation of this phenomenon across a wide range of species suggests it may play an important role in meiosis. PRINCIPAL FINDINGS To better define the role of this phenomenon in budding yeast, experiments were preformed to place centromere coupling within the context of landmark meiotic events. Soon after the initiation of the meiotic program, centromeres were found to re-organize from a single cluster into non-homologous couples. Centromere coupling is detected as soon as chromosome replication is finished and persists while the recombination protein Dmc1 is loaded onto the chromosomes, suggesting that centromere coupling persists through the time of double strand break formation. In the absence of the synaptonemal complex component, Zip1, centromere coupling was undetectable, at all times examined, confirming the essential role of this protein on this process. Finally, the timely release of centromere coupling depends on the recombination-initiating enzyme, Spo11, suggesting a connection between events in homologous pairing/recombination and the regulation of centromere coupling. CONCLUSIONS Based on our results we propose a role for centromere coupling in blocking interactions between homologous centromeres as recombination initiation is taking place.
Collapse
Affiliation(s)
- David Obeso
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dean S. Dawson
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Recent studies in diverse eukaryotes have implicated a family of nuclear envelope proteins containing SUN domains as key components of meiotic nuclear organization and chromosome dynamics. In many cases, these transmembrane proteins are also known to contribute to centrosome or spindle pole body function in mitotically dividing cells. During meiotic prophase, the apparent role of these SUN-domain proteins, together with their partner KASH-domain proteins, is to connect chromosomes through the intact nuclear envelope to force-generating mechanisms in the cytoplasm.
Collapse
Affiliation(s)
- Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.
| | | |
Collapse
|
25
|
Gladstone MN, Obeso D, Chuong H, Dawson DS. The synaptonemal complex protein Zip1 promotes bi-orientation of centromeres at meiosis I. PLoS Genet 2009; 5:e1000771. [PMID: 20011112 PMCID: PMC2781170 DOI: 10.1371/journal.pgen.1000771] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/13/2009] [Indexed: 11/19/2022] Open
Abstract
In meiosis I, homologous chromosomes become paired and then separate from one another to opposite poles of the spindle. In humans, errors in this process are a leading cause of birth defects, mental retardation, and infertility. In most organisms, crossing-over, or exchange, between the homologous partners provides a link that promotes their proper, bipolar, attachment to the spindle. Attachment of both partners to the same pole can sometimes be corrected during a delay that is triggered by the spindle checkpoint. Studies of non-exchange chromosomes have shown that centromere pairing serves as an alternative to exchange by orienting the centromeres for proper microtubule attachment. Here, we demonstrate a new role for the synaptonemal complex protein Zip1. Zip1 localizes to the centromeres of non-exchange chromosomes in pachytene and mediates centromere pairing and segregation of the partners at meiosis I. Exchange chromosomes were also found to experience Zip1-dependent pairing at their centromeres. Zip1 was found to persist at centromeres, after synaptonemal complex disassembly, remaining there until microtubule attachment. Disruption of this centromere pairing, in spindle checkpoint mutants, randomized the segregation of exchange chromosomes. These results demonstrate that Zip1-mediated pairing of exchange chromosome centromeres promotes an initial, bipolar attachment of microtubules. This activity of Zip1 lessens the load on the spindle checkpoint, greatly reducing the chance that the cell will exit the checkpoint delay with an improperly oriented chromosome pair. Thus exchange, the spindle checkpoint, and centromere pairing are complementary mechanisms that ensure the proper segregation of homologous partners at meiosis I. Meiosis is a specialized cell division that halves the chromosome number and results in the production of gametes. In humans, meiosis normally produces gametes containing exactly one copy of each chromosome. Meiotic errors lead to gametes with incorrect chromosome numbers, a major cause of birth defects and infertility. A key step in meiosis (meiosis I) is the separation of homologous chromosomes. Homologous chromosomes first become physically linked by recombination, which keeps them together until they attach properly at their centromeres to the apparatus that will pull them to opposite sides of the cell. In this study we have used budding yeast to identify processes, beyond recombination, that contribute to meiotic fidelity. We have found that a protein, Zip1, mediates the pairing of chromosome centromeres in a way that greatly enhances the chance they will be properly separated in meiosis, thus preventing the formation of gametes with incorrect chromosome numbers.
Collapse
Affiliation(s)
- Mara N. Gladstone
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Program in Molecular Microbiology, Sackler School of Biomedical Science, Tufts University, Boston, Massachussetts, United States of America
| | - David Obeso
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Hoa Chuong
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Dean S. Dawson
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
Movements are implicit in the chromosome behaviors of bouquet formation, pairing and synapsis during meiotic prophase. In S. cerevisiae, the positions of chromosomes, specific structures, and individual chromosomal loci marked by fluorescent fusion proteins are easily visualized in living cells. Time-lapse analyses have revealed rapid and varied chromosome movements throughout meiotic prophase. To facilitate the analysis of these movements, we have developed a simple, inexpensive, and efficient method to prepare sporulating cells for fluorescence microscopy. This method produces a monolayer of cells that progress from meiosis through spore formation, allows visualization of hundreds of cells in a single high-resolution frame and is suitable for most methods of fluorescence microscopy.
Collapse
|
27
|
Ebrahimi H, Donaldson AD. Release of yeast telomeres from the nuclear periphery is triggered by replication and maintained by suppression of Ku-mediated anchoring. Genes Dev 2009; 22:3363-74. [PMID: 19056887 DOI: 10.1101/gad.486208] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The perinuclear localization of Saccharomyces cerevisiae telomeres provides a useful model for studying mechanisms that control chromosome positioning. Telomeres tend to be localized at the nuclear periphery during early interphase, but following S phase they delocalize and remain randomly positioned within the nucleus. We investigated whether DNA replication causes telomere delocalization from the nuclear periphery. Using live-cell fluorescence microscopy, we show that delaying DNA replication causes a corresponding delay in the dislodgment of telomeres from the nuclear envelope, demonstrating that replication of individual telomeres causes their delocalization. Telomere delocalization is not simply the result of recruitment to a replication factory in the nuclear interior, since we found that telomeric DNA replication can occur either at the nuclear periphery or in the nuclear interior. The telomere-binding complex Ku is one of the factors that localizes telomeres to the nuclear envelope. Using a gene locus tethering assay, we show that Ku-mediated peripheral positioning is switched off after DNA replication. Based on these findings, we propose that DNA replication causes telomere delocalization by triggering stable repression of the Ku-mediated anchoring pathway. In addition to maintaining genetic information, DNA replication may therefore regulate subnuclear organization of chromatin.
Collapse
Affiliation(s)
- Hani Ebrahimi
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | |
Collapse
|
28
|
Hiraga SI, Botsios S, Donaldson AD. Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning. ACTA ACUST UNITED AC 2008; 183:641-51. [PMID: 19001125 PMCID: PMC2582893 DOI: 10.1083/jcb.200806065] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Correct intranuclear organization of chromosomes is crucial for many genome functions, but the mechanisms that position chromatin are not well understood. We used a layered screen to identify Saccharomyces cerevisiae mutants defective in telomere localization to the nuclear periphery. We find that events in S phase are crucial for correct telomere localization. In particular, the histone chaperone Asf1 functions in telomere peripheral positioning. Asf1 stimulates acetylation of histone H3 lysine 56 (H3K56) by the histone acetyltransferase Rtt109. Analysis of rtt109Δ and H3K56 mutants suggests that the acetylation/deacetylation cycle of the H3K56 residue is required for proper telomere localization. The function of H3K56 acetylation in localizing chromosome domains is not confined to telomeres because deletion of RTT109 also prevents the correct peripheral localization of a newly identified S. cerevisiae “chromosome-organizing clamp” locus. Because chromosome positioning is subject to epigenetic inheritance, H3K56 acetylation may mediate correct chromosome localization by facilitating accurate transmission of chromatin status during DNA replication.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | | | | |
Collapse
|
29
|
Kosaka H, Shinohara M, Shinohara A. Csm4-dependent telomere movement on nuclear envelope promotes meiotic recombination. PLoS Genet 2008; 4:e1000196. [PMID: 18818742 PMCID: PMC2533704 DOI: 10.1371/journal.pgen.1000196] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 08/08/2008] [Indexed: 12/03/2022] Open
Abstract
During meiotic prophase, chromosomes display rapid movement, and their telomeres attach to the nuclear envelope and cluster to form a “chromosomal bouquet.” Little is known about the roles of the chromosome movement and telomere clustering in this phase. In budding yeast, telomere clustering is promoted by a meiosis-specific, telomere-binding protein, Ndj1. Here, we show that a meiosis-specific protein, Csm4, which forms a complex with Ndj1, facilitates bouquet formation. In the absence of Csm4, Ndj1-bound telomeres tether to nuclear envelopes but do not cluster, suggesting that telomere clustering in the meiotic prophase consists of at least two distinct steps: Ndj1-dependent tethering to the nuclear envelope and Csm4-dependent clustering/movement. Similar to Ndj1, Csm4 is required for several distinct steps during meiotic recombination. Our results suggest that Csm4 promotes efficient second-end capture of a double-strand break following a homology search, as well as resolution of the double-Holliday junction during crossover formation. We propose that chromosome movement and associated telomere dynamics at the nuclear envelope promotes the completion of key biochemical steps during meiotic recombination. Meiosis is a specialized cell division that produces haploid gametes. Homologous recombination plays a pivotal role in the segregation of homologous chromosomes during meiosis I by creating physical linkages between the chromosomes. Drastic reorganization of chromosomes in the nucleus is a prominent feature of meiotic prophase I, during which telomeres get associated with the nuclear envelope and move within the envelope, culminating in the formation of telomere clusters, often referred to as “chromosome bouquets.” The roles that telomere movement and clustering play in meiotic prophase I are largely unknown. In the budding yeast Saccharomyces cerevisiae, tethering of telomeres to the nuclear envelope is mediated by a meiosis-specific telomere-binding protein, Ndj1. We studied the functions of a meiosis-specific gene, CSM4, in telomere clustering and during meiotic recombination. CSM4 is necessary for the clustering of Ndj1-associated telomeres. Interestingly, csm4 mutants show pleiotropic defects during meiotic recombination. It is likely that the chromosome movement promotes various biochemical reactions during meiotic recombination.
Collapse
Affiliation(s)
- Hiromichi Kosaka
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
30
|
Conrad MN, Lee CY, Chao G, Shinohara M, Kosaka H, Shinohara A, Conchello JA, Dresser ME. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 2008; 133:1175-87. [PMID: 18585352 DOI: 10.1016/j.cell.2008.04.047] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/07/2008] [Accepted: 04/12/2008] [Indexed: 11/18/2022]
Abstract
Haploidization of the genome in meiosis requires that chromosomes be sorted exclusively into pairs stabilized by synaptonemal complexes (SCs) and crossovers. This sorting and pairing is accompanied by active chromosome positioning in meiotic prophase in which telomeres cluster near the spindle pole to form the bouquet before dispersing around the nuclear envelope. We now describe telomere-led rapid prophase movements (RPMs) that frequently exceed 1 microm/s and persist throughout meiotic prophase. Bouquet formation and RPMs depend on NDJ1, MPS3, and a new member of this pathway, CSM4, which encodes a meiosis-specific nuclear envelope protein required specifically for telomere mobility. RPMs initiate independently of recombination but differ quantitatively in mutants that fail to complete recombination, suggesting that RPMs respond to recombination status. Together with recombination defects described for ndj1, our observations suggest that RPMs and SCs balance the disruption and stabilization of recombinational interactions, respectively, to regulate crossing over.
Collapse
Affiliation(s)
- Michael N Conrad
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Komakhin RA, Komakhina VV. Compartmentalization of Spo11p in vegetative cells of yeast Saccharomyces cerevisiae. Mol Biol 2008. [DOI: 10.1134/s0026893308030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Localization of telomeres and telomere-associated proteins in telomerase-negative Saccharomyces cerevisiae. Chromosome Res 2007; 15:1033-50. [PMID: 18075778 PMCID: PMC2784495 DOI: 10.1007/s10577-007-1178-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 09/19/2007] [Accepted: 09/19/2007] [Indexed: 11/03/2022]
Abstract
Cells lacking telomerase cannot maintain their telomeres and undergo a telomere erosion phase leading to senescence and crisis in which most cells become nonviable. On rare occasions survivors emerge from these cultures that maintain their telomeres in alternative ways. The movement of five marked telomeres in Saccharomyces cerevisiae was followed in wild-type cells and through erosion, senescence/crisis and eventual survival in telomerase-negative (est2::HYG) yeast cells. It was found that during erosion, movements of telomeres in est2::HYG cells were indistinguishable from wild-type telomere movements. At senescence/crisis, however, most cells were in G(2) arrest and the nucleus and telomeres traversed back and forth across the bud neck, presumably until cell death. Type I survivors, using subtelomeric Y' amplification for telomere maintenance, continued to show this aberrant telomere movement. However, Type II survivors, maintaining telomeres by a sudden elongation of the telomere repeats, became indistinguishable from wild-type cells, consistent with growth properties of the two types of survivors. When telomere-associated proteins Sir2p, Sir3p and Rap1p were tagged, the same general trend was seen-Type I survivors retained the senescence/crisis state of protein localization, while Type II survivors were restored to wild type.
Collapse
|
33
|
Scherthan H, Trelles-Sticken E. Absence of yKu/Hdf1 but not myosin-like proteins alters chromosome dynamics during prophase I in yeast. Differentiation 2007; 76:91-8. [PMID: 17697124 DOI: 10.1111/j.1432-0436.2007.00212.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Meiosis is central to the formation of haploid gametes or spores in that it segregates homologous chromosomes and halves the chromosome number. A prerequisite of this genome bisection is the pairing of homologous chromosomes during the first meiotic prophase. When budding yeast cells are induced to undergo meiosis, this has profound consequences for nuclear structure: after premeiotic DNA replication centromeres disperse, while telomeres move about the nuclear periphery and temporarily cluster during the leptotene/zygotene transition (bouquet stage) of the prophase to first meiotic division. In vegetative cells, Hdf1p (yKu) and the myosin-like proteins Mlp1p and Mlp2p have been suggested to contribute to the organization of silent chromatin, tethering of telomeres to the nuclear periphery, DNA repair, and telomere maintenance. Here, we investigated by molecular cytology whether yKu and Mlp proteins contribute to telomere and chromosome dynamics in meiosis. It was found that mlp1 Delta mlp2 Delta double-mutant cells undergo centromere dispersion, telomere clustering, homologue pairing, and sporulation like wild type. On the other hand, cells deficient for yKu underwent meiosis-specific chromosomal events with a delay, while they eventually sporulated like wild type. These results suggest that the absence of yKu not only affects vegetative nuclear architecture (Laroche et al., 1998) but also interferes with the ordered occurrence of chromosome dynamics during first meiotic prophase.
Collapse
Affiliation(s)
- Harry Scherthan
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, D-14195 Berlin, Germany.
| | | |
Collapse
|
34
|
Asakawa H, Haraguchi T, Hiraoka Y. Reconstruction of the kinetochore: a prelude to meiosis. Cell Div 2007; 2:17. [PMID: 17550626 PMCID: PMC1899494 DOI: 10.1186/1747-1028-2-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/06/2007] [Indexed: 11/10/2022] Open
Abstract
In eukaryotic organisms, chromosomes are spatially organized within the nucleus. Such nuclear architecture provides a physical framework for the genetic activities of chromosomes, and changes its functional organization as the cell moves through the phases of the cell cycle. The fission yeast Schizosaccharomyces pombe provides a striking example of nuclear reorganization during the transition from mitosis to meiosis. In this organism, centromeres remain clustered at the spindle-pole body (SPB; a centrosome-equivalent structure in fungi) during mitotic interphase. In contrast, during meiotic prophase, centromeres dissociate from the SPB and telomeres cluster to the SPB. Recent studies revealed that this repositioning of chromosomes is regulated by mating pheromone signaling. Some centromere proteins disappear from the centromere in response to mating pheromone, leading to dissociation of centromeres from the SPB. Interestingly, mating pheromone signaling is also required for monopolar orientation of the kinetochore which is crucial for proper segregation of sister chromatids during meiosis. When meiosis is induced in the absence of mating pheromone signaling, aberrant chromosome behaviors are observed: the centromere proteins remain at the centromere; the centromere remains associated with the SPB; and sister chromatids segregate precociously in the first meiotic division. These aberrant chromosome behaviors are all normalized by activating the mating pheromone signaling pathway. Thus, action of mating pheromone on the centromere is important for coherent behavior of chromosomes in meiosis. Here we discuss repositioning and reconstruction of the centromere during the transition from mitosis to meiosis, and highlight its significance for proper progression of meiosis.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
| | - Yasushi Hiraoka
- Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Japan
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
35
|
Conrad MN, Lee CY, Wilkerson JL, Dresser ME. MPS3 mediates meiotic bouquet formation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2007; 104:8863-8. [PMID: 17495028 PMCID: PMC1885593 DOI: 10.1073/pnas.0606165104] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In meiotic prophase, telomeres associate with the nuclear envelope and accumulate adjacent to the centrosome/spindle pole to form the chromosome bouquet, a well conserved event that in Saccharomyces cerevisiae requires the meiotic telomere protein Ndj1p. Ndj1p interacts with Mps3p, a nuclear envelope SUN domain protein that is required for spindle pole body duplication and for sister chromatid cohesion. Removal of the Ndj1p-interaction domain from MPS3 creates an ndj1 Delta-like separation-of-function allele, and Ndj1p and Mps3p are codependent for stable association with the telomeres. SUN domain proteins are found in the nuclear envelope across phyla and are implicated in mediating interactions between the interior of the nucleus and the cytoskeleton. Our observations indicate a general mechanism for meiotic telomere movements.
Collapse
Affiliation(s)
- Michael N. Conrad
- *Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation Oklahoma City, OK 73104; and
| | - Chih-Ying Lee
- *Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation Oklahoma City, OK 73104; and
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104
| | - Joseph L. Wilkerson
- *Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation Oklahoma City, OK 73104; and
| | - Michael E. Dresser
- *Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation Oklahoma City, OK 73104; and
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Hayashi A, Asakawa H, Haraguchi T, Hiraoka Y. Reconstruction of the kinetochore during meiosis in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 2006; 17:5173-84. [PMID: 17035632 PMCID: PMC1679682 DOI: 10.1091/mbc.e06-05-0388] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the transition from mitosis to meiosis, the kinetochore undergoes significant reorganization, switching from a bipolar to a monopolar orientation. To examine the centromere proteins that are involved in fundamental reorganization in meiosis, we observed the localization of 22 mitotic and 2 meiotic protein components of the kinetochore during meiosis in living cells of the fission yeast. We found that the 22 mitotic proteins can be classified into three groups: the Mis6-like group, the NMS (Ndc80-Mis12-Spc7) group, and the DASH group, based on their meiotic behavior. Mis6-like group proteins remain at the centromere throughout meiosis. NMS group proteins disappear from the centromere at the onset of meiosis and reappear at the centromere in two steps in late prophase. DASH group proteins appear shortly before metaphase of meiosis I. These observations suggest that Mis6-like group proteins constitute the structural basis of the centromere and that the NMS and DASH group proteins reassemble to establish the functional metaphase kinetochore. On the other hand, the meiosis-specific protein Moa1, which plays an important role in forming the meiotic monopolar kinetochore, is loaded onto the centromere significantly earlier than the NMS group, whereas another meiosis-specific protein, Sgo1, is loaded at times similar to the NMS group.
Collapse
Affiliation(s)
- Aki Hayashi
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
| | - Haruhiko Asakawa
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
| | - Tokuko Haraguchi
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan
| | - Yasushi Hiraoka
- *Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; and
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, 560-0043, Japan
| |
Collapse
|
37
|
Yang X, Timofejeva L, Ma H, Makaroff CA. The Arabidopsis SKP1 homolog ASK1 controls meiotic chromosome remodeling and release of chromatin from the nuclear membrane and nucleolus. J Cell Sci 2006; 119:3754-63. [PMID: 16940350 DOI: 10.1242/jcs.03155] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During early stages of meiotic prophase I the nucleus undergoes considerable reorganization, including the clustering of telomeres, the release of contacts between chromosomes and the nuclear membrane, the reorganization of the nucleolus, and chromatin remodeling. Using a light squashing technique for the analysis of meiotic chromosomes along with fluorescent in situ hybridization, transmission electron microscopy and immunolocalization studies with antibodies to modified histones, we demonstrate that ASK1 is essential for early nuclear reorganization events. A relatively large number of meiotic alterations have been identified in ask1-1 plants. We show that many of these defects, including alterations in homolog pairing, nucleolus migration and the missegregation of chromosomes, may arise from alterations in chromatin structure and the inability of chromosomes to resolve and release properly from the nuclear membrane and nucleolus during leptotene. These results raise the interesting possibility that ASK1 controls chromatin structure by targeting of either an early regulator of meiotic progression or possibly matrix attachment proteins for destruction.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | |
Collapse
|
38
|
Masuda H, Toda T, Miyamoto R, Haraguchi T, Hiraoka Y. Modulation of Alp4 function in Schizosaccharomyces pombe induces novel phenotypes that imply distinct functions for nuclear and cytoplasmic gamma-tubulin complexes. Genes Cells 2006; 11:319-36. [PMID: 16611237 DOI: 10.1111/j.1365-2443.2006.00946.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gamma-tubulin complex acts as a nucleation unit for microtubule assembly. It remains unknown, however, how spatial and temporal regulation of the complex activity affects microtubule-mediated cellular processes. Alp4 is one of the essential components of the S. pombe gamma-tubulin complex. We show here that overproduction of a carboxy-terminal form of Alp4 (Alp4C) and its derivatives tagged to a nuclear localization signal or to a nuclear export signal affect localization of gamma-tubulin complexes and induces novel phenotypes that reflect distinct functions of nuclear and cytoplasmic gamma-tubulin complexes. Nuclear Alp4C induces a Wee1-dependent G2 delay, reduces the levels of the gamma-tubulin complex at the spindle pole body, and results in defects in mitotic progression including spindle assembly, cytoplasmic microtubule disassembly, and chromosome segregation. In contrast, cytoplasmic Alp4C induces oscillatory nuclear movement and affects levels of cell polarity markers, Bud6 and Tip1, at the cell ends. These results demonstrate that regulation of nuclear gamma-tubulin complex activity is essential for cell cycle progression through the G2/M boundary and M phase, whereas regulation of cytoplasmic gamma-tubulin complex activity is important for nuclear positioning and cell polarity control during interphase.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Cell Biology Group and CREST/JST, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan.
| | | | | | | | | |
Collapse
|
39
|
Hiraga SI, Robertson ED, Donaldson AD. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time. EMBO J 2006; 25:1505-14. [PMID: 16525505 PMCID: PMC1440320 DOI: 10.1038/sj.emboj.7601038] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 02/15/2006] [Indexed: 11/09/2022] Open
Abstract
Chromosome ends in Saccharomyces cerevisiae are positioned in clusters at the nuclear rim. We report that Ctf18, Ctf8, and Dcc1, the subunits of a Replication Factor C (RFC)-like complex, are essential for the perinuclear positioning of telomeres. In both yeast and mammalian cells, peripheral nuclear positioning of chromatin during G1 phase correlates with late DNA replication. We find that the mislocalized telomeres of ctf18 cells still replicate late, showing that late DNA replication does not require peripheral positioning during G1. The Ku and Sir complexes have been shown to act through separate pathways to position telomeres, but in the absence of Ctf18 neither pathway can act fully to maintain telomere position. Surprisingly CTF18 is not required for Ku or Sir4-mediated peripheral tethering of a nontelomeric chromosome locus. Our results suggest that the Ctf18 RFC-like complex modifies telomeric chromatin to make it competent for normal localization to the nuclear periphery.
Collapse
Affiliation(s)
- Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - E Douglas Robertson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK. Tel.: +44 1224 550975; Fax: +44 1224 555844; E-mail:
| |
Collapse
|
40
|
Trelles-Sticken E, Bonfils S, Sollier J, Géli V, Scherthan H, de La Roche Saint-André C. Set1- and Clb5-deficiencies disclose the differential regulation of centromere and telomere dynamics in Saccharomyces cerevisiae meiosis. J Cell Sci 2005; 118:4985-94. [PMID: 16254243 DOI: 10.1242/jcs.02612] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entry into meiosis is characterized by a lengthy premeiotic S phase and a reorganization of the nuclear architecture. Analysis of centromere and telomere dynamics in wild-type Saccharomyces cerevisiae meiosis suggests that resolution of vegetative centromere and telomere clusters are independent events differently connected to premeiotic S phase. Absence of the B-type cyclin Clb5 or the Set1 histone methyltransferase leads to a delay of premeiotic S phase by separate mechanisms. In clb5Delta cells, centromere cluster resolution appears normal, whereas dissolution of the vegetative telomere clusters is impaired and meiosis-specific clustering of telomeres, i.e. bouquet formation, is grossly delayed. In set1Delta cells, centromere and telomere redistribution are both impaired and bouquet nuclei are absent, despite proper location of the meiosis-specific telomere protein Ndj1. Thus, centromere and telomere redistribution at the onset of prophase I is differentially regulated, with centromere dispersion occurring independently of premeiotic S phase. The normal kinetics of dissolution of the vegetative telomere clusters in a set1Delta mec1-1 mutant suggests the presence of a checkpoint that limits the dispersion of telomeres in absence of Set1.
Collapse
|
41
|
Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H. Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 2005; 170:213-23. [PMID: 16027219 PMCID: PMC2171397 DOI: 10.1083/jcb.200501042] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 06/15/2005] [Indexed: 11/25/2022] Open
Abstract
In diploid organisms, meiosis reduces the chromosome number by half during the formation of haploid gametes. During meiotic prophase, telomeres transiently cluster at a limited sector of the nuclear envelope (bouquet stage) near the spindle pole body (SPB). Cohesin is a multisubunit complex that contributes to chromosome segregation in meiosis I and II divisions. In yeast meiosis, deficiency for Rec8 cohesin subunit induces telomere clustering to persist, whereas telomere cluster-SPB colocalization is defective. These defects are rescued by expressing the mitotic cohesin Scc1 in rec8delta meiosis, whereas bouquet-stage exit is independent of Cdc5 pololike kinase. An analysis of living Saccharomyces cerevisiae meiocytes revealed highly mobile telomeres from leptotene up to pachytene, with telomeres experiencing an actin- but not microtubule-dependent constraint of mobility during the bouquet stage. Our results suggest that cohesin is required for exit from actin polymerization-dependent telomere clustering and for linking the SPB to the telomere cluster in synaptic meiosis.
Collapse
|
42
|
Asakawa H, Hayashi A, Haraguchi T, Hiraoka Y. Dissociation of the Nuf2-Ndc80 complex releases centromeres from the spindle-pole body during meiotic prophase in fission yeast. Mol Biol Cell 2005; 16:2325-38. [PMID: 15728720 PMCID: PMC1087238 DOI: 10.1091/mbc.e04-11-0996] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, centromeres remain clustered at the spindle-pole body (SPB) during mitotic interphase. In contrast, during meiotic prophase centromeres dissociate from the SPB. Here we examined the behavior of centromere proteins in living meiotic cells of S. pombe. We show that the Nuf2-Ndc80 complex proteins (Nuf2, Ndc80, Spc24, and Spc25) disappear from the centromere in meiotic prophase when the centromeres are separated from the SPB. The centromere protein Mis12 also dissociates during meiotic prophase; however, Mis6 remains throughout meiosis. When cells are induced to meiosis by inactivation of Pat1 kinase (a key negative regulator of meiosis), centromeres remain associated with the SPB during meiotic prophase. However, inactivation of Nuf2 by a mutation causes the release of centromeres from the SPB in pat1 mutant cells, suggesting that the Nuf2-Ndc80 complex connects centromeres to the SPB. We further found that removal of the Nuf2-Ndc80 complex from the centromere and centromere-SPB dissociation are caused by mating pheromone signaling. Because pat1 mutant cells also show aberrant chromosome segregation in the first meiotic division and this aberration is compensated by mating pheromone signaling, dissociation of the Nuf2-Ndc80 complex may be associated with remodeling of the kinetochore for meiotic chromosome segregation.
Collapse
Affiliation(s)
- Haruhiko Asakawa
- Cell Biology Group and CREST Research Project, Kansai Advanced Research Center, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | | | | | | |
Collapse
|
43
|
Winey M, Morgan GP, Straight PD, Giddings TH, Mastronarde DN. Three-dimensional ultrastructure of Saccharomyces cerevisiae meiotic spindles. Mol Biol Cell 2005; 16:1178-88. [PMID: 15635095 PMCID: PMC551483 DOI: 10.1091/mbc.e04-09-0765] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Meiotic chromosome segregation leads to the production of haploid germ cells. During meiosis I (MI), the paired homologous chromosomes are separated. Meiosis II (MII) segregation leads to the separation of paired sister chromatids. In the budding yeast Saccharomyces cerevisiae, both of these divisions take place in a single nucleus, giving rise to the four-spored ascus. We have modeled the microtubules in 20 MI and 15 MII spindles by using reconstruction from electron micrographs of serially sectioned meiotic cells. Meiotic spindles contain more microtubules than their mitotic counterparts, with the highest number in MI spindles. It is possible to differentiate between MI versus MII spindles based on microtubule numbers and organization. Similar to mitotic spindles, kinetochores in either MI or MII are attached by a single microtubule. The models indicate that the kinetochores of paired homologous chromosomes in MI or sister chromatids in MII are separated at metaphase, similar to mitotic cells. Examination of both MI and MII spindles reveals that anaphase A likely occurs in addition to anaphase B and that these movements are concurrent. This analysis offers a structural basis for considering meiotic segregation in yeast and for the analysis of mutants defective in this process.
Collapse
Affiliation(s)
- Mark Winey
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309-0347, USA.
| | | | | | | | | |
Collapse
|
44
|
Kemp B, Boumil RM, Stewart MN, Dawson DS. A role for centromere pairing in meiotic chromosome segregation. Genes Dev 2004; 18:1946-51. [PMID: 15289462 PMCID: PMC514173 DOI: 10.1101/gad.1227304] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In meiosis I, exchanges provide a connection between homologous chromosome pairs that facilitates their proper attachment to the meiotic spindle. In many eukaryotes, homologous chromosomes that fail to become linked by exchanges exhibit elevated levels of meiotic errors, but they do not segregate randomly, demonstrating that mechanisms beyond exchange can promote proper meiosis I segregation. The experiments described here demonstrate the existence of a meiotic centromere pairing mechanism in budding yeast. This centromere pairing mediates the meiosis I bipolar spindle attachment of nonexchange chromosome pairs and likely plays the same role for all homologous chromosome pairs.
Collapse
Affiliation(s)
- Benedict Kemp
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
45
|
Nekrasov VS, Smith MA, Peak-Chew S, Kilmartin JV. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:4931-46. [PMID: 14565975 PMCID: PMC284796 DOI: 10.1091/mbc.e03-06-0419] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have purified two new complexes from Saccharomyces cerevisiae, one containing the centromere component Mtw1p together with Nnf1p, Nsl1p, and Dsn1p, which we call the Mtw1p complex, and the other containing Spc105p and Ydr532p, which we call the Spc105p complex. Further purifications using Dsn1p tagged with protein A show, in addition to the other components of the Mtw1p complex, the two components of the Spc105p complex and the four components of the previously described Ndc80p complex, suggesting that all three complexes are closely associated. Fluorescence microscopy and immunoelectron microscopy show that Nnf1p, Nsl1p, Dsn1p, Spc105p, and Ydr532p all localize to the nuclear side of the spindle pole body and along short spindles. Chromatin immunoprecipitation assays show that all five proteins are associated with centromere DNA. Homologues of Nsl1p and Spc105p in Schizosaccharomyces pombe also localize to the centromere. Temperature-sensitive mutations of Nsl1p, Dsn1p, and Spc105p all cause defects in chromosome segregation. Synthetic-lethal interactions are found between temperature-sensitive mutations in proteins from all three complexes, in agreement with their close physical association. These results show an increasingly complex structure for the S. cerevisiae centromere and a probable conservation of structure between parts of the centromeres of S. cerevisiae and S. pombe.
Collapse
|
46
|
Trelles-Sticken E, Loidl J, Scherthan H. Increased ploidy and KAR3 and SIR3 disruption alter the dynamics of meiotic chromosomes and telomeres. J Cell Sci 2003; 116:2431-42. [PMID: 12734403 DOI: 10.1242/jcs.00453] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the sequence of chromosomal events during meiotic prophase in haploid, diploid and autotetraploid SK1 strains of Saccharomyces cerevisiae. Using molecular cytology, we found that meiosis-specific nuclear topology (i.e. dissolution of centromere clustering, bouquet formation and meiotic divisions) are significantly delayed in polyploid SK1 meiosis. Thus, and in contrast to the situation in plants, an increase in ploidy extends prophase I in budding yeast. Moreover, we found that bouquet formation also occurs in haploid and diploid SK1 meiosis deficient in the telomeric heterochromatin protein Sir3p. Diploid sir3Delta SK1 meiosis showed pleiotropic defects such as delayed centromere cluster resolution in a proportion of cells and impeded downstream events (i.e. bouquet formation, homologue pairing and meiotic divisions). Meiotic telomere clustering occurred in diploid and haploid sir3Delta strains. Using the haploid system, we further show that a bouquet forms at the kar3Delta SPB. Comparison of the expression of meiosis-specific Ndj1p-HA and Zip1p in haploid control and kar3Delta time courses revealed that fewer cells enter the meiotic cycle in absence of Kar3p. Elevated frequencies of bouquets in kar3Delta haploid meiosis suggest a role for Kar3p in regulation of telomere dynamics.
Collapse
Affiliation(s)
- Edgar Trelles-Sticken
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | |
Collapse
|
47
|
Abstract
Homologous recombination is essential during meiosis in most sexually reproducing organisms. In budding yeast, and most likely in other organisms as well, meiotic recombination proceeds via the formation and repair of DNA double-strand breaks (DSBs). These breaks appear to be formed by the Spo11 protein, with assistance from a large number of other gene products, by a topoisomerase-like transesterase mechanism. Recent studies in fission yeast, multicellular fungi, flies, worms, plants, and mammals indicate that the role of Spo11 in meiotic recombination initiation is highly conserved. This chapter reviews the properties of Spo11 and the other gene products required for meiotic DSB formation in a number of organisms and discusses ways in which recombination initiation is coordinated with other events occurring in the meiotic cell.
Collapse
Affiliation(s)
- S Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, and Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| |
Collapse
|
48
|
Scherthan H, Schönborn I. Asynchronous chromosome pairing in male meiosis of the rat (Rattus norvegicus). Chromosome Res 2002; 9:273-82. [PMID: 11419792 DOI: 10.1023/a:1016642528981] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Premeiotic and meiotic chromosome distribution was studied in rat testes suspensions by a triple-color fluorescent staining protocol which allows simultaneous visual inspection of two chromosomal targets highlighted by FISH together with immunostained SCP3 synaptonemal complex (SC) proteins which are marked by a third, composite color. Triple labeling with rat chromosome (RNO) 4q and 19p specific probes and SCP3 staining disclosed that homologs are separated in premeiotic and leptotene nuclei. Pairing of homologous chromosome regions commenced during early zygotene, with pairing of the small metacentric chromosomes 19 preceding that of the distal region of the long arm of RNO4. Our results show that homolog association occurs during zygotene of rat spermatogenesis, with small and large chromosomes showing a considerable asynchrony. Comparison with pairing progression in meiosis of other mammals suggests that asynchronous chromosome pairing reflects size differences within a complement.
Collapse
Affiliation(s)
- H Scherthan
- Abt. Humanbiologie & Humangenetik der Universität, Kaiserslautern, Germany.
| | | |
Collapse
|
49
|
Shanks RM, Kamieniecki RJ, Dawson DS. The Kar3-interacting protein Cik1p plays a critical role in passage through meiosis I in Saccharomyces cerevisiae. Genetics 2001; 159:939-51. [PMID: 11729143 PMCID: PMC1461869 DOI: 10.1093/genetics/159.3.939] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meiosis I in Saccharomyces cerevisiae is dependent upon the motor protein Kar3. Absence of Kar3p in meiosis results in an arrest in prophase I. Cik1p and Vik1p are kinesin-associated proteins known to modulate the function of Kar3p in the microtubule-dependent processes of karyogamy and mitosis. Experiments were performed to determine whether Cik1p and Vik1p are also important for the function of Kar3p during meiosis. The meiotic phenotypes of a cik1 mutant were found to be similar to those of kar3 mutants. Cells without Cik1p exhibit a meiotic defect in homologous recombination and synaptonemal complex formation. Most cik1 mutant cells, like kar3 mutants, arrest in meiotic prophase; however, in cik1 mutants this arrest is less severe. These data are consistent with the model that Cik1p is necessary for some, but not all, of the roles of Kar3p in meiosis I. vik1 mutants sporulate at wild-type levels, but have reduced spore viability. This loss in viability is partially attributable to vegetative chromosome loss in vik1 diploids. Cellular localization experiments reveal that Kar3p, Cik1p, and Vik1p are present throughout meiosis and are consistent with Cik1p and Vik1p having different meiotic roles.
Collapse
Affiliation(s)
- R M Shanks
- Department of Molecular Microbiology, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
50
|
Yamamoto A, Hiraoka Y. How do meiotic chromosomes meet their homologous partners?: lessons from fission yeast. Bioessays 2001; 23:526-33. [PMID: 11385632 DOI: 10.1002/bies.1072] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Homologous chromosome pairing is required for proper chromosome segregation and recombination during meiosis. The mechanism by which a pair of homologous chromosomes contact each other to establish pairing is not fully understood. When pairing occurs during meiotic prophase in the fission yeast, Schizosaccharomyces pombe, the nucleus oscillates between the cell poles and telomeres remain clustered at the leading edge of the moving nucleus. These meiosis-specific activities produce movements of telomere-bundled chromosomes. Several lines of evidence suggest that these movements facilitate homologous chromosome pairing by aligning homologous chromosomes and promoting contact between homologous regions. Since telomere clustering and nuclear or chromosome movements in meiotic prophase have been observed in a wide range of eukaryotic organisms, it is suggested that telomere-mediated chromosome movements are general activities that facilitate homologous chromosome pairing.
Collapse
Affiliation(s)
- A Yamamoto
- Structural Biology Section and CREST Research Project, Kansai Advanced Research Center, Iwaoka, Nishi-ku, Japan.
| | | |
Collapse
|