1
|
Pašakinskienė I. Festuca pratensis-like Subgenome Reassembly from a "Chromosomal Cocktail" in the Intergeneric Festulolium (Poaceae) Hybrid: A Rare Chromoanagenesis Event in Grasses. PLANTS (BASEL, SWITZERLAND) 2023; 12:984. [PMID: 36903845 PMCID: PMC10005718 DOI: 10.3390/plants12050984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Festuca and Lolium grass species are used for Festulolium hybrid variety production where they display trait complementarities. However, at the genome level, they show antagonisms and a broad scale of rearrangements. A rare case of an unstable hybrid, a donor plant manifesting pronounced variability of its clonal parts, was discovered in the F2 group of 682 plants of Lolium multiflorum × Festuca arundinacea (2n = 6x = 42). Five phenotypically distinct clonal plants were determined to be diploids, having only 14 chromosomes out of the 42 in the donor. GISH defined the diploids as having the basic genome from F. pratensis (2n = 2x = 14), one of the progenitors of F. arundinacea (2n = 6x = 42), with minor components from L. multiflorum and another subgenome, F. glaucescens. The 45S rDNA position on two chromosomes also corresponded to the variant of F. pratensis in the F. arundinacea parent. In the highly unbalanced donor genome, F. pratensis was the least represented, but the most involved in numerous recombinant chromosomes. Specifically, FISH highlighted 45S rDNA-containing clusters involved in the formation of unusual chromosomal associations in the donor plant, suggesting their active role in karyotype realignment. The results of this study show that F. pratensis chromosomes have a particular fundamental drive for restructuring, which prompts the disassembly/reassembly processes. The finding of F. pratensis "escaping" and rebuilding itself from the chaotic "chromosomal cocktail" of the donor plant points to a rare chromoanagenesis event and extends the view of plant genome plasticity.
Collapse
Affiliation(s)
- Izolda Pašakinskienė
- Life Sciences Centre, Vilnius University, Saulėtekio 7, 10221 Vilnius, Lithuania;
- Botanical Garden of Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| |
Collapse
|
2
|
Talukder SK, Azhaguvel P, Chekhovskiy K, Saha MC. Molecular discrimination of tall fescue morphotypes in association with Festuca relatives. PLoS One 2018; 13:e0191343. [PMID: 29342197 PMCID: PMC5771633 DOI: 10.1371/journal.pone.0191343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/03/2018] [Indexed: 11/18/2022] Open
Abstract
Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species used as forage and turf, and in conservation plantings. There are three morphotypes in hexaploid tall fescue: Continental, Mediterranean and Rhizomatous. This study was conducted to develop morphotype-specific molecular markers to distinguish Continental and Mediterranean tall fescues, and establish their relationships with other species of the Festuca genus for genomic inference. Chloroplast sequence variation and simple sequence repeat (SSR) polymorphism were explored in 12 genotypes of three tall fescue morphotypes and four Festuca species. Hypervariable chloroplast regions were retrieved by using 33 specifically designed primers followed by sequencing the PCR products. SSR polymorphism was studied using 144 tall fescue SSR primers. Four chloroplast (NFTCHL17, NFTCHL43, NFTCHL45 and NFTCHL48) and three SSR (nffa090, nffa204 and nffa338) markers were identified which can distinctly differentiate Continental and Mediterranean morphotypes. A primer pair, NFTCHL45, amplified a 47 bp deletion between the two morphotypes is being routinely used in the Noble Research Institute's core facility for morphotype discrimination. Both chloroplast sequence variation and SSR diversity showed a close association between Rhizomatous and Continental morphotypes, while the Mediterranean morphotype was in a distant clade. F. pratensis and F. arundinacea var. glaucescens, the P and G1G2 genome donors, respectively, were grouped with the Continental clade, and F. mairei (M1M2 genome) grouped with the Mediterranean clade in chloroplast sequence variation, while both F. pratensis and F. mairei formed independent clade in SSR analysis. Age estimation based on chloroplast sequence variation indicated that the Continental and Mediterranean clades might have been colonized independently during 0.65 ± 0.06 and 0.96 ± 0.1 million years ago (Mya) respectively. The findings of the study will enhance tall fescue breeding for persistence and productivity.
Collapse
Affiliation(s)
| | - Perumal Azhaguvel
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | | | - Malay C. Saha
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| |
Collapse
|
3
|
Cheng Y, Ma X, Zhou K, Humphreys MW, Zhang XQ. Phylogenetic analysis of Festuca–Lolium complex using SRAP markers. GENETIC RESOURCES AND CROP EVOLUTION 2016; 63:7-18. [PMID: 0 DOI: 10.1007/s10722-015-0324-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
4
|
Czaban A, Sharma S, Byrne SL, Spannagl M, Mayer KFX, Asp T. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation. BMC Genomics 2015; 16:249. [PMID: 25886302 PMCID: PMC4389671 DOI: 10.1186/s12864-015-1447-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/06/2015] [Indexed: 01/18/2023] Open
Abstract
Background The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf fescues, both belonging to the subfamily Pooideae. This subfamily also includes wheat, barley, oat and rye, making it extremely important to world agriculture. Species within the Lolium-Festuca complex show very diverse phenotypes, and many of them are related to agronomically important traits. Analysis of sequenced transcriptomes of these non-model species may shed light on the molecular mechanisms underlying this phenotypic diversity. Results We have generated de novo transcriptome assemblies for four species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some of the differences between the more stress tolerant Festuca, and the less stress tolerant Lolium species. Conclusions Our data presents a comprehensive transcriptome sequence comparison between species from the Lolium-Festuca complex, with the identification of potential candidate genes underlying some important phenotypical differences within the complex (such as VRN2). The orthologous genes between the species have a very high %id (91,61%) and the majority of gene families were shared for all of them. It is likely that the knowledge of the genomes will be largely transferable between species within the complex. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1447-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrian Czaban
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark.
| | - Sapna Sharma
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany.
| | - Stephen L Byrne
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark.
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany.
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, Neuherberg, 85764, Germany.
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, Slagelse, 4200, Denmark.
| |
Collapse
|
5
|
Hand ML, Cogan NOI, Forster JW. Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1127-37. [PMID: 22222441 DOI: 10.1007/s00122-011-1774-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 12/15/2011] [Indexed: 05/20/2023]
Abstract
Allohexaploid tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum [Schreb.] Darbysh.) is an agriculturally important grass cultivated for pasture and turf world-wide. Genetic improvement of tall fescue could benefit from the use of non-domesticated germplasm to diversify breeding populations through the incorporation of novel and superior allele content. However, such potential germplasm must first be characterised, as three major morphotypes (Continental, Mediterranean and rhizomatous) with varying degrees of hybrid interfertility are commonly described within this species. As hexaploid tall fescue is also a member of a polyploid species complex that contains tetraploid, octoploid and decaploid taxa, it is also possible that germplasm collections may have inadvertently sampled some of these sub-species. In this study, 1,040 accessions from the publicly available United States Department of Agriculture tall fescue and meadow fescue germplasm collections were investigated. Sequence of the chloroplast genome-located matK gene and the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) permitted attribution of accessions to the three previously known morphotypes and also revealed the presence of tall fescue sub-species of varying ploidy levels, as well as other closely related species. The majority of accessions were, however, identified as Continental hexaploid tall fescue. Analysis using 34 simple sequence repeat markers was able to further investigate the level of genetic diversity within each hexaploid tall fescue morphotype group. At least two genetically distinct sub-groups of Continental hexaploid tall fescue were identified which are probably associated with palaeogeographic range expansion of this morphotype. This work has comprehensively characterised a large and complex germplasm collection and has identified genetically diverse accessions which may potentially contribute valuable alleles at agronomic loci for tall fescue cultivar improvement programs.
Collapse
Affiliation(s)
- Melanie L Hand
- Biosciences Research Division, Department of Primary Industries, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, VIC, 3083, Australia
| | | | | |
Collapse
|
6
|
Hand ML, Cogan NOI, Stewart AV, Forster JW. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol 2010; 10:303. [PMID: 20937141 PMCID: PMC2958922 DOI: 10.1186/1471-2148-10-303] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events. RESULTS Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F. arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be located in separate clades based on the ITS-derived data set. All four of the generated data sets suggest independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and only two putative sub-genome-specific haplotypes were identified for this morphotype. CONCLUSIONS This study describes the first phylogenetic analysis of the Festuca genus to include representatives of each tall fescue morphotype, and to use low copy nuclear gene-derived sequences to identify putative progenitors of the polyploid species. The demonstration of distinct tall fescue lineages has implications for both taxonomy and molecular breeding strategies, and may facilitate the generation of morphotype and/or sub-genome-specific molecular markers.
Collapse
Affiliation(s)
- Melanie L Hand
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| | - Noel OI Cogan
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding and Dairy Futures Cooperative Research Centres, Australia
| | - Alan V Stewart
- PGG Wrightson Seeds, P.O. Box 175, Lincoln 7640, Canterbury, New Zealand
| | - John W Forster
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe University Research and Development Park, Bundoora, Victoria 3083, Australia
- Molecular Plant Breeding and Dairy Futures Cooperative Research Centres, Australia
- La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
7
|
Kopecký D, Lukaszewski AJ, Dolezel J. Cytogenetics of Festulolium (Festuca x Lolium hybrids). Cytogenet Genome Res 2008; 120:370-83. [PMID: 18504366 DOI: 10.1159/000121086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2007] [Indexed: 11/19/2022] Open
Abstract
Grasses are the most important and widely cultivated crops. Among them, ryegrasses (Lolium spp.) and fescues (Festuca spp.) provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Species from the two genera display complementary agronomic characteristics and are often grown in mixtures. Breeding efforts to combine desired features in single entities culminated with the production of Festuca x Lolium hybrids. The so called Festuloliums enjoy a considerable commercial success with numerous cultivars registered all over the world. They are also very intriguing from a strictly cytogenetic point of view as the parental chromosomes recombine freely in hybrids. Until a decade ago this phenomenon was only known in general quantitative terms. The introduction of molecular cytogenetic tools such as FISH and GISH permitted detailed studies of intergeneric chromosome recombination and karyotyping of Festulolium cultivars. These tools were also invaluable in revealing the origin of polyploid fescues, and facilitated the development of chromosome substitution and introgression lines and physical mapping of traits of interest. Further progress in this area will require the development of a larger set of cytogenetic markers and high-resolution cytogenetic maps. It is expected that the Lolium-Festuca complex will continue providing opportunities for breeding superior grass cultivars and the complex will remain an attractive platform for fundamental research of the early steps of hybrid speciation and interaction of parental genomes, as well as the processes of chromosome pairing, elimination and recombination.
Collapse
Affiliation(s)
- D Kopecký
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic.
| | | | | |
Collapse
|
8
|
Smarda P, Bures P, Horová L, Foggi B, Rossi G. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. ANNALS OF BOTANY 2008; 101:421-33. [PMID: 18158307 PMCID: PMC2701825 DOI: 10.1093/aob/mcm307] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/10/2007] [Accepted: 11/06/2007] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Plant evolution is well known to be frequently associated with remarkable changes in genome size and composition; however, the knowledge of long-term evolutionary dynamics of these processes still remains very limited. Here a study is made of the fine dynamics of quantitative genome evolution in Festuca (fescue), the largest genus in Poaceae (grasses). METHODS Using flow cytometry (PI, DAPI), measurements were made of DNA content (2C-value), monoploid genome size (Cx-value), average chromosome size (C/n-value) and cytosine + guanine (GC) content of 101 Festuca taxa and 14 of their close relatives. The results were compared with the existing phylogeny based on ITS and trnL-F sequences. KEY RESULTS The divergence of the fescue lineage from related Poeae was predated by about a 2-fold monoploid genome and chromosome size enlargement, and apparent GC content enrichment. The backward reduction of these parameters, running parallel in both main evolutionary lineages of fine-leaved and broad-leaved fescues, appears to diverge among the existing species groups. The most dramatic reductions are associated with the most recently and rapidly evolving groups which, in combination with recent intraspecific genome size variability, indicate that the reduction process is probably ongoing and evolutionarily young. This dynamics may be a consequence of GC-rich retrotransposon proliferation and removal. Polyploids derived from parents with a large genome size and high GC content (mostly allopolyploids) had smaller Cx- and C/n-values and only slightly deviated from parental GC content, whereas polyploids derived from parents with small genome and low GC content (mostly autopolyploids) generally had a markedly increased GC content and slightly higher Cx- and C/n-values. CONCLUSIONS The present study indicates the high potential of general quantitative characters of the genome for understanding the long-term processes of genome evolution, testing evolutionary hypotheses and their usefulness for large-scale genomic projects. Taken together, the results suggest that there is an evolutionary advantage for small genomes in Festuca.
Collapse
Affiliation(s)
- Petr Smarda
- Masaryk University, Faculty of Science, Institute of Botany and Zoology, Kotlárská 2, CZ-611 37 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
9
|
de Nova PJG, de la Cruz M, Monte JV, Soler C. Genetic relationships within and among Iberian fescues (Festuca L.) based on PCR-amplified markers. Genome 2006; 49:1170-83. [PMID: 17110997 DOI: 10.1139/g06-077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Festuca comprises approximately 450 species and is widely distributed around the world. The Iberian Penninsula, with more than 100 taxa colonizing very diverse habitats, is one of its main centers of diversification. This study was conducted to assess molecular genetic variation and genetic relatedness among 91 populations of 31 taxa of Iberian fescues, based on several molecular markers (random amplified polymorphic DNA, amplified fragment length polymorphisms, and trnL sequences). The analyses showed the paraphyletic origin of the broad-leaved (subgenus Festuca , sections Scariosae and Subbulbosae, and subgenus Schedonorus ) and the fine-leaved fescues (subgenus Festuca, sections Aulaxyper, Eskia, and Festuca). Schedonorus showed a weak relationship with Lolium rigidum and appeared to be the most recent of the broad-leaved clade. Section Eskia was the most ancient and Festuca the most recent of the fine-leaved clade. Festuca and Aulaxyper were the most related sections, in concordance with their taxonomic affinities. All taxa grouped into their sections, except F. ampla and F. capillifolia (section Festuca), which appeared to be more closely related to Aulaxyper and to a new independent section, respectively. Most populations clustered at the species level, but some subspecies and varieties mixed their populations. This study demonstrated the value in combining different molecular markers to uncover hidden genetic relationships between populations of Festuca.
Collapse
Affiliation(s)
- Pedro J G de Nova
- Departamento de Biotecnología, INIA Apdo, 1045-28800, Alcalá de Henares, Spain
| | | | | | | |
Collapse
|
10
|
Pasakinskiene I, Jones N. A decade of “chromosome painting” in Lolium and Festuca. Cytogenet Genome Res 2005; 109:393-9. [PMID: 15753602 DOI: 10.1159/000082425] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 01/15/2004] [Indexed: 11/19/2022] Open
Abstract
GISH has been a particularly useful technique for studying the Lolium-Festuca species complex of forage grasses. The reason for this utility is two-fold: (i) the complex is unique amongst crop plants in which fertile hybrids, and backcross progenies, can be produced which recombine genomes and promiscuously exchange their genes through homoeologous recombination; (ii) dispersed repetitive DNAs differ between species, and this allows tracking of the identity of chromosomes and chromosome segments. This tracking property has enabled several fruitful lines of research to produce a harvest of new information for both fundamental and practical purposes. We review this first decade of GISH (genomic in situ hybridization) in Lolium-Festuca, and discuss and summarize the achievements which have accrued.
Collapse
Affiliation(s)
- I Pasakinskiene
- Lithuanian Institute of Agriculture, Dotnuva-Akademija, Kedainiai, Lithuania.
| | | |
Collapse
|
11
|
Abstract
The genomes of grasses and cereals include a diverse and large collection of selfish genetic elements, many of which are fossil relics of ancient origin. Some of these elements are active and, because of their selfish nature and the way in which they exist to perpetuate themselves, they cause a conflict for genomes both within and between species in hybrids and allopolyploids. The conflict arises from how the various elements may undergo 'drive', through transposition, centromere and neocentromere drive, and in mitotic and meiotic drive processes in supernumerary B chromosomes. Experimental and newly formed hybrids and polyploids, where new combinations of genomes are brought together for the first time, find themselves sharing a common nuclear and cytoplasmic environment, and they can respond with varying degrees of instability to adjust to their new partnerships. B chromosomes are harmful to fertility and to the physiology of the cells and plants that carry them. In this review we take a broad view of genome conflict, drawing together aspects arising from a range of genetic elements that have not hitherto been considered in their entirety, and we find some common themes linking these various elements in their activities.
Collapse
Affiliation(s)
- Neil Jones
- Institute of Biological Sciences, The University of Wales Aberystwyth, Ceredigion, SY23 3DD, UK.
| | | |
Collapse
|
12
|
GALLARDO MILTONH, KAUSEL G, JIMÉNEZ A, BACQUET C, GONZÁLEZ C, FIGUEROA J, KÖHLER N, OJEDA R. Whole-genome duplications in South American desert rodents (Octodontidae). Biol J Linn Soc Lond 2004. [DOI: 10.1111/j.1095-8312.2004.00331.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Anamthawat-Jónsson K. Molecular cytogenetics of introgressive hybridization in plants. METHODS IN CELL SCIENCE : AN OFFICIAL JOURNAL OF THE SOCIETY FOR IN VITRO BIOLOGY 2002; 23:139-48. [PMID: 11741151 DOI: 10.1007/978-94-010-0330-8_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introgressive hybridization (introgression) is genetic modification of one species by another through hybridization and repeated backcrossing. Introgression is important in the evolution of flowering plants. It is also important in plant breeding where a desirable trait can be transferred from wild to crop species. One of the most recent advances in molecular techniques for studying hybridization and introgression is in situ hybridization of genomic probes to cytological preparations (GISH, genomic in situ hybridization). The present paper describes a successful GISH protocol for detection of intergenomic introgression in breeding materials and in allopolyploid species. In addition, the paper introduces a new possibility of using dispersed repeats to detect introgression and to gain insights into its molecular basis. The approach is referred to as dFISH for dispersed fluorescence in situ hybridization, and the best candidate for this type of probes is probably a retroelement. Southern hybridization data are also presented to support the effectiveness of GISH and dFISH for introgression mapping.
Collapse
Affiliation(s)
- K Anamthawat-Jónsson
- Department of Biology, University of Iceland, Grensásvegi 12, Reykjavík 108, Iceland.
| |
Collapse
|