1
|
Fichtner A, Nettersheim D, Bremmer F. Pathogenesis and pathobiology of testicular germ cell tumours: a view from a developmental biological perspective with guidelines for pathological diagnostics. Histopathology 2024; 85:701-715. [PMID: 38922953 DOI: 10.1111/his.15249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Testicular germ cell tumours (GCT) are divided into three different subtypes (types I-III) regarding to their developmental origin, histological differences and molecular features. Type I GCT develop from disturbed primordial germ cells and most commonly occur in children and young adolescents, which is why they are referred to as prepubertal GCT. Type II GCT develop from a non-invasive germ cell neoplasia in situ (GCNIS) and show an isochromosome 12p (i12p) or gain of 12p material as a common and characteristic molecular alteration. Type III GCT originate from distorted postpubertal germ cells (e.g. spermatogonia) in adult patients and have changes on chromosome 9 with amplification of the DMRT1 gene. Type I GCT encompass prepubertal-type teratomas and yolk-sac tumours (YST). Type II GCT include seminoma, embryonal carcinoma, choriocarcinoma, postpubertal-type teratoma and postpubertal-type YST. Types I and II GCT both show similar morphology, but are separated from each other by the detection of a GCNIS and an i12p in type II GCT. For type II GCT it is especially important to detect non-seminomatous elements, as these tumours have a worse biological behaviour and need a different treatment to seminomas. In contrast to types I and II GCT, type III tumours are equivalent to spermatocytic tumours and usually occur in elderly men, with few exceptions in young adults. The development of types I and II GCT seems to depend not upon driver mutations, but rather on changes in the epigenetic landscape. Furthermore, different pluripotency associated factors (e.g. OCT3/4, SOX2, SOX17) play a crucial role in GCT development and can be used as immunohistochemical markers allowing to distinguish the different subtypes from each other in morphologically challenging tissue specimens. Especially in metastatic sites, a morphological and immunohistochemical diagnostic algorithm is important to detect small subpopulations of each non-seminomatous GCT subtype, which are associated with a poorer prognosis and need a different treatment. Furthermore, primary extragonadal GCT of the retroperitoneum or mediastinum develop from misguided germ cells during embryonic development, and might be challenging to detect in small tissue biopsies due to their rarity at corresponding sites. This review article summarises the pathobiological and developmental aspects of the three different types of testicular GCT that can be helpful in the histopathological examination of tumour specimens by pathologists.
Collapse
Affiliation(s)
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen, Bonn, Cologne Düsseldorf (CIO ABCD), Lighthouse Project: Germ Cell Tumours, Düsseldorf, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center, Göttingen, Germany
| |
Collapse
|
2
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
3
|
Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life (Basel) 2021; 11:life11080736. [PMID: 34440480 PMCID: PMC8399856 DOI: 10.3390/life11080736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs’ onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed.
Collapse
|
4
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Looijenga LH, Van der Kwast TH, Grignon D, Egevad L, Kristiansen G, Kao CS, Idrees MT. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: IV: Current and Future Utilization of Molecular-Genetic Tests for Testicular Germ Cell Tumors. Am J Surg Pathol 2020; 44:e66-e79. [PMID: 32205480 PMCID: PMC7289140 DOI: 10.1097/pas.0000000000001465] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The International Society of Urological Pathology (ISUP) organized a Consultation Conference in March 2019 dealing with applications of molecular pathology in Urogenital Pathology, including testicular tumors (with a focus on germ cell tumors [GCTs]), preceded by a survey among its members to get insight into current practices in testicular germ cell tumor (TGCT) diagnostics and adoption of the ISUP immunohistochemical guidelines published in 2014. On the basis of the premeeting survey, the most commonly used immunomarker panel includes OCT3/4, placental alkaline phosphate, D2-40, SALL4, CD117, and CD30 for GCTs and the documentation of germ cell neoplasia in situ (GCNIS). Molecular testing, specifically 12p copy gain, is informative to distinguish non-GCNIS versus GCNIS related GCTs, and establishing germ cell origin of tumors both in the context of primary and metastatic lesions. Other molecular methodologies currently available but not widely utilized for TGCTs include genome-wide and targeted approaches for specific genetic anomalies, P53 mutations, genomic MDM2 amplification, and detection of the p53 inactivating miR-371a-3p. The latter also holds promise as a serum marker for malignant TGCTs. This manuscript provides an update on the classification of TGCTs, and describes the current and future role of molecular-genetic testing. The following recommendations are made: (1) Presence of GCNIS should be documented in all cases along with extent of spermatogenesis; (2) Immunohistochemical staining is optional in the following scenarios: identification of GCNIS, distinguishing embryonal carcinoma from seminoma, confirming presence of yolk sac tumor and/or choriocarcinoma, and differentiating spermatocytic tumor from potential mimics; (3) Detection of gain of the short arm of chromosome 12 is diagnostic to differentiate between non-GCNIS versus GCNIS related GCTs and supportive to the germ cell origin of both primary and metastatic tumors.
Collapse
Affiliation(s)
| | | | | | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet Sweden, Solna, Sweden
| | - Glen Kristiansen
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Chia-Sui Kao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
6
|
Ibtisham F, Honaramooz A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells 2020; 9:E745. [PMID: 32197440 PMCID: PMC7140722 DOI: 10.3390/cells9030745] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the only adult stem cells capable of passing genes onto the next generation. SSCs also have the potential to provide important knowledge about stem cells in general and to offer critical in vitro and in vivo applications in assisted reproductive technologies. After century-long research, proof-of-principle culture systems have been introduced to support the in vitro differentiation of SSCs from rodent models into haploid male germ cells. Despite recent progress in organotypic testicular tissue culture and two-dimensional or three-dimensional cell culture systems, to achieve complete in vitro spermatogenesis (IVS) using non-rodent species remains challenging. Successful in vitro production of human haploid male germ cells will foster hopes of preserving the fertility potential of prepubertal cancer patients who frequently face infertility due to the gonadotoxic side-effects of cancer treatment. Moreover, the development of optimal systems for IVS would allow designing experiments that are otherwise difficult or impossible to be performed directly in vivo, such as genetic manipulation of germ cells or correction of genetic disorders. This review outlines the recent progress in the use of SSCs for IVS and potential in vivo applications for the restoration of fertility.
Collapse
Affiliation(s)
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
7
|
Barchi M, Innocenzi E, Giannattasio T, Dolci S, Rossi P, Grimaldi P. Cannabinoid Receptors Signaling in the Development, Epigenetics, and Tumours of Male Germ Cells. Int J Mol Sci 2019; 21:ijms21010025. [PMID: 31861494 PMCID: PMC6981618 DOI: 10.3390/ijms21010025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two main cannabinoid receptors type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes form the “endocannabinoid system” (ECS). In the last years, the relevance of endocannabinoids (eCBs) as critical modulators in various aspects of male reproduction has been pointed out. Mammalian male germ cells, from mitotic to haploid stage, have a complete ECS which is modulated during spermatogenesis. Compelling evidence indicate that in the testis an appropriate “eCBs tone”, associated to a balanced CB receptors signaling, is critical for spermatogenesis and for the formation of mature and fertilizing spermatozoa. Any alteration of this system negatively affects male reproduction, from germ cell differentiation to sperm functions, and might have also an impact on testicular tumours. Indeed, most of testicular tumours develop during early germ-cell development in which a maturation arrest is thought to be the first key event leading to malignant transformation. Considering the ever-growing number and complexity of the data on ECS, this review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in male germ cells development from gonocyte up to mature spermatozoa and in the induction of epigenetic alterations in these cells which might be transmitted to the progeny. Furthermore, we present new evidence on their relevance in testicular cancer.
Collapse
|
8
|
Predicting Gonadal Germ Cell Cancer in People with Disorders of Sex Development; Insights from Developmental Biology. Int J Mol Sci 2019; 20:ijms20205017. [PMID: 31658757 PMCID: PMC6834166 DOI: 10.3390/ijms20205017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023] Open
Abstract
The risk of gonadal germ cell cancer (GGCC) is increased in selective subgroups, amongst others, defined patients with disorders of sex development (DSD). The increased risk is due to the presence of part of the Y chromosome, i.e., GonadoBlastoma on Y chromosome GBY region, as well as anatomical localization and degree of testicularization and maturation of the gonad. The latter specifically relates to the germ cells present being at risk when blocked in an embryonic stage of development. GGCC originates from either germ cell neoplasia in situ (testicular environment) or gonadoblastoma (ovarian-like environment). These precursors are characterized by presence of the markers OCT3/4 (POU5F1), SOX17, NANOG, as well as TSPY, and cKIT and its ligand KITLG. One of the aims is to stratify individuals with an increased risk based on other parameters than histological investigation of a gonadal biopsy. These might include evaluation of defined susceptibility alleles, as identified by Genome Wide Association Studies, and detailed evaluation of the molecular mechanism underlying the DSD in the individual patient, combined with DNA, mRNA, and microRNA profiling of liquid biopsies. This review will discuss the current opportunities as well as limitations of available knowledge in the context of predicting the risk of GGCC in individual patients.
Collapse
|
9
|
Abstract
Human germ cell tumours (GCTs) are derived from stem cells of the early embryo and the germ line. They occur in the gonads (ovaries and testes) and also in extragonadal sites, where migrating primordial germ cells are located during embryogenesis. This group of heterogeneous neoplasms is unique in that their developmental potential is in effect determined by the latent potency state of their cells of origin, which are reprogrammed to omnipotent, totipotent or pluripotent stem cells. Seven GCT types, defined according to their developmental potential, have been identified, each with distinct epidemiological and (epi)genomic features. Heritable predisposition factors affecting the cells of origin and their niches likely explain bilateral, multiple and familial occurrences of the different types of GCTs. Unlike most other tumour types, GCTs are rarely caused by somatic driver mutations, but arise through failure to control the latent developmental potential of their cells of origin, resulting in their reprogramming. Consistent with their non-mutational origin, even the malignant tumours of the group are characterized by wild-type TP53 and high sensitivity for DNA damage. However, tumour progression and the rare occurrence of treatment resistance are driven by embryonic epigenetic state, specific (sub)chromosomal imbalances and somatic mutations. Thus, recent progress in understanding GCT biology supports a comprehensive developmental pathogenetic model for the origin of all GCTs, and provides new biomarkers, as well as potential targets for treatment of resistant disease.
Collapse
Affiliation(s)
- J Wolter Oosterhuis
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| | - Leendert H J Looijenga
- Laboratory for Experimental Patho-Oncology, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
10
|
Feichtinger J, McFarlane RJ. Meiotic gene activation in somatic and germ cell tumours. Andrology 2019; 7:415-427. [PMID: 31102330 PMCID: PMC6766858 DOI: 10.1111/andr.12628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022]
Abstract
Background Germ cell tumours are uniquely associated with the gametogenic tissues of males and females. A feature of these cancers is that they can express genes that are normally tightly restricted to meiotic cells. This aberrant gene expression has been used as an indicator that these cancer cells are attempting a programmed germ line event, meiotic entry. However, work in non‐germ cell cancers has also indicated that meiotic genes can become aberrantly activated in a wide range of cancer types and indeed provide functions that serve as oncogenic drivers. Here, we review the activation of meiotic factors in cancers and explore commonalities between meiotic gene activation in germ cell and non‐germ cell cancers. Objectives The objectives of this review are to highlight key questions relating to meiotic gene activation in germ cell tumours and to offer possible interpretations as to the biological relevance in this unique cancer type. Materials and Methods PubMed and the GEPIA database were searched for papers in English and for cancer gene expression data, respectively. Results We provide a brief overview of meiotic progression, with a focus on the unique mechanisms of reductional chromosome segregation in meiosis I. We then offer detailed insight into the role of meiotic chromosome regulators in non‐germ cell cancers and extend this to provide an overview of how this might relate to germ cell tumours. Conclusions We propose that meiotic gene activation in germ cell tumours might not indicate an unscheduled attempt to enter a full meiotic programme. Rather, it might simply reflect either aberrant activation of a subset of meiotic genes, with little or no biological relevance, or aberrant activation of a subset of meiotic genes as positive tumour evolutionary/oncogenic drivers. These postulates provide the provocation for further studies in this emerging field.
Collapse
Affiliation(s)
- J Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria.,OMICS Center Graz, BioTechMed Graz, Graz, Austria
| | - R J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
11
|
Salama R, Al-Obaidy KI, Perrino CM, Grignon DJ, Ulbright TM, Idrees MT. DOG1 immunohistochemical staining of testicular biopsies is a reliable tool for objective assessment of infertility. Ann Diagn Pathol 2019; 40:18-22. [PMID: 30849695 DOI: 10.1016/j.anndiagpath.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/17/2019] [Indexed: 11/30/2022]
Abstract
Testicular biopsy may be a component of the work-up of male infertility. However, no reliable diagnostic tools are available for objective quantitative assessment of spermatogenic cells. It is well known that MAGE-A4 is selectively expressed in spermatogonia and our group has previously demonstrated that DOG1 differentially stains germ cells. Therefore, we performed DOG1 and a double stain cocktail (DOG1 and 57b murine monoclonal anti-MAGE-A4) immunohistochemical stains on 40 testicular infertility biopsies (10 each with active spermatogenesis, Sertoli cell-only, hypospermatogenesis, and maturation arrest), 25 benign seminiferous tubules from radical orchiectomies, and 5 spermatocytic tumors (ST). In biopsies/resections with active spermatogenesis, DOG1 stained spermatocytes and spermatids and was absent in spermatogonia, while MAGE-A4 stained spermatogonia and primary spermatocytes (weak). In hypospermatogenesis, DOG1 highlighted decreased spermatocytes/spermatids and MAGE-A4 highlighted decreased spermatogonia. DOG1 staining confirmed decreased to absent spermatocytes in maturation arrest and MAGE-A4 staining established the presence of preserved spermatogonia in all cases. All STs were negative for DOG1 and positive for MAGE-A4, while all Sertoli cell-only cases were negative for DOG1 and the double stain cocktail. In conclusion, we confirmed that DOG1 is expressed in spermatocytes and spermatids and MAGE-A4 highlights primarily spermatogonia. Usage of these stains facilitates confirmation of maturation arrest, assessment of the percentage of testis involvement in hypospermatogenesis and identification of mixed patterns. Finally, this study supports that the differentiation of STs is more closely related to spermatogonia than the more mature spermatocytes.
Collapse
Affiliation(s)
- Rasha Salama
- Department of Pathology, St. Elizabeth Healthcare, Edgewood, KY, USA
| | - Khaleel I Al-Obaidy
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David J Grignon
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas M Ulbright
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Muhammad T Idrees
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
A case of spermatocytic seminoma in young individual. Med J Armed Forces India 2018; 74:276-279. [PMID: 30093773 DOI: 10.1016/j.mjafi.2017.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/11/2017] [Indexed: 01/29/2023] Open
|
13
|
Roth LM, Michal M, Michal M, Cheng L. Protein expression of the transcription factors DMRT1, TCLF5, and OCT4 in selected germ cell neoplasms of the testis. Hum Pathol 2018; 82:68-75. [PMID: 30067948 DOI: 10.1016/j.humpath.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022]
Abstract
In the present study, we investigated protein expression of the transcription factors mammalian doublesex and mab-3 related transcription factor 1 (DMRT1), basic helix-loop-helix transcription factor-like 5 (TCLF5), and octamer-binding transcription factor 4 (OCT4) in normal human spermatogenesis, testicular mixed germ cell-sex cord stromal tumor (MGC-SCST), spermatocytic tumor, and seminoma. In normal human spermatogenesis, DMRT1 is expressed in the nuclei of spermatogonia but not in those of more mature germ cells. By way of contrast, TCLF5 is expressed in the nuclei of some clusters of primary spermatocytes that have entered meiosis 1, in secondary spermatocytes, and in round (early) spermatids in the seminiferous tubules of adults during the reproductive years. OCT4 is expressed in primordial germ cells but not in the seminiferous tubules of the normal adult testis during the reproductive years. DMRT1 is expressed in the germ cells of both testicular MGC-SCST and spermatocytic tumor, whereas TCLF5 is not expressed in either neoplasm. These low-grade neoplasms, however, differ histologically in that all the germ cell nuclei of testicular MGC-SCST resemble spermatogonia, whereas in spermatocytic tumor, the nuclei of the medium-sized and large cells resemble those of primary spermatocytes. Both neoplasms lack expression of OCT4. By way of contrast, in seminoma, a fully malignant testicular germ cell tumor, the germ cell nuclei express OCT4 but do not express either DMRT1 or TCLF5.
Collapse
Affiliation(s)
- Lawrence M Roth
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Michal Michal
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen 30460, Czech Republic
| | - Michael Michal
- Department of Pathology, Charles University, Faculty of Medicine in Pilsen, Pilsen 30460, Czech Republic; Biomedical Center, Charles University, Faculty of Medicine in Pilsen, Pilsen 30460, Czech Republic
| | - Liang Cheng
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Fukawa T, Kanayama HO. Current knowledge of risk factors for testicular germ cell tumors. Int J Urol 2018; 25:337-344. [PMID: 29345008 DOI: 10.1111/iju.13519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022]
Abstract
The development of the human gonads is tightly regulated by the correct sequential expression of many genes and hormonal activity. Disturbance of this regulation does not only prevent proper development of the gonads, but it also contributes to the development of testicular germ cell tumors. Recent genetic studies, especially genome-wide association studies, have made great progress in understanding genetic susceptibility. Although there is strong evidence of inherited risks, many environmental factors also contribute to the development of testicular germ cell tumors. Histopathological studies have shown that most testicular germ cell tumors arise from germ cell neoplasia in situ, which is thought to be arrested and transformed primordial germ cells. Seminoma has features identical to germ cell neoplasia in situ or primordial germ cells, whereas non-seminoma shows varied differentiation. Seminomas and embryonic cell carcinomas have the feature of pluripotency, which is thought to be the cause of histological heterogeneity and mixed pathology in testicular germ cell tumors. Testicular germ cell tumors show high sensitivity to chemotherapies, but 20-30% of patients show resistance to standard chemotherapy. In the present review, the current knowledge of the epidemiological and genomic factors for the development of testicular germ cell tumors is reviewed, and the mechanisms of resistance to chemotherapies are briefly mentioned.
Collapse
Affiliation(s)
- Tomoya Fukawa
- Department of Urology, Institute of Biomedical Sciences, Tokushima University, Graduate School, Tokushima, Japan
| | - Hiro-Omi Kanayama
- Department of Urology, Institute of Biomedical Sciences, Tokushima University, Graduate School, Tokushima, Japan
| |
Collapse
|
15
|
von Kopylow K, Spiess AN. Human spermatogonial markers. Stem Cell Res 2017; 25:300-309. [PMID: 29239848 DOI: 10.1016/j.scr.2017.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
In this review, we provide an up-to-date compilation of published human spermatogonial markers, with focus on the three nuclear subtypes Adark, Apale and B. In addition, we have extended our recently published list of putative spermatogonial markers with protein expression and RNA-sequencing data from the Human Protein Atlas and supported these by literature evidence. Most importantly, we have put substantial effort in acquiring a comprehensive list of new and potentially interesting markers by refiltering the raw data of 15 published germ cell expression datasets (four human, eleven rodent) and subsequent building of intersections to acquire a robust, cross-species set of spermatogonia-enriched or -specific transcripts.
Collapse
Affiliation(s)
- Kathrein von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
16
|
Mixed Gonadal Germ Cell Tumor Composed of a Spermatocytic Tumor-Like Component and Germinoma Arising in Gonadoblastoma in a Phenotypic Woman With a 46, XX Peripheral Karyotype: Report of the First Case. Am J Surg Pathol 2017; 41:1290-1297. [PMID: 28614211 DOI: 10.1097/pas.0000000000000888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a unique case of gonadal mixed germ cell tumor (GCT) composed of a predominantly spermatocytic tumor (ST)-like component and a minor component of germinoma arising in gonadoblastoma in a phenotypic woman with a 46, XX peripheral karotype. The patient was a 24-year-old woman (gravida 2, para 1) found to have a 7 cm pelvic mass during routine obstetric ultrasound examination at 20 weeks gestational age. She underwent a left salpingo-gonadectomy at gestational age 23 and 2/7 weeks. She recovered well and delivered a healthy baby at full term. The resected gonadal tumor measured 7.5 cm and microscopically was composed of 3 morphologically distinct components: gonadoblastoma (1%), germinoma (1%) and a ST-like component (98%). The ST-like component was composed of 3 populations of tumor cells: small cells, intermediate and large sized cells, similar to testicular ST. Scattered binucleated and multinucleated cells were present. Immunohistochemically the ST-like component was positive for pan-GCT markers SALL4 and LIN28 but with weaker staining than the germinoma. It was negative for OCT4 and TCL1. Only rare tumor cells were positive for SOX17. In contrast, the germinoma cells were diffusely and strongly positive for SALL4, LIN28, OCT4, SOX17, and TCL1. CD117 was positive in both the germinoma and ST-like component but with fewer tumor cells positive in the latter. Flurorescence in situ hybridization study demonstrated isochromosome 12p in the germinoma component but not in the gonadoblastoma and ST-like component. This patient did not receive further chemoradiation therapy after the surgery. She has been free of disease for 10 years and 1 month since her surgery. To our knowledge, this is the first case report of a ST-like GCT in a phenotypic female.
Collapse
|
17
|
Giannoulatou E, Maher GJ, Ding Z, Gillis AJM, Dorssers LCJ, Hoischen A, Rajpert-De Meyts E, McVean G, Wilkie AOM, Looijenga LHJ, Goriely A. Whole-genome sequencing of spermatocytic tumors provides insights into the mutational processes operating in the male germline. PLoS One 2017; 12:e0178169. [PMID: 28542371 PMCID: PMC5439955 DOI: 10.1371/journal.pone.0178169] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover, spermatogonia very rarely form tumors, so-called spermatocytic tumors (SpT). In line with the previous identification of FGFR3 and HRAS selfish mutations in a subset of cases, candidate gene screening of 29 SpTs identified an oncogenic NRAS mutation in two cases. To gain insights in the etiology of SpT and into properties of the male germline, we performed whole-genome sequencing of five tumors (4/5 with matched normal tissue). The acquired single nucleotide variant load was extremely low (~0.2 per Mb), with an average of 6 (2-9) non-synonymous variants per tumor, none of which is likely to be oncogenic. The observed mutational signature of SpTs is strikingly similar to that of germline de novo mutations, mostly involving C>T transitions with a significant enrichment in the ACG trinucleotide context. The tumors exhibited extensive aneuploidy (50-99 autosomes/tumor) involving whole-chromosomes, with recurrent gains of chr9 and chr20 and loss of chr7, suggesting that aneuploidy itself represents the initiating oncogenic event. We propose that SpT etiology recapitulates the unique properties of male germ cells; because of evolutionary constraints to maintain low point mutation rate, rare tumorigenic driver events are caused by a combination of gene imbalance mediated via whole-chromosome aneuploidy. Finally, we propose a general framework of male germ cell tumor pathology that accounts for their mutational landscape, timing and cellular origin.
Collapse
Affiliation(s)
- Eleni Giannoulatou
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Geoffrey J. Maher
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zhihao Ding
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ad J. M. Gillis
- Department of Pathology, Erasmus MC—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Gilean McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anne Goriely
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Perspectives on testicular germ cell neoplasms. Hum Pathol 2017; 59:10-25. [DOI: 10.1016/j.humpath.2016.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 11/16/2022]
|
19
|
Roth LM, Cheng L. On the histogenesis of mixed germ cell-sex cord stromal tumour of the gonads. J Clin Pathol 2016; 70:222-227. [DOI: 10.1136/jclinpath-2016-203902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/24/2016] [Accepted: 07/02/2016] [Indexed: 11/03/2022]
|
20
|
Rijlaarsdam MA, Tax DMJ, Gillis AJM, Dorssers LCJ, Koestler DC, de Ridder J, Looijenga LHJ. Genome wide DNA methylation profiles provide clues to the origin and pathogenesis of germ cell tumors. PLoS One 2015; 10:e0122146. [PMID: 25859847 PMCID: PMC4479500 DOI: 10.1371/journal.pone.0122146] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/07/2015] [Indexed: 12/18/2022] Open
Abstract
The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809).
Collapse
Affiliation(s)
- Martin A. Rijlaarsdam
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David M. J. Tax
- Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems—Delft Bioinformatics Lab, Technical University of Delft, Delft, The Netherlands
| | - Ad J. M. Gillis
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jeroen de Ridder
- Faculty of Electrical Engineering, Mathematics and Computer Science Intelligent Systems—Delft Bioinformatics Lab, Technical University of Delft, Delft, The Netherlands
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC Cancer Institute—University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Winge SB, Nielsen J, Jørgensen A, Owczarek S, Ewen KA, Nielsen JE, Juul A, Berezin V, Rajpert-De Meyts E. Biglycan is a novel binding partner of fibroblast growth factor receptor 3c (FGFR3c) in the human testis. Mol Cell Endocrinol 2015; 399:235-43. [PMID: 25260943 DOI: 10.1016/j.mce.2014.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 11/21/2022]
Abstract
Regulation of spermatogonial maintenance in the human testis is currently not well understood. One pathway suggested to be involved is activated by fibroblast growth factor receptor 3 (FGFR3), which is expressed in a subset of spermatogonia. FGFR3-activating mutations have been identified in spermatocytic seminoma, thought to originate from clonal expansion of spermatogonia. In this study we aimed to characterize potential binding partners of FGFR3, and specifically its mesenchymal "c" splice isoform, in human spermatogonia. Based on expression patterns and homology to the binding site, we identified FGF1, FGF2, and FGF9 as the best candidates for natural ligands of FGFR3c in the testis. In addition, we screened non-FGF proteins and found that a proteoglycan biglycan (BGN) contains a sequence homologous to the FGFR3c binding site on FGF1, and is expressed in peritubular cells adjacent to FGFR3-expressing spermatogonia. Experiments in a cell-free system confirmed that BGN binds to FGFR3c and FGF1. In conclusion, our findings further clarify the complex regulation of FGFR3c in the human testis. We postulate that BGN is a factor secreted by peritubular cells to modulate FGFR3c signaling and thus contributes to the regulation of spermatogonial maintenance.
Collapse
Affiliation(s)
- S B Winge
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark.
| | - J Nielsen
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - A Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| | - S Owczarek
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - K A Ewen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| | - J E Nielsen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| | - A Juul
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| | - V Berezin
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen DK-2100, Denmark
| |
Collapse
|
22
|
Ishigami N, Shimouchi K. Intratubular spermatocytic seminomas in 2 sprague-dawley rats. J Toxicol Pathol 2014; 27:217-22. [PMID: 25378806 PMCID: PMC4217232 DOI: 10.1293/tox.2014-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022] Open
Abstract
This report describes 2 cases of spontaneous intratubular spermatocytic seminomas in Sprague-Dawley rats. These rats were sacrificed at 10 weeks old (case 1) and 40 weeks old (case 2), respectively. Macroscopically, there were no remarkable changes in either case. Microscopically, tumor cells were observed within a single seminiferous tubule (case 1) or several seminiferous tubules (case 2). The proliferating tumor cells were a tripartite cell population comprising small lymphocyte-like, intermediate-sized or large-sized cells, with frequent mitoses, arranged in sheets or forming a basal layer around a tubule or tubules. Immunohistochemically, the tumor cells were strongly positive for proliferating cell nuclear antigen and weakly positive for c-kit, neuron specific enolase and VASA. Our cases provide valuable background control information for the occurrence of seminoma in rats.
Collapse
Affiliation(s)
- Noriaki Ishigami
- Discovery Research Laboratories, Department of Biology & Pharmacology, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Koji Shimouchi
- Safety Research Laboratories, Department of Biology & Pharmacology, Ono Pharmaceutical Co., Ltd., 50-10 Yamagishi,Mikuni-cho, Sakai-shi, Fukui 913-8538, Japan
| |
Collapse
|
23
|
Narins H, Chevli K, Gilbert R, Duff M, Toenniessen A, Hu Y. Bilateral spermatocytic seminoma: a case report. Res Rep Urol 2014; 6:63-5. [PMID: 25032177 PMCID: PMC4062559 DOI: 10.2147/rru.s62302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Spermatocytic seminoma (SS) is a rare entity, accounting for 2%-12% of all seminomas; amongst those, fewer than 10% are bilateral. These may occur synchronously or metachranously. We report here a case of bilateral SS in a 63-year-old patient, who initially presented with bilateral testicular masses. In our search of the literature, this represents the fifth documented case of synchronous, bilateral SS.
Collapse
Affiliation(s)
- Hadley Narins
- Department of Urology, State University of New York at Buffalo Medical School, Buffalo, NY, USA
| | - Kent Chevli
- Department of Urology, State University of New York at Buffalo Medical School, Buffalo, NY, USA ; Western New York Urology Associates, Cheektowaga, NY, USA
| | | | - Michael Duff
- Department of Urology, State University of New York at Buffalo Medical School, Buffalo, NY, USA ; Western New York Urology Associates, Cheektowaga, NY, USA
| | | | - Yan Hu
- Department of Pathology, State University of New York at Buffalo Medical School, Buffalo, NY, USA
| |
Collapse
|
24
|
Cancer testis antigen expression in testicular germ cell tumorigenesis. Mod Pathol 2014; 27:899-905. [PMID: 24232866 DOI: 10.1038/modpathol.2013.183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 08/20/2013] [Indexed: 11/08/2022]
Abstract
Cancer testis antigens are encoded by germ line-associated genes that are present in normal germ cells of testis and ovary but not in differentiated tissues. Their expression in various human cancer types has been interpreted as 're-expression' or as intratumoral progenitor cell signature. Cancer testis antigen expression patterns have not yet been studied in germ cell tumorigenesis with specific emphasis on intratubular germ cell neoplasia unclassified as a precursor lesion for testicular germ cell tumors. Immunohistochemistry was used to study MAGEA3, MAGEA4, MAGEC1, GAGE1 and CTAG1B expression in 325 primary testicular germ cell tumors, including 94 mixed germ cell tumors. Seminomatous and non-seminomatous components were separately arranged and evaluated on tissue microarrays. Spermatogonia in the normal testis were positive, whereas intratubular germ cell neoplasia unclassified was negative for all five CT antigens. Cancer testis antigen expression was only found in 3% (CTAG1B), 10% (GAGE1, MAGEA4), 33% (MAGEA3) and 40% (MAGEC1) of classic seminoma but not in non-seminomatous testicular germ cell tumors. In contrast, all spermatocytic seminomas were positive for cancer testis antigens. These data are consistent with a different cell origin in spermatocytic seminoma compared with classic seminoma and support a progression model with loss of cancer testis antigens in early tumorigenesis of testicular germ cell tumors and later re-expression in a subset of seminomas.
Collapse
|
25
|
Kao CS, Badve SS, Ulbright TM. The utility of immunostaining for NUT, GAGE7 and NY-ESO-1 in the diagnosis of spermatocytic seminoma. Histopathology 2014; 65:35-44. [DOI: 10.1111/his.12365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Chia-Sui Kao
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis IN USA
| | - Thomas M Ulbright
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis IN USA
| |
Collapse
|
26
|
Hara S, Morita R, Shiraki A, Segawa R, Ogawa T, Takimoto N, Suzuki K, Nomura K, Shibutani M. Expression of protein gene product 9.5 and Sal-like protein 4 in canine seminomas. J Comp Pathol 2014; 151:10-8. [PMID: 24680979 DOI: 10.1016/j.jcpa.2014.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/01/2013] [Accepted: 02/02/2014] [Indexed: 01/20/2023]
Abstract
The aim of the present study was to characterize canine classical seminoma (SE) and spermatocytic seminoma (SS) by immunohistochemical expression of gonocytic and spermatogonial cellular markers (c-Kit, placental alkaline phosphatase [PLAP], protein gene product 9.5 [PGP9.5] and Sal-like protein 4 [Sall4]) and histochemically by the periodic acid-Schiff (PAS) reaction. Twenty-five cases of SE and 23 cases of SS were investigated. Two cases of dysgerminoma were also examined. c-Kit was expressed on the cell membrane of 13 of 25 cases of SE (52%) and four of 23 cases of SS (16%). This marker was not expressed in dysgerminoma. PLAP immunoreactivity was observed in the cytoplasm of neoplastic cells of six of 25 cases of SE (24%). PLAP was not expressed in cases of SS and dysgerminoma. All samples of SE, SS and dysgerminoma showed cytoplasmic expression of PGP9.5 and nuclear immunoreactivity for Sall4. There was fine granular cytoplasmic PAS staining in neoplastic cells in five of 25 cases of SE (20%), while all samples of SS and dysgerminoma cases were PAS negative. These findings suggest that it is not possible to differentiate canine SE and SS using these markers. This may be because canine SS may be derived from spermatogonia that can differentiate to spermatocytes and also because cases of canine SE might consist of neoplastic cells that have lost their gonocytic nature. This study was the first to show positive immunoreactivity for Sall4 in canine seminomas and dysgerminomas and expression of PGP9.5 in canine dysgerminomas.
Collapse
Affiliation(s)
- S Hara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - R Morita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - A Shiraki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - R Segawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - T Ogawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - N Takimoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - K Suzuki
- Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - K Nomura
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., Osaka, Japan
| | - M Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
27
|
Maher GJ, Goriely A, Wilkie AOM. Cellular evidence for selfish spermatogonial selection in aged human testes. Andrology 2013; 2:304-14. [PMID: 24357637 DOI: 10.1111/j.2047-2927.2013.00175.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022]
Abstract
Owing to a recent trend for delayed paternity, the genomic integrity of spermatozoa of older men has become a focus of increased interest. Older fathers are at higher risk for their children to be born with several monogenic conditions collectively termed paternal age effect (PAE) disorders, which include achondroplasia, Apert syndrome and Costello syndrome. These disorders are caused by specific mutations originating almost exclusively from the male germline, in genes encoding components of the tyrosine kinase receptor/RAS/MAPK signalling pathway. These particular mutations, occurring randomly during mitotic divisions of spermatogonial stem cells (SSCs), are predicted to confer a selective/growth advantage on the mutant SSC. This selective advantage leads to a clonal expansion of the mutant cells over time, which generates mutant spermatozoa at levels significantly above the background mutation rate. This phenomenon, termed selfish spermatogonial selection, is likely to occur in all men. In rare cases, probably because of additional mutational events, selfish spermatogonial selection may lead to spermatocytic seminoma. The studies that initially predicted the clonal nature of selfish spermatogonial selection were based on DNA analysis, rather than the visualization of mutant clones in intact testes. In a recent study that aimed to identify these clones directly, we stained serial sections of fixed testes for expression of melanoma antigen family A4 (MAGEA4), a marker of spermatogonia. A subset of seminiferous tubules with an appearance and distribution compatible with the predicted mutant clones were identified. In these tubules, termed 'immunopositive tubules', there is an increased density of spermatogonia positive for markers related to selfish selection (FGFR3) and SSC self-renewal (phosphorylated AKT). Here we detail the properties of the immunopositive tubules and how they relate to the predicted mutant clones, as well as discussing the utility of identifying the potential cellular source of PAE mutations.
Collapse
Affiliation(s)
- G J Maher
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
28
|
Guo Y, Hai Y, Gong Y, Li Z, He Z. Characterization, Isolation, and Culture of Mouse and Human Spermatogonial Stem Cells. J Cell Physiol 2013; 229:407-13. [PMID: 24114612 DOI: 10.1002/jcp.24471] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/11/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Guo
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yanan Hai
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yuehua Gong
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zheng Li
- Department of Urology; Shanghai Human Sperm Bank; Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zuping He
- Renji Hospital; Clinic Stem Cell Research Center; Shanghai Jiao Tong University School of Medicine; Shanghai China
- Shanghai Key Laboratory of Reproductive Medicine; Shanghai China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics; Shanghai China
| |
Collapse
|
29
|
Kelleher FC, O'Sullivan H, Smyth E, McDermott R, Viterbo A. Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 2013; 34:2198-205. [PMID: 23880303 DOI: 10.1093/carcin/bgt254] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.
Collapse
Affiliation(s)
- Fergal C Kelleher
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria VIC8006, Australia
| | | | | | | | | |
Collapse
|
30
|
Abstract
Neoplasms in the testis and in the testicular adnexa of elderly patients are completely different from those observed in younger patients. Indeed, although conventional seminomas and nonseminomas are mainly observed in the age range of 20-45 years, spermatocytic seminoma, malignant Leydig tumors, and lymphomas in the testis and sarcomas in the paratesticular region are encountered in individuals older than 60 years of age. Here, we discuss the testis and paratesticular region neoplasm more commonly diagnosed in elderly men.
Collapse
|
31
|
|
32
|
Bhatia N, Xiao TZ, Rosenthal KA, Siddiqui IA, Thiyagarajan S, Smart B, Meng Q, Zuleger CL, Mukhtar H, Kenney SC, Albertini MR, Jack Longley B. MAGE-C2 promotes growth and tumorigenicity of melanoma cells, phosphorylation of KAP1, and DNA damage repair. J Invest Dermatol 2012; 133:759-767. [PMID: 23096706 DOI: 10.1038/jid.2012.355] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Melanoma-associated antigen-encoding (MAGE) genes are expressed in melanoma and other cancers but not in normal somatic cells. MAGE expression is associated with aggressive tumor growth, poor clinical outcome, and resistance to chemotherapy, but the mechanisms have not been completely elucidated. In this study, we show that downregulation of MAGE-C2 in A375 melanoma cells and low-passage cultures from human metastatic melanomas (MRA cells) results in increased apoptosis and decreased growth of tumor xenografts in athymic nude mice. Previously, we showed that MAGE-C2 binds KAP1, a scaffolding protein that regulates DNA repair. Phosphorylation of KAP1-Serine 824 (Ser824) by ataxia-telangiectasia-mutated (ATM) kinase is necessary for repair of DNA double-strand breaks (DSBs); now we show that MAGE-C2 knockdown reduces, whereas MAGE-C2 overexpression increases, ATM kinase-dependent phosphorylation of KAP1-Ser824. We demonstrate that MAGE-C2 increases co-precipitation of KAP1 with ATM and that binding of MAGE-C2 to KAP1 is necessary for increased KAP1-Ser824 phosphorylation. Furthermore, ectopic expression of MAGE-C2 enhances repair of I-SceI endonuclease-induced DSBs in U-2OS cells. As phosphorylation of KAP1-Ser824 facilitates relaxation of heterochromatin, which is necessary for DNA repair and cellular proliferation, our results suggest that MAGE-C2 can promote tumor growth by phosphorylation of KAP1-Ser824 and by enhancement of DNA damage repair.
Collapse
Affiliation(s)
- Neehar Bhatia
- Department of Medicine, University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin, USA.
| | - Tony Z Xiao
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Imtiaz A Siddiqui
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Brendan Smart
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Qiao Meng
- McArdle Laboratory for Cancer Research, Madison, Wisconsin, USA
| | - Cindy L Zuleger
- Department of Medicine, University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin, USA
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Mark R Albertini
- Department of Medicine, University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin, USA; Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
33
|
Thorvaldsen TE, Nødtvedt A, Grotmol T, Gunnes G. Morphological and immunohistochemical characterisation of seminomas in Norwegian dogs. Acta Vet Scand 2012; 54:52. [PMID: 22986090 PMCID: PMC3515500 DOI: 10.1186/1751-0147-54-52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/03/2012] [Indexed: 11/24/2022] Open
Abstract
Background Seminomas in the dog have traditionally been assumed to resemble human spermatocytic seminomas, based on their low malignancy and high occurrence in old individuals. However, recently published studies indicate that canine seminomas can be classified as classical and spermatocytic seminomas in a similar way as in man, and that classical seminomas comprise a substantial proportion of seminomas in the dog. These two factors both contribute to increasing the potential of canine seminoma as a relevant model for human testicular cancer. The aim of the present study was to characterise seminoma in Norwegian dogs using morphology and immunohistochemistry, and determine whether these tumours are comparable with human classical seminoma. Methods By applying diagnostic criteria from human pathology, 45 seminomas from the Norwegian Canine Cancer Register were examined histologically with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) stains. All sections were stained immunohistochemically with antibodies against human placental alkaline phosphatase (PLAP) and the transmembrane receptor c-KIT. Results Although two of the seminomas showed immunohistochemical staining characteristics indicative of classical seminoma (PLAP+/c-KIT+), all 45 examined seminomas were morphologically consistent with spermatocytic seminoma. Conclusions The value of canine seminoma as a model for SE in man remains unclear. Among the 45 investigated tumours from Norwegian dogs, none were classified as classical seminoma based on morphological criteria consistent with human seminomas. Regional or breed differences in the occurrence of classical seminoma in the dog, as well as the lack of uniform diagnostic criteria, might explain the discrepancy between the findings in the current study and the results presented by other authors.
Collapse
|
34
|
Heterogeneity of chromatin modifications in testicular spermatocytic seminoma point toward an epigenetically unstable phenotype. Cancer Genet 2012; 205:425-31. [DOI: 10.1016/j.cancergen.2012.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 02/02/2023]
|
35
|
Gueler B, Sonne SB, Zimmer J, Hilscher B, Hilscher W, Græm N, Rajpert-De Meyts E, Vogt PH. AZFa protein DDX3Y is differentially expressed in human male germ cells during development and in testicular tumours: new evidence for phenotypic plasticity of germ cells. Hum Reprod 2012; 27:1547-55. [PMID: 22466863 DOI: 10.1093/humrep/des047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND DDX3Y (DBY), located within AZoospermia Factor a (AZFa) region of the human Y chromosome (Yq11), encodes a conserved DEAD-box RNA helicase expressed only in germ cells and with a putative function at G1-S phase of the cell cycle. Deletion of AZFa results most often in germ cell aplasia, i.e. Sertoli-cell-only syndrome. To investigate the function of DDX3Y during human spermatogenesis, we examined its expression during development and maturation of the testis and in several types of testicular germ cell tumours (TGCTs), including the pre-invasive carcinoma in situ (CIS) precursor cells which are believed to originate from fetal gonocytes. METHODS DDX3Y protein expression was analysed during development in different tissues by western blotting. The localization of DDX3Y in normal fetal and prepubertal testis tissue of different ages as well as in a series of distinct TGCT tissue samples (CIS, classical seminoma, spermatocytic seminoma, teratoma and embryonal carcinoma) was performed by immunohistochemistry. RESULTS Germ cell-specific expression of DDX3Y protein was revealed in fetal prospermatogonia but not in gonocytes and not before the 17th gestational week. After birth, DDX3Y was expressed at first only in the nuclei of Ap spermatogonia, then also in the cytoplasm similarly to that seen after puberty. In CIS cells, DDX3Y was highly expressed and located predominantly in the nuclei. In invasive TGCT, significant DDX3Y expression was found in seminomas of the classical and spermatocytic type, but not in somatically differentiated non-seminomas, consistent with its germ-cell specific function. CONCLUSIONS The fetal germ cell DDX3Y expression suggests a role in early spermatogonial proliferation and implies that, in men with AZFa deletion, germ cell depletion may begin prenatally. The strong expression of DDX3Y in CIS cells, but not in gonocytes, indicates phenotypic plasticity of CIS cells and suggests partial maturation to spermatogonia, likely due to their postpubertal microenvironment.
Collapse
Affiliation(s)
- B Gueler
- Department of Gynaecological Endocrinology and Reproductive Medicine, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Waheeb R, Hofmann MC. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. ACTA ACUST UNITED AC 2012; 34:e296-305; discussion e305. [PMID: 21790653 DOI: 10.1111/j.1365-2605.2011.01199.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals, spermatogenesis is maintained throughout life by a small subpopulation of type A spermatogonia called spermatogonial stem cells (SSCs). In rodents, SSCs, or Asingle spermatogonia, form the self-renewing population. SSCs can also divide into Apaired (Apr) spermatogonia that are predestined to differentiate. Apaired spermatogonia produce chains of Aaligned (Aal) spermatogonia that divide to form A1 to A4, then type B spermatogonia. Type B spermatogonia will divide into primary spermatocytes that undergo meiosis. In human, there are only two different types of A spermatogonia, the Adark and Apale spermatogonia. The Adark spermatogonia are considered reserve stem cells, whereas the Apale spermatogonia are the self-renewing stem cells. There is only one generation of type B spermatogonia before differentiation into spermatocytes, which makes human spermatogenesis less efficient than in rodents. Although the biology of human SSCs is not well known, a panel of phenotypic markers has recently emerged that is remarkably similar to the list of markers expressed in mice. One such marker, the orphan receptor GPR125, is a plasma membrane protein that can be used to isolate human SSCs. Human SSCs proliferate in culture in response to growth factors such as GDNF, which is essential for SSC self-renewal in mice and triggers the same signalling pathways in both species. Therefore, despite differences in the spermatogonial differentiation scheme, both species use the same genes and proteins to maintain the pool of self-renewing SSCs within their niche. Spermatocytic seminomas are mainly found in the testes of older men, and they rarely metastasize. It is believed that these tumours originate from a post-natal germ cell. Because these lesions can express markers specific for meiotic prophase, they might originate from a primary spermatocyte. However, morphological appearance and overall immunohistochemical profile of these tumours indicate that the cell of origin could also be a spermatogonial stem cell.
Collapse
Affiliation(s)
- R Waheeb
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | |
Collapse
|
37
|
Chen YT, Chiu R, Lee P, Beneck D, Jin B, Old LJ. Chromosome X-encoded cancer/testis antigens show distinctive expression patterns in developing gonads and in testicular seminoma. Hum Reprod 2011; 26:3232-43. [DOI: 10.1093/humrep/der330] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Looijenga LHJ. Spermatocytic seminoma: toward further understanding of pathogenesis. J Pathol 2011; 224:431-3. [DOI: 10.1002/path.2939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Lim J, Goriely A, Turner GD, Ewen KA, Jacobsen GK, Graem N, Wilkie AO, Rajpert-De Meyts E. OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. J Pathol 2011; 224:473-83. [PMID: 21706474 PMCID: PMC3210831 DOI: 10.1002/path.2919] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/18/2011] [Accepted: 04/12/2011] [Indexed: 11/30/2022]
Abstract
Spermatocytic seminoma (SS) is a rare testicular neoplasm that occurs predominantly in older men. In this study, we aimed to shed light on the histogenesis of SS by investigating the developmental expression of protein markers that identify distinct subpopulations of human spermatogonia in the normal adult testis. We analysed the expression pattern of OCT2, SSX2-4, and SAGE1 in 36 SS cases and four intratubular SS (ISS) as well as a series of normal testis samples throughout development. We describe for the first time two different types of SS characterized by OCT2 or SSX2-4 immunoexpression. These findings are consistent with the mutually exclusive antigenic profile of these markers during different stages of testicular development and in the normal adult testis. OCT2 was expressed predominantly in Adark spermatogonia, SSX2-4 was present in Apale and B spermatogonia and leptotene spermatocytes, whilst SAGE1 was exclusively present in a subset of post-pubertal germ cells, most likely B spermatogonia. The presence of OCT2 and SSX2-4 in distinct subsets of germ cells implies that these markers represent germ cells at different maturation stages. Analysis of SAGE1 and SSX2-4 in ISS showed spatial differences suggesting ongoing maturation of germ cells during progression of SS tumourigenesis. We conclude that the expression pattern of OCT2, SSX2-4, and SAGE1 supports the origin of SS from spermatogonia and provides new evidence for heterogeneity of this tumour, potentially linked either to the cellular origin of SS or to partial differentiation during tumour progression, including a hitherto unknown OCT2-positive variant of the tumour likely derived from Adark spermatogonia. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jasmine Lim
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bush JM, Gardiner DW, Palmer JS, Rajpert-De Meyts E, Veeramachaneni DNR. Testicular germ cell tumours in dogs are predominantly of spermatocytic seminoma type and are frequently associated with somatic cell tumours. ACTA ACUST UNITED AC 2011; 34:e288-95; discussion e295. [PMID: 21615421 DOI: 10.1111/j.1365-2605.2011.01166.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J M Bush
- IDEXX Laboratories, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
41
|
Byskov AG, Høyer PE, Yding Andersen C, Kristensen SG, Jespersen A, Møllgård K. No evidence for the presence of oogonia in the human ovary after their final clearance during the first two years of life. Hum Reprod 2011; 26:2129-39. [PMID: 21572085 DOI: 10.1093/humrep/der145] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Conflicting results of studies on mouse and human have either verified or refuted the presence of oogonia/primordial germ cells in the post-natal ovary. The aim of this study was to trace whether oogonia recognized by immunohistochemical methods in the first trimester human ovary were present also in peri- and post-natal ovaries. METHODS For this study, 82 human ovaries were collected: 25 from embryos from 5 to 10 weeks post conception (wpc), 2 at 18 wpc, 32 from 32 wpc to 2 years and 23 from 2 to 32 years. Of these, 80 ovaries were fixed and paraffin-embedded and 2 (8 year-old) ovaries were processed for plastic sections. Serial sections were prepared for immunohistochemical detection of markers for oogonia: tyrosine kinase receptor for stem cell factor (SCF)(C-KIT), stage-specific embryonic antigen-4 (SSEA4), homeobox gene transcription factor (NANOG), octamer binding transcription factor 4 (OCT4) and melanoma antigen-4 (Mage-A4), while noting that C-KIT also stains diplotene oocytes. RESULTS Almost all oogonia exclusively stained for SSEA4, NANOG, OCT4 and C-KIT, whereas MAGE-A4 only stained a small fraction. At birth only a few oogonia were stained. These disappeared before 2 years, leaving only diplotene oocytes stained for C-KIT. From 18 wpc to 2 years, the medulla contained conglomerates of healthy and degenerating oogonia and small follicles, waste baskets (WBs) and oogonia enclosed in growing follicles (FWB). Medulla of older ovaries contained groups of primordial, healthy follicles. CONCLUSIONS We found no evidence for the presence of oogonia in the human ovary after their final clearing during the first 2 years. We suggest that perinatal medullary WB and FWB give rise to the groups of small, healthy follicles in the medulla.
Collapse
Affiliation(s)
- A G Byskov
- Laboratory of Reproductive Biology, Section 5712, University Hospital of Copenhagen, Rigshospitalet, Section 5712, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
42
|
Gilbert D, Rapley E, Shipley J. Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nat Rev Cancer 2011; 11:278-88. [PMID: 21412254 DOI: 10.1038/nrc3021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Testicular germ cell tumours (TGCTs) of adults and adolescents are putatively derived from primordial germ cells or gonocytes. Recently reported genome-wide association studies implicate six gene loci that predispose to TGCT development. Remarkably, the functions of proteins encoded by genes within these regions bridge our understanding between the pathways involved in primordial germ cell physiology, male germ cell development and the molecular pathology of TGCTs. Furthermore, this improved understanding of the mechanisms underlying TGCT development and dissemination has clinical relevance for the management of patients with these tumours.
Collapse
Affiliation(s)
- Duncan Gilbert
- Sussex Cancer Centre, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, East Sussex, UK
| | | | | |
Collapse
|
43
|
Nielsen JE, Kristensen DM, Almstrup K, Jørgensen A, Olesen IA, Jacobsen GK, Horn T, Skakkebaek NE, Leffers H, Rajpert-De Meyts E. A novel double staining strategy for improved detection of testicular carcinoma in situ cells in human semen samples. Andrologia 2011; 44:78-85. [PMID: 21486421 DOI: 10.1111/j.1439-0272.2010.01108.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Prompted by the recently reported expression of POU5F1 (OCT3/4) in epididymis, a panel of markers for carcinoma in situ (CIS) testis and testicular germ cell tumours (TGCT), including AP-2γ(TFAP2C), NANOG, OCT3/4, KIT, placental-like alkaline phosphatase (PLAP), M2A/PDPN and MAGE-A4 were examined by immunohistochemistry or in situ hybridisation in urogenital epithelia, which may interfere with detection of CIS cells in semen. In addition to OCT3/4, the expression of AP-2γ and NANOG or their variants was detected in urogenital epithelia, while other CIS markers, including PLAP/alkaline phosphatase were absent. A combination of immunocytological staining for AP-2γ or OCT3/4 and rapid cytochemical alkaline phosphatase reaction was subsequently developed. This approach was tested in 22 patients with TGCT. In 14 patients (63.6%), double stained cells were found and thus the method was proven suitable for the detection of CIS cells in semen. In conclusion, transcription factors related to pluripotency and undifferentiated state of cells, which most likely have several variants or modifications, are unexpectedly detected using currently available antibodies in urogenital epithelial cells which may be shed into semen. Combining the immunohistochemical nuclear markers with a rapid cytochemical alkaline phosphatase reaction for detection of CIS cells in ejaculates may provide a more reliable diagnostic method.
Collapse
Affiliation(s)
- J E Nielsen
- University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lombardi M, Valli M, Brisigotti M, Rosai J. Review Article: Spermatocytic Seminoma: Review of the Literature and Description of a New Case of the Anaplastic Variant. Int J Surg Pathol 2011; 19:5-10. [DOI: 10.1177/1066896910388645] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aims of this paper were to review the literature of Spermatocytic Seminoma (SS) updating its clinico-pathological features and to present a new case of the exceptionally rare variant of this tumor known as anaplastic which only five cases have been reported. Many studies have confirmed that SS is a distinct neoplasm both clinically and pathologically from classical Seminoma and it differs from the latter especially in regard to behavior, characterized by an almost complete inability to metastasize with only very few convincing examples described with metastatic behavior. There is general agreement that orchidectomy is sufficient therapy for SS and that surveillance following surgery is the preferred management option. Surprisingly, the presence of an anaplastic component does not seem to impact on this excellent prognosis. Very different is the case of sarcomatous transformation, for which further therapy after orchiectomy is advisable.
Collapse
Affiliation(s)
- Mariano Lombardi
- Dipartimento di Patologia e Medicina di Laboratorio U.O. di Anatomia Patologica- Azienda Ospedaliero-Universitaria-Parma,
| | - Mirca Valli
- Ospedale degli Infermi di Rimini, Rimini, Italy
| | | | - Juan Rosai
- Centro Diagnostico Italiano, Milan, Italy
| |
Collapse
|
45
|
Bhatia N, Yang B, Xiao TZ, Peters N, Hoffmann MF, Longley BJ. Identification of novel small molecules that inhibit protein-protein interactions between MAGE and KAP-1. Arch Biochem Biophys 2011; 508:217-21. [PMID: 21277283 DOI: 10.1016/j.abb.2011.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/08/2011] [Accepted: 01/10/2011] [Indexed: 01/06/2023]
Abstract
The Class I MAGE proteins are normally expressed only in developing germ cells but are often aberrantly expressed in malignancies, particularly melanoma, making them good therapeutic targets. MAGE proteins promote tumor survival by binding to the RBCC region of KAP-1 and suppressing p53. Although, suppression of MAGE expression, by RNA interference, relieves p53 suppression and inhibits tumor growth, its therapeutic uses are limited by lack of methods for systemic delivery of small interfering RNA. To overcome this barrier, we sought to discover chemical compounds that inhibit binding between MAGE and KAP-1 proteins. Based on previously published effects of MAGE suppression, we developed a strategy for screening a small molecule library based on selective death of MAGE positive cells, activation of p53 and lack of caspase activity. We screened the Maybridge HitFinder library of compounds and eight compounds fulfilled these criteria. Seven of these compounds interfered with co-precipitation of MAGE and KAP-1, and three interfered with binding of MAGE and KAP-1 in a mammalian two hybrid assay. We now report identification of three potential compounds that interfere with MAGE/KAP-1 binding and can be developed as novel chemo-therapeutic agents for treatment of advanced melanoma and other cancers.
Collapse
Affiliation(s)
- Neehar Bhatia
- Department of Dermatology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Saegusa Y, Hayashi H, Taniai E, Imaoka M, Ohishi T, Wang L, Mitsumori K, Shibutani M. Spermatocytic seminoma with neuroectodermal differentiation and sertoli cell tumor in a dog. Vet Pathol 2010; 48:1024-8. [PMID: 20930104 DOI: 10.1177/0300985810385150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two distinct nodules developed in a cryptorchid testis of an 8-year-old male West Highland White Terrier. One nodule was a Sertoli cell tumor. The other was a spermatocytic seminoma with focal primitive neuroectodermal differentiation: formation of Homer-Wright rosettes and perivascular pseudorosettes, with immunoreactivity for S-100 protein, neuron-specific enolase, synaptophysin, neurofilament-68 kDa, microtubule-associated protein 2, and vimentin. The dog was alive and healthy 2 years after castration.
Collapse
Affiliation(s)
- Y Saegusa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Krtolica A, Giritharan G. Use of Human Embryonic Stem Cell-based Models for Male Reproductive Toxicity Screening. Syst Biol Reprod Med 2010; 56:213-21. [DOI: 10.3109/19396368.2010.486470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
An engineered 3D blood-testis barrier model for the assessment of reproductive toxicity potential. Biomaterials 2010; 31:4492-505. [DOI: 10.1016/j.biomaterials.2010.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/10/2010] [Indexed: 11/24/2022]
|
49
|
Mollaoglu N, Vairaktaris E, Nkenke E, Neukam FW, Ries J. Single Disseminated Tumor Cell Detection in Peripheral Blood Sample of Patients with Oral Squamous Cell Carcinoma Using MAGE-A4: Table 1. Lab Med 2009. [DOI: 10.1309/lm1c9q8drhyeqhks] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
50
|
Abstract
Globally, testicular cancer incidence is highest among men of northern European ancestry and lowest among men of Asian and African descent. Incidence rates have been increasing around the world for at least 50 years, but mortality rates, at least in developed countries, have been declining. While reasons for the decreases in mortality are related to improvements in therapeutic regimens introduced in the late 1970s, reasons for the increase in incidence are less well understood. However, an accumulating body of evidence suggests that testicular cancer arises in fetal life. Perinatal factors, including exposure to endocrine-disrupting chemicals, have been suggested to be related to risk.
Collapse
Affiliation(s)
- Katherine A McGlynn
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, MD 20852-7234, USA.
| | | |
Collapse
|