Yaghoobizadeh F, Roayaei Ardakani M, Ranjbar MM, Khosravi M, Galehdari H. Development of a potent recombinant scFv antibody against the SARS-CoV-2 by in-depth bioinformatics study: Paving the way for vaccine/diagnostics development.
Comput Biol Med 2024;
170:108091. [PMID:
38295473 DOI:
10.1016/j.compbiomed.2024.108091]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND
The SARS-CoV-2 has led to a worldwide disaster. Thus, developing prophylactics/therapeutics is required to overcome this public health issue. Among these, producing the anti-SARS-CoV-2 single-chain variable fragment (scFv) antibodies has attracted a significant attention. Accordingly, this study aims to address this question: Is it possible to bioinformatics-based design of a potent anti-SARS-CoV-2 scFv as an alternative to current production approaches?
METHOD
Using the complexed SARS-CoV-2 spike-antibodies, two sets analyses were performed: (1) B-cell epitopes (BCEs) prediction in the spike receptor-binding domain (RBD) region as a parameter for antibody screening; (2) the computational analysis of antibodies variable domains (VH/VL). Based on these primary screenings, and docking/binding affinity rating, one antibody was selected. The protein-protein interactions (PPIs) among the selected antibody-epitope complex were predicted and its epitope conservancy was also evaluated. Thereafter, some elements were added to the final scFv: (1) the PelB signal peptide; (2) a GSGGGGS linker to connect the VH-VL. Finally, this scFv was analyzed/optimized using various web servers.
RESULTS
Among the antibody library, only one met the various criteria for being an efficient scFv candidate. Moreover, no interaction was predicted between its paratope and RBD hot-spot residues of SARS-CoV-2 variants-of-Concern (VOCs).
CONCLUSIONS
Herein, a step-by-step bioinformatics platform has been introduced to bypass some barriers of traditional antibody production approaches. Based on existing literature, the current study is one of the pioneer works in the field of bioinformatics-based scFv production. This scFv may be a good candidate for diagnostics/therapeutics design against the SARS-CoV-2 as an emerging aggressive pathogen.
Collapse