1
|
Leboulle G, Gehne N, Froese A, Menzel R. In-vivo egfp expression in the honeybee Apis mellifera induced by electroporation and viral expression vector. PLoS One 2022; 17:e0263908. [PMID: 35653376 PMCID: PMC9162312 DOI: 10.1371/journal.pone.0263908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
In this study we describe egfp expression induced by two techniques: in vivo electroporation and viral transduction in several cell types of the adult honeybee brain. Non-neuronal and neuronal cell types were identified and the expression persisted at least during three days. Kenyon cells, optic lobe neurons and protocerebral lobe neurons were electroporated. Astrocyte-like glia cells, fibrous lamellar glia cells and cortex glia cells were identified. Viral transduction targeted one specific type of glia cells that could not be identified. EGFP positive cells types were rather variable after electroporation, and viral transduction resulted in more homogenous groups of positive cells. We propose that these techniques remain a good alternative to transgenic animals because they potentially target only somatic cells.
Collapse
Affiliation(s)
- Gérard Leboulle
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Nora Gehne
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Anja Froese
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
3
|
Harris KD, Lloyd JPB, Domb K, Zilberman D, Zemach A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 2019; 12:62. [PMID: 31601251 PMCID: PMC6786280 DOI: 10.1186/s13072-019-0307-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation of active genes, also known as gene body methylation, is found in many animal and plant genomes. Despite this, the transcriptional and developmental role of such methylation remains poorly understood. Here, we explore the dynamic range of DNA methylation in honey bee, a model organism for gene body methylation. RESULTS Our data show that CG methylation in gene bodies globally fluctuates during honey bee development. However, these changes cause no gene expression alterations. Intriguingly, despite the global alterations, tissue-specific CG methylation patterns of complete genes or exons are rare, implying robust maintenance of genic methylation during development. Additionally, we show that CG methylation maintenance fluctuates in somatic cells, while reaching maximum fidelity in sperm cells. Finally, unlike universally present CG methylation, we discovered non-CG methylation specifically in bee heads that resembles such methylation in mammalian brain tissue. CONCLUSIONS Based on these results, we propose that gene body CG methylation can oscillate during development if it is kept to a level adequate to preserve function. Additionally, our data suggest that heightened non-CG methylation is a conserved regulator of animal nervous systems.
Collapse
Affiliation(s)
- Keith D Harris
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - James P B Lloyd
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Katherine Domb
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Center, Norwich, UK.
| | - Assaf Zemach
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
4
|
Kohno H, Suenami S, Takeuchi H, Sasaki T, Kubo T. Production of Knockout Mutants by CRISPR/Cas9 in the European Honeybee, Apis mellifera L. Zoolog Sci 2017; 33:505-512. [PMID: 27715425 DOI: 10.2108/zs160043] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The European honeybee (Apis mellifera L.) is used as a model organism in studies of the molecular and neural mechanisms underlying social behaviors and/or advanced brain functions. The entire honeybee genome has been sequenced, which has further advanced molecular biologic studies of the honeybee. Functions of genes of interest, however, remain largely to be elucidated in the honeybee due to the lack of effective reverse genetic methods. Moreover, genetically modified honeybees must be maintained under restricted laboratory conditions due to legal restrictions, further complicating the application of reverse genetics to this species. Here we applied CRISPR/Cas9 to the honeybee to develop an effective reverse genetic method. We targeted major royal jelly protein 1 (mrjp1) for genome editing, because this gene is predominantly expressed in adult workers and its mutation is not expected to affect normal development. By injecting sgRNA and Cas9 mRNA into 57 fertilized embryos collected within 3 h after oviposition, we successfully created six queens, one of which produced genome-edited male offspring. Of the 161 males produced, genotyping demonstrated that the genome was edited in 20 males. All of the processes necessary for producing these genome-edited queens and males were performed in the laboratory. Therefore, we developed essential techniques to create knockout honeybees by CRISPR/Cas9. Our findings also suggested that mrjp1 is dispensable for normal male development, at least till the pupal stage. This new technology could pave the way for future functional analyses of candidate genes involved in honeybee social behaviors.
Collapse
Affiliation(s)
- Hiroki Kohno
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shota Suenami
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Takeuchi
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuhiko Sasaki
- 2 Honeybee Science Research Center, Research Institute, Tamagawa University,Machida, Tokyo 194-8610, Japan
| | - Takeo Kubo
- 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
|
6
|
Abstract
Symbiotic bacteria are commonly associated with cells and tissues of diverse animals and other organisms, which affect hosts' biology in a variety of ways. Most of these symbionts are present in the cytoplasm of host cells and maternally transmitted through host generations. The paucity of paternal symbiont transmission is likely relevant to the extremely streamlined sperm structure: the head consisting of condensed nucleus and the tail made of microtubule bundles, without the symbiont-harboring cytoplasm that is discarded in the process of spermatogenesis. Here, we report a previously unknown mechanism of paternal symbiont transmission via an intrasperm passage. In the leafhopper Nephotettix cincticeps, a facultative Rickettsia symbiont was found not only in the cytoplasm but also in the nucleus of host cells. In male insects, strikingly, most sperm heads contained multiple intranuclear Rickettsia cells. The Rickettsia infection scarcely affected the host fitness including normal sperm functioning. Mating experiments revealed both maternal and paternal transmission of the Rickettsia symbiont through host generations. When cultured with mosquito and silkworm cell lines, the Rickettsia symbiont was preferentially localized within the insect cell nuclei, indicating that the Rickettsia symbiont itself must have a mechanism for targeting nucleus. The mechanisms underlying the sperm head infection without disturbing sperm functioning are, although currently unknown, of both basic and applied interest.
Collapse
|
7
|
Schulte C, Leboulle G, Otte M, Grünewald B, Gehne N, Beye M. Honey bee promoter sequences for targeted gene expression. INSECT MOLECULAR BIOLOGY 2013; 22:399-410. [PMID: 23668189 DOI: 10.1111/imb.12031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The honey bee, Apis mellifera, displays a rich behavioural repertoire, social organization and caste differentiation, and has an interesting mode of sex determination, but we still know little about its underlying genetic programs. We lack stable transgenic tools in honey bees that would allow genetic control of gene activity in stable transgenic lines. As an initial step towards a transgenic method, we identified promoter sequences in the honey bee that can drive constitutive, tissue-specific and cold shock-induced gene expression. We identified the promoter sequences of Am-actin5c, elp2l, Am-hsp83 and Am-hsp70 and showed that, except for the elp2l sequence, the identified sequences were able to drive reporter gene expression in Sf21 cells. We further demonstrated through electroporation experiments that the putative neuron-specific elp2l promoter sequence can direct gene expression in the honey bee brain. The identification of these promoter sequences is an important initial step in studying the function of genes with transgenic experiments in the honey bee, an organism with a rich set of interesting phenotypes.
Collapse
Affiliation(s)
- C Schulte
- Institute of Evolutionary Genetics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Zhang Y, Xi Q, Ding J, Cai W, Meng F, Zhou J, Li H, Jiang Q, Shu G, Wang S, Zhu X, Gao P, Wu Z. Production of transgenic pigs mediated by pseudotyped lentivirus and sperm. PLoS One 2012; 7:e35335. [PMID: 22536374 PMCID: PMC3335058 DOI: 10.1371/journal.pone.0035335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/14/2012] [Indexed: 11/18/2022] Open
Abstract
Sperm-mediated gene transfer can be a very efficient method to produce transgenic pigs, however, the results from different laboratories had not been widely repeated. Genomic integration of transgene by injection of pseudotyped lentivirus to the perivitelline space has been proved to be a reliable route to generate transgenic animals. To test whether transgene in the lentivirus can be delivered by sperm, we studied incubation of pseudotyped lentiviruses and sperm before insemination. After incubation with pig spermatozoa, 62±3 lentiviral particles were detected per 100 sperm cells using quantitative real-time RT-PCR. The association of lentivirus with sperm was further confirmed by electron microscopy. The sperm incubated with lentiviral particles were artificially inseminated into pigs. Of the 59 piglets born from inseminated 5 sows, 6 piglets (10.17%) carried the transgene based on the PCR identification. Foreign gene and EGFP was successfully detected in ear tissue biopsies from two PCR-positive pigs, revealed via in situ hybridization and immunohistochemistry. Offspring of one PCR-positive boar with normal sows showed PCR-positive. Two PCR-positive founders and offsprings of PCR-positive boar were further identified by Southern-blot analysis, out of which the two founders and two offsprings were positive in Southern blotting, strongly indicating integration of foreign gene into genome. The results indicate that incubation of sperm with pseudotyped lentiviruses can incorporated with sperm-mediated gene transfer to produce transgenic pigs with improved efficiency.
Collapse
Affiliation(s)
- Yongliang Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- * E-mail: (QYX); (ZFW)
| | - Jinghua Ding
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Weiguang Cai
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fanmin Meng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junyun Zhou
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongyi Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- * E-mail: (QYX); (ZFW)
| |
Collapse
|
9
|
Evans JD, Weaver DB. Beenome soon: honey bees as a model 'non-model' system for comparative genomics. Comp Funct Genomics 2010; 4:351-2. [PMID: 18629288 PMCID: PMC2448453 DOI: 10.1002/cfg.288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 02/20/2003] [Accepted: 02/20/2003] [Indexed: 11/27/2022] Open
Affiliation(s)
- Jay D Evans
- USDA-ARS Bee Research Laboratory, BARC-East Building 476, Beltsville, MD 20705, USA.
| | | |
Collapse
|
10
|
Ferguson HJ, Neven LG, Thibault ST, Mohammed A, Fraser M. Genetic transformation of the codling moth, Cydia pomonella L., with piggyBac EGFP. Transgenic Res 2010; 20:201-14. [DOI: 10.1007/s11248-010-9391-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/26/2010] [Indexed: 11/27/2022]
|
11
|
Wu Z, Li Z, Yang J. Transient transgene transmission to piglets by intrauterine insemination of spermatozoa incubated with DNA fragments. Mol Reprod Dev 2008; 75:26-32. [PMID: 17546633 DOI: 10.1002/mrd.20778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An efficient and low-cost production of transgenic pigs has significant applications to the pig industry and biomedical science. Generation of transgenic pig by sperm-mediated gene transfer (SMGT) was inexpensive and convenient, and reported with high efficiency. To test the method of SMGT in pigs, we employed deep post-cervical intrauterine insemination of incubated spermatozoa in this study. A test of sperm motility of semen from nine Landrace boars after incubation with radioactively labeled DNA construct indicated that DNA uptake of the sperm was highly correlated with sperm motility at the time of collection. DNA concentration of 50 and 300 microg per one billion sperm was incubated with washed high-motility sperm at 17 degrees C for 2 hr. Twenty one hybrid gilts and sows of Meishan crossed with Large White were inseminated with transgene-incubated sperm and produced 156 piglets. Transgene DNA sequences were identified in 31 piglets by PCR amplification of genomic DNA isolated from piglet ears at the age of 3 days. The deep intrauterine insemination had a higher rate of positive transgenic piglets than regular insemination (29.6% of 98 piglets vs. 3.4% of 58 piglets). However, the exogenous transgene DNA was not detected in any piglets at the age of 70-100 days. Therefore, the results further demonstrated that transgene through incubation with spermatozoa was mostly transiently transmitted to the offspring at early growing stage and lost in adulthood, which may result from episomal DNA replications during cell divisions only at the early stage of development.
Collapse
Affiliation(s)
- Zhenfang Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | | | | |
Collapse
|
12
|
Spadafora C. Sperm-mediated 'reverse' gene transfer: a role of reverse transcriptase in the generation of new genetic information. Hum Reprod 2008; 23:735-40. [PMID: 18270183 DOI: 10.1093/humrep/dem425] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sperm-mediated gene transfer (SMGT) is a procedure through which new genetic traits are introduced in animals by exploiting the ability of spermatozoa to take up exogenous DNA molecules and deliver them to oocytes at fertilization. The interaction of exogenous DNA with sperm cells is a regulated process mediated by specific factors; among those, a reverse transcriptase (RT) activity plays a central role in SMGT. 'Retro-genes' are generated either through reverse transcription of exogenous RNA internalized in spermatozoa, or through sequential transcription, splicing and reverse transcription of exogenous DNA. The resulting retro-genes are delivered to oocytes and transmitted to embryos and born animals as low-copy, transcriptionally competent, extrachromosomal structures capable of determining new phenotypic traits. Retro-genes can be further transmitted through sexual reproduction from founders to their F1 progeny: new genetic and phenotypic features, unlinked to chromosomes, can thus be generated and inherited in a non-Mendelian ratio. We have called this phenomenon sperm-mediated 'reverse' gene transfer (SMRGT). Thus, a RT-mediated machinery operates in sperm cells and is responsible for the genesis and non-Mendelian propagation of new genetic information. The features of RT-generated traits elicited in SMRGT resemble those characterized in recent studies of RNA-mediated inheritance of extra-genomic information.
Collapse
Affiliation(s)
- Corrado Spadafora
- Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
13
|
Ando T, Fujiyuki T, Kawashima T, Morioka M, Kubo T, Fujiwara H. In vivo gene transfer into the honeybee using a nucleopolyhedrovirus vector. Biochem Biophys Res Commun 2007; 352:335-40. [PMID: 17125735 DOI: 10.1016/j.bbrc.2006.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 11/07/2006] [Indexed: 11/17/2022]
Abstract
The honeybee Apis mellifera L. is a social insect and one of the most industrially important insects. We examined whether a baculovirus-mediated retrotransposon is applicable to in vivo transfer of exogenous genes to the honeybees. Honeybee larvae and pupae were injected with two types of recombinant Autographa californica nucleopolyhedrovirus (AcNPV) vectors, one that includes the enhanced green fluorescent protein gene (egfp) as a reporter to be inserted into the honeybee genome, and another that includes the reverse transcriptase gene responsible for the insertion. Fluorescence was observed in most of the viral-injected larvae and pupae. Reverse transcription-polymerase chain reaction and immunoblotting confirmed egfp mRNA and eGFP expression in these honeybees, although egfp insertion into the honeybee genome was not confirmed. These results indicate that AcNPV vectors can be used for the transfer and transient expression of an exogenous gene in the larval and pupal honeybees.
Collapse
Affiliation(s)
- Toshiya Ando
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Pittoggi C, Beraldi R, Sciamanna I, Barberi L, Giordano R, Magnano AR, Torosantucci L, Pescarmona E, Spadafora C. Generation of biologically active retro-genes upon interaction of mouse spermatozoa with exogenous DNA. Mol Reprod Dev 2006; 73:1239-46. [PMID: 16850445 DOI: 10.1002/mrd.20550] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mature spermatozoa of most animal species can spontaneously take up foreign DNA molecules which can be delivered to embryos upon fertilization. Following this procedure, transgenic animals of various species have been generated. We recently discovered a reverse transcriptase (RT) activity in mouse spermatozoa that can reverse-transcribe exogenous RNA molecules into cDNA copies. These cDNA copies are transferred to embryos at fertilization, mosaic propagated as non-integrated structures in tissues of founder individuals and further transmitted to F1 progeny. Reverse-transcribed sequences behave as functional genes, being correctly expressed in tissues of F0 and F1 animals. To learn more about this mechanism and further characterize the reverse transcription step, we have now incubated spermatozoa with a plasmid harboring a green fluorescent protein (EGFP) retrotransposition cassette interrupted by an intron in the opposite orientation to the EGFP gene. We found that reverse-transcribed spliced EGFP DNA sequences are generated in sperm cells and transmitted to embryos in IVF assays. After implantation in foster mothers, embryos developed into mice that expressed EGFP in the blood vessel endothelia of a variety of organs. The EGFP-encoding cDNA sequences were detected in positive tissues as extrachromosomal mosaic-propagated structures, maintained in low-copy number (<1 copy/genome), and mosaic transmitted from founders to the F1 progeny. These results indicate that an efficient machinery is present in mature spermatozoa, which can transcribe, splice, and reverse-transcribe exogenous DNA molecules. This mechanism is implicated in the genesis and non-Mendelian propagation of new genetic information besides that contained in chromosomes.
Collapse
|
15
|
Abstract
Learning, memory, and social behavior are innate properties of the honeybee that are essential for the survival of each individual as well as for the survival of the hive. The small, accessible brain of the honeybee and the availability of the complete sequence of its genome make this social insect an ideal model for studying the connection between learning, memory, and social behavior.
Collapse
Affiliation(s)
- Randolf Menzel
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Germany.
| | | | | |
Collapse
|
16
|
Abstract
Recent developments in studies of sperm-mediated gene transfer (SMGT) now provide solid ground for the notion that sperm cells can act as vectors for exogenous genetic sequences. A substantive body of evidence indicates that SMGT is potentially useable in animal transgenesis, but also suggests that the final fate of the exogenous sequences transferred by sperm is not always predictable. The analysis of SMGT-derived offspring has shown the existence of integrated foreign sequences in some cases, while in others stable modifications of the genome are difficult to detect. The appearance of SMGT-derived modified offspring on the one hand and, on the other hand, the rarity of actual modification of the genome, suggest inheritance as extrachromosomal structures. Several specific factors have been identified that mediate distinct steps in SMGT. Among those, a prominent role is played by an endogenous reverse transcriptase of retrotransposon origin. Mature spermatozoa are naturally protected against the intrusion of foreign nucleic acid molecules; however, particular environmental conditions, such as those occurring during human assisted reproduction, can abolish this protection. The possibility that sperm cells under these conditions carry genetic sequences affecting the integrity or identity of the host genome should be critically considered. These considerations further suggest the possibility that SMGT events may occasionally take place in nature, with profound implications for evolutionary processes.
Collapse
Affiliation(s)
- Kevin Smith
- School of Contemporary Sciences, University of Abertay, Dundee, UK.
| | | |
Collapse
|
17
|
Abstract
Aging and longevity are complex life history traits that are influenced by both genes and environment and exhibit significant phenotypic plasticity in a broad range of organisms. A striking example of this plasticity is seen in social insects, such as ants and bees, where different castes can have very different life spans. In particular, the honeybee worker offers an intriguing example of environmental control on aging rate, because workers are conditionally sterile and display very different aging patterns depending on which temporal caste they belong to (hive bee, forager, or a long-lived caste capable of surviving for several months on honey alone). The ubiquitous yolk protein vitellogenin appears to play a key role in the regulatory circuitry that controls this variation. Here we outline the current understanding of the relation between vitellogenin and somatic maintenance in honeybee workers, and how this relation can be understood in a life history context.
Collapse
Affiliation(s)
- Stig W Omholt
- Centre for Integrative Genetics and Department of Animal Science, Agricultural University of Norway, 1432 Aas, Norway.
| | | |
Collapse
|
18
|
Kunieda T, Kubo T. In vivo gene transfer into the adult honeybee brain by using electroporation. Biochem Biophys Res Commun 2004; 318:25-31. [PMID: 15110748 DOI: 10.1016/j.bbrc.2004.03.178] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Indexed: 11/29/2022]
Abstract
The honeybee, Apis mellifera L., is a social insect and they show wide variety of exquisite social behaviors to maintain colony activity. To enable the elucidation of those social behaviors at a molecular level and gene function in the nervous system, we developed an in vivo method to perform gene transfer in the adult brain of living honeybee by electroporation. When green fluorescent protein-expressing plasmid was transferred to the brain with this system, green fluorescence was observed near the anode location. The expression of transfected genes was confirmed at both transcriptional and translational levels by reverse transcription-polymerase chain reaction and immunoblot analyses. This system will facilitate the analysis of gene function and the regulatory mechanisms of gene networks in the nervous system and provide clues to clarify the relation between those genes and the complex behaviors of the honeybee.
Collapse
Affiliation(s)
- Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
19
|
Amdam GV, Simões ZLP, Hagen A, Norberg K, Schrøder K, Mikkelsen Ø, Kirkwood TBL, Omholt SW. Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol 2004; 39:767-73. [PMID: 15130671 DOI: 10.1016/j.exger.2004.02.010] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/20/2004] [Accepted: 02/24/2004] [Indexed: 11/27/2022]
Abstract
A striking example of plasticity in life span is seen in social insects such as ants and bees, where different castes may display distinct ageing patterns. In particular, the honeybee offers an intriguing illustration of environmental control on ageing rate. Honeybee workers display a temporal division of labour where young bees (or 'hive bees') perform tasks within the brood nest, and older bees forage for nectar, pollen propolis and water. When bees switch from the hive bee to the forager stage, their cellular defence machinery is down-regulated by a dramatic reduction in the number of functioning haemocytes (immunocytes). This study documents that the yolk precursor vitellogenin is likely to be involved in a regulatory pathway that controls the observed decline in somatic maintenance function of honeybee foragers. An association between the glyco-lipoprotein vitellogenin and immune function has not previously been reported for any organism. Honeybee workers are functionally sterile, and via the expression of juvenile hormone, a key gonotrophic hormone in adult insects, their vitellogenin levels are influenced by social interactions with other bees. Our results therefore suggest that in terms of maintenance of the cellular immune system, senescence of the honeybee worker is under social control.
Collapse
Affiliation(s)
- Gro V Amdam
- Department of Animal Science, Centre for Integrative Genetics, Agricultural University of Norway, P.O. Box 5025, 1432 Aas, Norway
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kramer MG. Recent advances in transgenic arthropod technology. BULLETIN OF ENTOMOLOGICAL RESEARCH 2004; 94:95-110. [PMID: 15153293 DOI: 10.1079/ber2003290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to insert foreign genes into arthropod genomes has led to a diverse set of potential applications for transgenic arthropods, many of which are designed to advance public health or improve agricultural production. New techniques for expressing foreign genes in arthropods have now been successfully used in at least 18 different genera. However, advances in field biology are lagging far behind those in the laboratory, and considerable work is needed before deployment in nature can be a reality. A mechanism to drive the gene of interest though a natural population must be developed and thoroughly evaluated before any field release, but progress in this area has been limited. Likewise, serious consideration of potential risks associated with deployment in nature has been lacking. This review gives an overview of the most promising techniques for expressing foreign genes in arthropods, considers the potential risks associated with their deployment, and highlights the areas of research that are most urgently needed for the field to advance out of the laboratory and into practice.
Collapse
Affiliation(s)
- M G Kramer
- US Environmental Protection Agency, Office of Science Coordination and Policy, Washington, DC 20460, USA.
| |
Collapse
|
21
|
Sciamanna I, Barberi L, Martire A, Pittoggi C, Beraldi R, Giordano R, Magnano AR, Hogdson C, Spadafora C. Sperm endogenous reverse transcriptase as mediator of new genetic information. Biochem Biophys Res Commun 2003; 312:1039-46. [PMID: 14651976 DOI: 10.1016/j.bbrc.2003.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mature spermatozoa spontaneously take up foreign DNA molecules which can be delivered to embryos at fertilization. Recently we discovered an endogenous reverse transcriptase (RT) activity in mouse spermatozoa which can reverse-transcribe exogenous RNA molecules into cDNA copies. Here we have sought to establish whether foreign RNA is a suitable substrate for the sperm RT to generate new functional genes. In vitro fertilization (IVF) experiments were carried out with spermatozoa that were preincubated with RNA from hybrid murine leukemia virus/virus-like 30S (MLV/VL30) beta-galactosidase (beta-gal) gene-containing vector. The RNA was taken up by sperm cells, reverse-transcribed, delivered to embryos upon IVF, and propagated in a mosaic pattern in founders and further in the F1 progeny. beta-gal protein expression was detected in several tissues from both F0 and F1 animals. These results indicate that spermatozoa can reverse-transcribe exogenous RNA so as to generate transcriptionally competent sequences that are transmitted to offspring upon fertilization.
Collapse
|
22
|
Sumitani M, Yamamoto DS, Oishi K, Lee JM, Hatakeyama M. Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:449-458. [PMID: 12650693 DOI: 10.1016/s0965-1748(03)00009-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A piggyBac construct carrying two green fluorescent protein (GFP)-coding sequences one driven by Bombyx mori actin gene promoter and the other by Drosophila melanogaster heat-shock protein 70 (hsp70) promoter were injected together with a nonautonomous helper plasmid containing an active piggyBac transposase gene into the posterior end of mature unfertilized eggs dissected from the ovaries of Athalia rosae (Hymenoptera: Symphyta). These injected eggs, which developed as haploid male embryos upon artificial activation, were cultured to adulthood. Of 278 injected eggs, 61 grew to G(0) haploid adult males. These G(0) haploid males were individually mated to diploid females. The progeny embryos (G(1) generation) were examined for GFP expression. Four GFP-positive embryos (from three independent G(0) matings) were obtained. Two eclosed as diploid adult G(1) females. Mature unfertilized eggs dissected from the GFP-positive G(1) diploid females were activated artificially, and the resultant embryos were examined for GFP expression, separated and cultured to adulthood (G(2) generation). The G(2) haploid embryos segregated to GFP-positive and -negative individuals. By mating the G(2) adult haploid males individually to diploid females, stocks were established in which the piggyBac construct was stably integrated into the genome, as evidenced by GFP expression and Southern blot hybridization. The piggyBac transposition occurred at its canonical target TTAA sequence. These results, which demonstrate the first successful stable transposon-mediated germline transformation in Hymenoptera, will expand the usefulness of the piggyBac vector.
Collapse
Affiliation(s)
- M Sumitani
- Division of Bioscience, Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
23
|
Amdam GV, Simões ZLP, Guidugli KR, Norberg K, Omholt SW. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol 2003; 3:1. [PMID: 12546706 PMCID: PMC149360 DOI: 10.1186/1472-6750-3-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2002] [Accepted: 01/20/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability to manipulate the genetic networks underlying the physiological and behavioural repertoires of the adult honeybee worker (Apis mellifera) is likely to deepen our understanding of issues such as learning and memory generation, ageing, and the regulatory anatomy of social systems in proximate as well as evolutionary terms. Here we assess two methods for probing gene function by RNA interference (RNAi) in adult honeybees. RESULTS The vitellogenin gene was chosen as target because its expression is unlikely to have a phenotypic effect until the adult stage in bees. This allowed us to introduce dsRNA in preblastoderm eggs without affecting gene function during development. Of workers reared from eggs injected with dsRNA derived from a 504 bp stretch of the vitellogenin coding sequence, 15% had strongly reduced levels of vitellogenin mRNA. When dsRNA was introduced by intra-abdominal injection in newly emerged bees, almost all individuals (96%) showed the mutant phenotype. An RNA-fragment with an apparent size similar to the template dsRNA was still present in this group after 15 days. CONCLUSION Injection of dsRNA in eggs at the preblastoderm stage seems to allow disruption of gene function in all developmental stages. To dissect gene function in the adult stage, the intra-abdominal injection technique seems superior to egg injection as it gives a much higher penetrance, it is much simpler, and it makes it possible to address genes that are also expressed in the embryonic, larval or pupal stages.
Collapse
Affiliation(s)
- Gro V Amdam
- Centre for Integrative Genetics and Department of Animal Science, Agricultural University of Norway, N-1432 Aas, Norway
| | - Zilá LP Simões
- Departamento de Biologia, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
| | - Karina R Guidugli
- Departamento de Genética, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil
| | - Kari Norberg
- Centre for Integrative Genetics and Department of Animal Science, Agricultural University of Norway, N-1432 Aas, Norway
| | - Stig W Omholt
- Centre for Integrative Genetics and Department of Animal Science, Agricultural University of Norway, N-1432 Aas, Norway
| |
Collapse
|
24
|
Beye M, Härtel S, Hagen A, Hasselmann M, Omholt SW. Specific developmental gene silencing in the honey bee using a homeobox motif. INSECT MOLECULAR BIOLOGY 2002; 11:527-532. [PMID: 12421410 DOI: 10.1046/j.1365-2583.2002.00361.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Manipulating the expression of genes in species that are not currently used as genetic models will provide comparative insights into the evolution of gene functions. However the experimental tools in doing so are limited in species that have not served as models for genetic studies. We have examined the effects of double stranded RNA (dsRNA) in the honey bee, an insect with considerably basic scientific interest. dsRNA derived from a 300 bp stretch of the E30 homeobox motif was injected into honey bee embryos at the anterior pole in the preblastoderm stage. We found that the dsRNA fragment successfully disrupted the protein expression of the target gene throughout the whole embryo. The disruption caused deficient phenotypes similar to known loss of function mutants of Drosophila engrailed, whereas embryos injected with nonsense dsRNA showed no abnormalities. We show that the large size of the honey bee egg (D: 0.3 mm, L: 1.6 mm) and the long preblastoderm stage (11-12 h) can be exploited to generate embryos with partial disruption of gene function, which may provide an elegant alternative to classical chimeric analyses. This is the first report of targeted disruption of gene function in the honey bee, and the results prove that the chosen target gene is a functional ortholog to engrailed in Drosophila.
Collapse
Affiliation(s)
- M Beye
- Martin-Luther-Universität Halle/Wittenberg, Biozentrum, Institut für Zoologie, Molekulare Okologie, Halle, Germany.
| | | | | | | | | |
Collapse
|
25
|
Robinson GE. Genomics and Integrative Analyses of Division of Labor in Honeybee Colonies. Am Nat 2002; 160 Suppl 6:S160-72. [PMID: 18707474 DOI: 10.1086/342901] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Gene E Robinson
- Department of Entomology and Neuroscience Program, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
Robinson GE, Ben-Shahar Y. Social behavior and comparative genomics: new genes or new gene regulation? GENES, BRAIN, AND BEHAVIOR 2002; 1:197-203. [PMID: 12882364 DOI: 10.1034/j.1601-183x.2002.10401.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular analyses of social behavior are distinguished by the use of an unusually broad array of animal models. This is advantageous for a number of reasons, including the opportunity for comparative genomic analyses that address fundamental issues in the molecular biology of social behavior. One issue relates to the kinds of changes in genome structure and function that occur to give rise to social behavior. This paper considers one aspect of this issue, whether social evolution involves new genes, new gene regulation, or both. This is accomplished by briefly reviewing findings from studies of the fish Haplochromis burtoni, the vole Microtus ochrogaster, and the honey bee Apis mellifera, with a more detailed and prospective consideration of the honey bee.
Collapse
Affiliation(s)
- G E Robinson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana 61801, USA.
| | | |
Collapse
|
27
|
Abstract
In the last few years, cases of transformation involving insects other than Dipterans have been reported. Although transgenics have been created only in a few species, transposable element vectors may be successfully developed in most insect forms in the near future. The major remaining problems revolving round transformation in wide-ranging species of insects are mainly related to methods of DNA delivery. Transposable element-mediated gene transfer in non-Drosophila insects is reviewed. In addition, the current status of honeybee transformation will be explained as an example of an insect transgenic system that faces substantial obstacles to the creation of germ-line transformants.
Collapse
Affiliation(s)
- K Kimura
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science, Ibaraki, Japan.
| |
Collapse
|
28
|
Whitfield CW, Band MR, Bonaldo MF, Kumar CG, Liu L, Pardinas JR, Robertson HM, Soares MB, Robinson GE. Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res 2002; 12:555-66. [PMID: 11932240 PMCID: PMC187514 DOI: 10.1101/gr.5302] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To accelerate the molecular analysis of behavior in the honey bee (Apis mellifera), we created expressed sequence tag (EST) and cDNA microarray resources for the bee brain. Over 20,000 cDNA clones were partially sequenced from a normalized (and subsequently subtracted) library generated from adult A. mellifera brains. These sequences were processed to identify 15,311 high-quality ESTs representing 8912 putative transcripts. Putative transcripts were functionally annotated (using the Gene Ontology classification system) based on matching gene sequences in Drosophila melanogaster. The brain ESTs represent a broad range of molecular functions and biological processes, with neurobiological classifications particularly well represented. Roughly half of Drosophila genes currently implicated in synaptic transmission and/or behavior are represented in the Apis EST set. Of Apis sequences with open reading frames of at least 450 bp, 24% are highly diverged with no matches to known protein sequences. Additionally, over 100 Apis transcript sequences conserved with other organisms appear to have been lost from the Drosophila genome. DNA microarrays were fabricated with over 7000 EST cDNA clones putatively representing different transcripts. Using probe derived from single bee brain mRNA, microarrays detected gene expression for 90% of Apis cDNAs two standard deviations greater than exogenous control cDNAs. [The sequence data described in this paper have been submitted to Genbank data library under accession nos. BI502708-BI517278. The sequences are also available at http://titan.biotec.uiuc.edu/bee/honeybee_project.htm.]
Collapse
Affiliation(s)
- Charles W Whitfield
- Department of Entomology and Neuroscience Program, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Takeuchi H, Kage E, Sawata M, Kamikouchi A, Ohashi K, Ohara M, Fujiyuki T, Kunieda T, Sekimizu K, Natori S, Kubo T. Identification of a novel gene, Mblk-1, that encodes a putative transcription factor expressed preferentially in the large-type Kenyon cells of the honeybee brain. INSECT MOLECULAR BIOLOGY 2001; 10:487-494. [PMID: 11881813 DOI: 10.1046/j.0962-1075.2001.00288.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mushroom bodies (MBs) are considered to be involved in higher-order sensory processing in the insect brain. To identify the genes involved in the intrinsic function of the honeybee MBs, we searched for genes preferentially expressed therein, using the differential display method. Here we report a novel gene encoding a putative transcription factor (Mblk-1) expressed preferentially in one of two types of intrinsic MB neurones, the large-type Kenyon cells, which makes Mblk-1 a candidate gene involved in the advanced behaviours of honeybees. A putative DNA binding motif of Mblk-1 had significant sequence homology with those encoded by genes from various animal species, suggesting that the functions of these proteins in neural cells are conserved among the animal kingdom.
Collapse
Affiliation(s)
- H Takeuchi
- Bio-orientated Technology Research Advancement Institution, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|