1
|
Hu A, Chen X, Luo S, Zou Q, Xie J, He D, Li X, Cheng G. Rhizobium leguminosarum Glutathione Peroxidase Is Essential for Oxidative Stress Resistance and Efficient Nodulation. Front Microbiol 2021; 12:627562. [PMID: 33633710 PMCID: PMC7900000 DOI: 10.3389/fmicb.2021.627562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Glutathione (GSH) plays a key role in regulating the cellular Redox Homeostasis, and appears to be essential for initiation and development of root nodules. Glutathione peroxidase (Gpx) catalyzes the reduction of H2O2 and organic hydroperoxides by oxidation of GSH to oxidized GSH (GSSG), which in turn is reduced by glutathione reductase (GR). However, it has not been determined whether the Rhizobium leguminosarum Gpx or GR is required during symbiotic interactions with pea. To characterize the role of glutathione-dependent enzymes in the symbiotic process, single and double mutants were made in gpxA (encoding glutathione peroxidase) and gshR (encoding glutathione reductase) genes. All the mutations did not affect the rhizobial growth, but they increased the sensitivity of R. leguminosarum strains to H2O2. Mutant in GpxA had no effect on intracellular GSH levels, but can increase the expression of the catalase genes. The gshR mutant can induce the formation of normal nodules, while the gpxA single and double mutants exhibited a nodulation phenotype coupled to more than 50% reduction in the nitrogen fixation capacity, these defects in nodulation were characterized by the formation of ineffective nodules. In addition, the gpxA and gshR double mutant was severely impaired in rhizosphere colonization and competition. Quantitative proteomics using the TMT labeling method was applied to study the differential expression of proteins in bacteroids isolated from pea root nodules. A total of 27 differentially expressed proteins were identified in these root bacteroids including twenty down-regulated and seven up-regulated proteins. By sorting the down-regulated proteins, eight are transporter proteins, seven are dehydrogenase, deoxygenase, oxidase, and hydrolase. Moreover, three down-regulating proteins are directly involved in nodule process.
Collapse
Affiliation(s)
- Aiqi Hu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohong Chen
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jing Xie
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
2
|
Activities and kinetic characteristics of glutamine synthetase fromPenicillium cyclopium. ANN MICROBIOL 2008. [DOI: 10.1007/bf03175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
van Borm S, Buschinger A, Boomsma JJ, Billen J. Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc Biol Sci 2002; 269:2023-7. [PMID: 12396501 PMCID: PMC1691126 DOI: 10.1098/rspb.2002.2101] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some Tetraponera ants (Formicidae, Pseudomyrmecinae) subsist almost entirely on amino acid deficient honeydew secretions of pseudococcids and harbour a dense aggregation of bacterial symbionts in a unique pouch-shaped organ at the junction of the midgut and the intestine. The organ is surrounded by a network of intruding tracheae and Malpighian tubules, suggesting that these bacteria are involved in the oxidative recycling of nitrogen-rich metabolic waste. We have examined the ultrastructure of these bacteria and have amplified, cloned and sequenced ribosomal RNA-encoding genes, showing that the ant pouch contains a series of close relatives of Flavobacteria and Rhizobium, Methylobacterium, Burkholderia and Pseudomonas nitrogen-fixing root-nodule bacteria. We argue that pouch bacteria have been repeatedly 'domesticated' by the ants as nitrogen-recycling endosymbionts. This ant-associated community of mutualists is, to our knowledge, the first finding of symbionts related to root-nodule bacteria in animals.
Collapse
Affiliation(s)
- Steven van Borm
- Zoological Institute, University of Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
4
|
Saini I, Sindhu SS, Dadarwal KR. Azide-resistant mutants of Azorhizobium caulinodans with enhanced symbiotic effectiveness. Folia Microbiol (Praha) 2001; 46:217-22. [PMID: 11702406 DOI: 10.1007/bf02818536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azide-resistant mutants of Azorhizobium caulinodans strains Sb3, S78, SrR13 and SrS8 were isolated and screened for nitrate reductase activity. Selected nitrate reductase negative mutants were inoculated on Sesbania bispinosa and S. rostrata under sterile conditions in chillum jars to study their symbiotic behavior. Azide-resistant mutants exhibited either similar or higher symbiotic effectiveness than the parent strain after 30 d of plant growth. Nodule mass, nitrogenase activity and uptake hydrogenase activity of the mutants varied depending on the host as well as on the plant growth stage. In comparison to wild-type parent strains, four azide-resistant mutants, Sb3Az18, S78Az21, SrR13Az17 and SrS8Az6 showed significant increase in nodulation and nitrogen fixation as well as shoot dry mass of the inoculated plants.
Collapse
Affiliation(s)
- I Saini
- Department of Microbiology, CCS Haryana Agricultural University, Hisar-125 004, India
| | | | | |
Collapse
|