1
|
Xu X, Li J, Yang X, Zhang L, Wang S, Shen G, Hui B, Xiao J, Zhou C, Wang X, Zhao J, Xiang W. Epicoccum spp. Causing Maize Leaf Spot in Heilongjiang Province, China. PLANT DISEASE 2022; 106:3050-3060. [PMID: 35612576 DOI: 10.1094/pdis-09-21-1948-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maize leaf spot occurs worldwide and affects maize production. Maize can be infected by several pathogens causing leaf spot, such as Bipolaris zeicola, Bipolaris maydis, Curvularia species, Alternaria species, etc. In the current study, 30 Epicoccum isolates recovered from symptomatic maize leaves were identified based on morphological characteristics, pathogenicity, and multilocus sequence analyses of nuLSU, ITS, tub2, and rpb2. These maize isolates were grouped into five Epicoccum species, including E. nigrum, E. layuense, E. sorghinum, E. latusicollum, and E. pneumoniae. Pathogenicity tests showed that all five Epicoccum species could produce small ellipse- and spindle-shaped spots on maize leaves. The lesion center was grayish yellow to dark gray and surrounded by a chlorotic area. Furthermore, the Epicoccum isolates exhibited high pathogenicity to 20 main maize varieties of Heilongjiang Province but showed different sensitivities to the commonly used fungicides carbendazim and tebuconazole. In addition, these Epicoccum isolates showed different production capacity of pectinase, cellulase, protease, amylase, laccase, and gelatinase, but all showed high lipase activity. This is the first report globally of E. layuense, E. latusicollum, and E. pneumoniae as causal agents of maize leaf spot. E. pneumoniae was first reported as a plant pathogen.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jingjing Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xilang Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Li Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Guijin Shen
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Bing Hui
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Changjian Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, P.R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
2
|
Lee AJ, Cadelis MM, Kim SH, Swift S, Copp BR, Villas-Boas SG. Epipyrone A, a Broad-Spectrum Antifungal Compound Produced by Epicoccum nigrum ICMP 19927. Molecules 2020; 25:E5997. [PMID: 33352899 PMCID: PMC7766273 DOI: 10.3390/molecules25245997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023] Open
Abstract
We have isolated a filamentous fungus that actively secretes a pigmented exudate when growing on agar plates. The fungus was identified as being a strain of Epicoccum nigrum. The fungal exudate presented strong antifungal activity against both yeasts and filamentous fungi, and inhibited the germination of fungal spores. The chemical characterization of the exudate showed that the pigmented molecule presenting antifungal activity is the disalt of epipyrone A-a water-soluble polyene metabolite with a molecular mass of 612.29 and maximal UV-Vis absorbance at 428 nm. This antifungal compound showed excellent stability to different temperatures and neutral to alkaline pH.
Collapse
Affiliation(s)
- Alex J. Lee
- School of Biological Sciences, University of Auckland, 3A Symonds Street, 1010 Auckland, New Zealand; (A.J.L.); (S.H.K.)
| | - Melissa M. Cadelis
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, 1010 Auckland, New Zealand; (M.M.C.); (B.R.C.)
- School of Medical Sciences, University of Auckland, 85 Park Road, Grafton, 1023 Auckland, New Zealand;
| | - Sang H. Kim
- School of Biological Sciences, University of Auckland, 3A Symonds Street, 1010 Auckland, New Zealand; (A.J.L.); (S.H.K.)
| | - Simon Swift
- School of Medical Sciences, University of Auckland, 85 Park Road, Grafton, 1023 Auckland, New Zealand;
| | - Brent R. Copp
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, 1010 Auckland, New Zealand; (M.M.C.); (B.R.C.)
| | - Silas G. Villas-Boas
- School of Biological Sciences, University of Auckland, 3A Symonds Street, 1010 Auckland, New Zealand; (A.J.L.); (S.H.K.)
| |
Collapse
|
3
|
Susi H, Burdon JJ, Thrall PH, Nemri A, Barrett LG. Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini. PLoS Pathog 2020; 16:e1008731. [PMID: 32810177 PMCID: PMC7454959 DOI: 10.1371/journal.ppat.1008731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/28/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
A priority for research on infectious disease is to understand how epidemiological and evolutionary processes interact to influence pathogen population dynamics and disease outcomes. However, little is understood about how population adaptation changes across time, how sexual vs. asexual reproduction contribute to the spread of pathogens in wild populations and how diversity measured with neutral and selectively important markers correlates across years. Here, we report results from a long-term study of epidemiological and genetic dynamics within several natural populations of the Linum marginale-Melampsora lini plant-pathogen interaction. Using pathogen isolates collected from three populations of wild flax (L. marginale) spanning 16 annual epidemics, we probe links between pathogen population dynamics, phenotypic variation for infectivity and genomic polymorphism. Pathogen genotyping was performed using 1567 genome-wide SNP loci and sequence data from two infectivity loci (AvrP123, AvrP4). Pathogen isolates were phenotyped for infectivity using a differential set. Patterns of epidemic development were assessed by conducting surveys of infection prevalence in one population (Kiandra) annually. Bayesian clustering analyses revealed host population and ecotype as key predictors of pathogen genetic structure. Despite strong fluctuations in pathogen population size and severe annual bottlenecks, analysis of molecular variance revealed that pathogen population differentiation was relatively stable over time. Annually, varying levels of clonal spread (0–44.8%) contributed to epidemics. However, within populations, temporal genetic composition was dynamic with rapid turnover of pathogen genotypes, despite the dominance of only four infectivity phenotypes across the entire study period. Furthermore, in the presence of strong fluctuations in population size and migration, spatial selection may maintain pathogen populations that, despite being phenotypically stable, are genetically highly dynamic. Melampsora lini is a rust fungus that infects native flax, Linum marginale in south-eastern Australia where its epidemiology and evolution have been intensively studied since 1987. Over that time, substantial diversity in the pathotypic structure of M. lini has been demonstrated but an understanding of how genetic diversity in pathogen populations is maintained through space and time is lacking. Here we integrated phenotypic, genotypic and epidemiological datasets spanning 16 annual epidemics across three host populations to examine long-term pathogen genetic dynamics. The results show that host ecotype is the dominant selective force in the face of strong bottlenecks and annual patterns of genetic turnover. Results from previous studies indicate that in this geographic region, M. lini lacks the capacity to reproduce sexually–we thus expected to find limited genetic diversity and evidence for strong clonality influencing genetic dynamics within growing seasons. However, the breadth of genomic coverage provided by the SNP markers revealed high levels of genotypic variation within M. lini populations. This discovery contrasts with observed phenotypic dynamics as the epidemics of this pathogen were largely dominated by four pathotypes across the study period. Based on a detailed assessment and comparison of pathotypic and genotypic patterns, our study increases the understanding of how genetic diversity is generated and maintained through space and time within wild pathogen populations. The implications for the management of resistance to pathogens in agricultural or conservation contexts are significant: the appearance of clonality may be hiding high levels of pathogen diversity and recombination. Understanding how this diversity is generated could provide new and unique ways to mitigate or suppress the emergence of infectious strains, allowing to efficiently combat harmful diseases.
Collapse
Affiliation(s)
- Hanna Susi
- CSIRO Agriculture & Food, Canberra, Australia
- * E-mail:
| | | | | | | | | |
Collapse
|
4
|
Braga RM, Padilla G, Araújo WL. The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol 2018; 44:759-778. [PMID: 30369284 DOI: 10.1080/1040841x.2018.1514364] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epicoccum is a genus of ubiquitous fungi typically found in air, in soil, and on decaying vegetation. They also commonly display an endophytic lifestyle and are isolated from diverse plant tissues. The fungi from the genus Epicoccum are mainly known for their use as biocontrol agents against phytopathogens and for their ability to produce many secondary metabolites with potential biotechnological applications, such as antioxidant, anticancer,r and antimicrobial compounds. Among the bioactive compounds produced by Epicoccum spp., epicocconone is a commercially available fluorophore, D8646-2-6 is a patented telomerase inhibitor, and taxol is an anticancer drug originally isolated from Taxus brevifolia. Epicoccum spp. also produces epicolactone, an antimicrobial compound with a unique and complex structure that has aroused considerable interest in the chemical-synthesis community. The main goal of the present review is to discuss the diversity of secondary metabolites produced by Epicoccum spp., their biotechnological applications, and proposed hypothetical biosynthesis. In addition, the use of Epicoccum spp. as biocontrol agents and the pigments produced by these fungi are also discussed.
Collapse
Affiliation(s)
- Raíssa Mesquita Braga
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Gabriel Padilla
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| | - Welington Luiz Araújo
- a NAP-BIOP - LABMEM, Department of Microbiology, Institute of Biomedical Sciences , University of São Paulo , São Paulo , Brazil
| |
Collapse
|
5
|
Genome Sequence of the Saprophytic Ascomycete Epicoccumnigrum Strain ICMP 19927, Isolated from New Zealand. GENOME ANNOUNCEMENTS 2017; 5:5/24/e00557-17. [PMID: 28619814 PMCID: PMC5473283 DOI: 10.1128/genomea.00557-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epicoccum nigrum is a common mitosporic fungus of the Didymellaceae (Ascomycota) family known for the production of numerous secondary metabolites. Here, we present the 34.7-Mbp draft genome sequence of strain ICMP 19927 assembled from a range of short-insert and long-insert Illumina libraries.
Collapse
|
6
|
Fávaro LCDL, de Melo FL, Aguilar-Vildoso CI, Araújo WL. Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One 2011; 6:e14828. [PMID: 21853017 PMCID: PMC3154903 DOI: 10.1371/journal.pone.0014828] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 12/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Epicoccum nigrum Link (syn. E. purpurascens Ehrenb. ex Schlecht) is a saprophytic ascomycete distributed worldwide which colonizes a myriad of substrates. This fungus has been known as a biological control agent for plant pathogens and produces a variety of secondary metabolites with important biological activities as well as biotechnological application. E. nigrum produces darkly pigmented muriform conidia on short conidiophores on sporodochia and is a genotypically and phenotypically highly variable species. Since different isolates identified as E. nigrum have been evaluated as biological control agents and used for biocompound production, it is highly desirable that this species name refers to only one lineage. However, according to morphological and genetic variation, E. nigrum present two genotypes that may comprise more than one species. METHODOLOGY/PRINCIPAL FINDINGS We report the application of combined molecular (ITS and β-tubulin gene sequence analysis, PCR-RFLP and AFLP techniques), morphometric, physiological, genetic compatibility and recombination analysis to study the taxonomic relationships within an endophytic population that has been identified as E. nigrum. This combined analysis established two genotypes showing morphological, physiological and genetic divergence as well as genetic incompatibility characterized by colony inhibition, strongly indicating that these genotypes correspond to different species. Genotype 1 corresponds to E. nigrum while genotype 2 represents a new species, referred to in this study as Epicoccum sp. CONCLUSIONS/SIGNIFICANCE This research contributes to the knowledge of the Epicoccum genus and asserts that the classification of E. nigrum as a single variable species should be reassessed. In fact, based on the polyphasic approach we suggest the occurrence of cryptic species within E. nigrum and also that many of the sequences deposited as E. nigrum in GenBank and culture collection of microbial strains should be reclassified, including the reference strain CBS 161.73 sequenced in this work. In addition, this study provides valuable tools for differentiation of Epicoccum species.
Collapse
Affiliation(s)
| | | | | | - Welington Luiz Araújo
- Laboratory of Molecular Biology and Microbial Ecology, NIB, University of Mogi das Cruzes, Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
7
|
Lurá MC, Latorre Rapela MG, Vaccari MC, Maumary R, Soldano A, Mattio M, González AM. Genetic diversity of Cercospora kikuchii isolates from soybean cultured in Argentina as revealed by molecular markers and cercosporin production. Mycopathologia 2011; 171:361-71. [PMID: 20835913 DOI: 10.1007/s11046-010-9362-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
Leaf blight and purple seed, caused by the fungal pathogen Cercospora kikuchii (Matsumoto & Tomoyasu) M. W. Gardner are very important diseases of soybean (Glycine max L. Merr.) in Argentina. The aims of this work were: (a) to confirm and to assess the genetic variability among C. kikuchii isolates collected from different soybean growing areas in Santa Fe province using inter simple sequence repeats (ISSR) markers and sequence information from the internal transcribed spacer (ITS) region of rDNA and (b) to analyze the cercosporin production of the regional C. kikuchi isolates in order to assess whether there was any relationship between the molecular profiles and the toxin production. Isolates from different regions in Santa Fe province were studied. The sequence of the ITS regions showed high similarity (99-100%) to the GenBank sequences of C. kikuchii BRCK179 (accession number AY633838). The ISSR markers clustered all the isolates into many groups and cercosporin content was highly variable among isolates. No relationship was observed between ITS region, ISSR groups and origin or cercosporin content. The high degree of genetic variability and cercosporin production among isolates compared in this study characterizes a diverse population of C. kikuchii in the region.
Collapse
Affiliation(s)
- María Cristina Lurá
- Cátedra de Microbiología General, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | | | | | | | | | | | | |
Collapse
|
8
|
Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan F, Osler R. DNA-Dependent Detection of the Grapevine Fungal Endophytes Aureobasidium pullulans and Epicoccum nigrum. PLANT DISEASE 2009; 93:993-998. [PMID: 30754374 DOI: 10.1094/pdis-93-10-0993] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Aureobasidium pullulans and Epicoccum nigrum are frequently reported as endophytes of various crops, including grapevine (Vitis vinifera). Because of their potential role as biological control agents against grapevine pathogens, we examined the occurrence of A. pullulans and E. nigrum in two grapevine varieties (Merlot and Prosecco) in Italian vineyards where spontaneous recovery from phytoplasma disease is recurrent. Species-specific primers for A. pullulans and two genetically distinct strains of E. nigrum were designed in variable regions of ITS1 and ITS2. Primer specificity was confirmed by polymerase chain reaction using purified DNA from other fungal endophytes that are usually encountered during isolation attempts from grapevine tissues and from several other strains of A. pullulans and E. nigrum isolated from other sources. In order to determine the occurrence of the two endophytes in grapevine plants, DNA was extracted from shoots of 44 grapevines collected in six vineyards from different localities of northeast Italy. Both endophytes were detected and their identity was confirmed by restriction fragment length polymorphism (RFLP) patterns obtained from reference strains. RFLP analyses confirmed the presence of two E. nigrum strains belonging to different RFLP groups in grapevine. The molecular methods described allowed a sensitive, specific, and reliable identification of the two endophytes in grapevine.
Collapse
Affiliation(s)
- M Martini
- Department of "Biologia e Protezione delle Piante", University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - R Musetti
- Department of "Biologia e Protezione delle Piante", University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - S Grisan
- Department of "Biologia e Protezione delle Piante", University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - R Polizzotto
- Department of "Biologia e Protezione delle Piante", University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - S Borselli
- Department of "Biologia e Protezione delle Piante", University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - F Pavan
- Department of "Biologia e Protezione delle Piante", University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - R Osler
- Department of "Biologia e Protezione delle Piante", University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| |
Collapse
|
9
|
Hong SG, Maccaroni M, Figuli PJ, Pryor BM, Belisario A. Polyphasic classification of Alternaria isolated from hazelnut and walnut fruit in Europe. ACTA ACUST UNITED AC 2006; 110:1290-300. [PMID: 17077026 DOI: 10.1016/j.mycres.2006.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 05/15/2006] [Accepted: 08/12/2006] [Indexed: 10/24/2022]
Abstract
Brown apical necrosis of English walnut and grey necrosis of hazelnut are destructive fruit diseases caused by a complex of opportunistic fungi including several small-spored catenulate Alternaria taxa. Thirty Alternaria isolates recovered from walnut and hazelnut fruit that were pathogenic on their respective host were compared along with type or representative isolates of A. alternata, A. tenuissima, A. arborescens, and A. infectoria using morphological and molecular criteria. Morphological examination using standardized procedures separated the walnut and hazelnut isolates into three morphological groups: the A. alternata group, the A. tenuissima group, and the A. arborescens group based upon common characteristics of the conidium and the sporulation apparatus. To evaluate genetic relationships among these groups, AFLP markers, inter simple sequence repeat (ISSR) markers, and histone gene sequence data were compared. Based upon AFLP data, the A. alternata and A. tenuissima groups comprised a single lineage, and the A. arborescens group comprised a separate lineage. ISSR data supported the grouping by AFLP data except for three isolates of the A. alternata group that clustered with the A. arborescens group. Base substitution of the H4 gene supported the discrimination of the A. arborescens group from the A. alternata and A. tenuissima groups. Tests of hypotheses based upon groupings derived from the various data sets supported the discrimination of the A. arborescens group but did not support the discrimination of the A. alternata group from the A. tenuissima group.
Collapse
Affiliation(s)
- Soon Gyu Hong
- Division of Plant Pathology, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
10
|
Cohen SD. Host selectivity and genetic variation of Discula umbrinella isolates from two oak species: analyses of intergenic spacer region sequences of ribosomal DNA. MICROBIAL ECOLOGY 2006; 52:463-9. [PMID: 16909350 DOI: 10.1007/s00248-006-9073-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 04/08/2006] [Indexed: 05/11/2023]
Abstract
Discula umbrinella, a fungal endophyte of oak species, colonizes and reproduces on leaves of Quercus alba and Q. rubra in forest ecosystems. Twenty-nine isolates collected from leaves of both oak species (16 from Q. alba and 13 from Q. rubra) were assayed for oak species preference and genetic variation based on primer-specific polymerase chain reactions for the intergenic spacer region (IGS) of ribosomal DNA. DNA sequencing of the polymerase chain reaction products revealed a 10-bp insertion (237-247 bp) at the 3' end of the IGS region present in nine isolates and absent in 20 of the isolates. Phylogenetic analysis of the IGS region using the neighbor-joining method identified IGS groups (groups I-V) based on single nucleotide sequence differences. Host selectivity and geographic origin of isolates were correlated in some instances with the IGS groups. Isolates within each IGS group were further analyzed for nucleotide polymorphisms to confirm genotype identity and genotype diversity. Ten different genotypes (Va-Vj) were identified among the isolates analyzed. Genotype diversity was greatest in IGS groups I, IV, and V. Seventy percent of the genotypes (Vc, Vd, Ve, Vf, Vg,Vi, and Vj) contained isolates with single tree species preferences.
Collapse
Affiliation(s)
- Susan D Cohen
- Center for Regulatory Research, LLC, 1755 Prior Avenue, Falcon Heights, MN 55113, USA.
| |
Collapse
|
11
|
Olsen M, Jonsson N, Magan N, Banks J, Fanelli C, Rizzo A, Haikara A, Dobson A, Frisvad J, Holmes S, Olkku J, Persson SJ, Börjesson T. Prevention of ochratoxin A in cereals in Europe. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 571:317-42. [PMID: 16408611 DOI: 10.1007/0-387-28391-9_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Keiper FJ, Haque MS, Hayden MJ, Park RF. Genetic Diversity in Australian Populations of Puccinia graminis f. sp. avenae. PHYTOPATHOLOGY 2006; 96:96-104. [PMID: 18944209 DOI: 10.1094/phyto-96-0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Sequence-tagged microsatellite profiling was used to develop 110 microsatellites for Puccinia graminis f. sp. tritici (causal agent of wheat stem rust). Low microsatellite polymorphism was exhibited among 10 pathogenically diverse P. graminis f. sp. tritici isolates collected from Australian cereal growing regions over a period of at least 70 years, with two polymorphic loci detected, each revealing two alleles. Limited cross-species amplification was observed for the wheat rust pathogens, P. triticina (leaf rust) and P. striiformis f. sp. tritici (stripe rust). However, very high transferability was revealed with P. graminis f. sp. avenae (causal agent of oat stem rust) isolates. A genetic diversity study of 47 P. graminis f. sp. avenae isolates collected from an Australia-wide survey in 1999, and a historical group of 16 isolates collected from Australian cereal growing regions from 1971 to 1996, revealed six polymorphic microsatellite loci with a total of 15 alleles. Genetic analysis revealed the presence of several clonal lineages and subpopulations in the pathogen population, and wide dispersal of identical races and genotypes throughout Australian cereal-growing regions. These findings demonstrated the dynamic population structure of this pathogen in Australia and concur with the patterns of diversity observed in pathogenicity studies.
Collapse
|
13
|
Frisvad JC, Lund F, Elmholt S. Ochratoxin A producing Penicillium verrucosum isolates from cereals reveal large AFLP fingerprinting variability. J Appl Microbiol 2005; 98:684-92. [PMID: 15715872 DOI: 10.1111/j.1365-2672.2004.02509.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To examine if molecular amplified fragment length polymorphism (AFLP) fingerprinting of the only ochratoxin A-producing species in European cereals, Penicillium verrucosum, can be used as a method in hazard analysis using critical control points (HACCP). METHODS AND RESULTS A total of 321 isolates of P. verrucosum were isolated from ochratoxin A-contaminated cereals from Denmark (oats), UK (wheat and barley) and Sweden (wheat). Of these, 236 produced ochratoxin A as determined by thin layer chromatography; 185 ochratoxin A-producing isolates were selected for AFLP fingerprinting. A total of 138 isolates had unique AFLP patterns, whereas 52 isolates could be allocated to small groups containing from two to four isolates with similar AFLP patterns. A total of 155 clones were found among the 185 P. verrucosum isolates, thus 84% of the isolates may represent different genets of P. verrucosum. As the few isolates that were grouped often came from the same farm, and those groups that contained AFLP-identical isolates from different countries were morphotypically different. On single farms up to 35 clones were found. The few groups of ramets from the same genet indicated that a HACCP approach based on clones may require a very large number of AFLP analysis to work in practice, we recommend basing the HACCP approach on the actual species P. verrucosum. A more detailed characterization should rather be based on the profile of species present at different control points, or analysis of the mycotoxins ochratoxin A and citrinin in the isolates. Examination of 86 isolates with HPLC and diode array detection of P. verrucosum showed that 66% produced ochratoxin A, 87% produced citrinin, 92% produced verrucin and 100% produced verrucolone. CONCLUSIONS Among 184 ochratoxin A-producing Penicillium verrucosum, 155 clonal lineages were indicated by AFLP fingerprinting, indicating a high genetical diversity, yet the species P. verrucosum is phenotypically distinct and valid. SIGNIFICANCE AND IMPACT OF THE STUDY AFLP fingerprinting of Penicillium verrucosum indicates that genetic recombination takes place in this fungus.
Collapse
Affiliation(s)
- J C Frisvad
- Center for Microbial Biotechnology, Biocentrum-DTU, Søltofts Plads, Technical University of Denmark, Lyngby, Denmark.
| | | | | |
Collapse
|
14
|
Kotnova AP, Karpova NN, Feoktistova MA, Lyubomirskaya NV, Kim AI, Ilyin YV. Retrotransposon gtwin: structural analysis and distribution in drosophila strains. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
|
16
|
Barve M, Santra D, Ranjekar P, Gupta V. Genetic diversity analysis of a world-wide collection of Ascochyta rabiei isolates using sequence tagged microsatellite markers. World J Microbiol Biotechnol 2004. [DOI: 10.1007/s11274-004-1550-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Echavarri-Erasun C, Johnson EA. Stimulation of astaxanthin formation in the yeast Xanthophyllomyces dendrorhous by the fungus Epicoccum nigrum. FEMS Yeast Res 2004; 4:511-9. [PMID: 14734032 DOI: 10.1016/s1567-1356(03)00177-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A fungal contaminant on an agar plate containing colonies of Xanthophyllomyces dendrorhous markedly increased carotenoid production by yeast colonies near to the fungal growth. Spent-culture filtrate from growth of the fungus in yeast-malt medium also stimulated carotenoid production by X. dendrorhous. Four X. dendrorhous strains including the wild-type UCD 67-385 (ATCC 24230), AF-1 (albino mutant, ATCC 96816), Yan-1 (beta-carotene mutant, ATCC 96815) and CAX (astaxanthin overproducer mutant) exposed to fungal concentrate extract enhanced astaxanthin up to approximately 40% per unit dry cell weight in the wild-type strain and in CAX. Interestingly, the fungal extract restored astaxanthin biosynthesis in non-astaxanthin-producing mutants previously isolated in our laboratory, including the albino and the beta-carotene mutant. The fungus was identified as Epicoccum nigrum by morphology of sporulating cultures, and the identity confirmed by genetic characterization including rDNA sequencing analysis of the large-subunit (LSU), the internal transcribed spacer, and the D1/D2 region of the LSU. These E. nigrum rDNA sequences were deposited in GenBank under accesssion numbers AF338443, AY093413 and AY093414. Systematic rDNA homology alignments were performed to identify fungi related to E. nigrum. Stimulation of carotenogenesis by E. nigrum and potentially other fungi could provide a novel method to enhance astaxanthin formation in industrial fermentations of X. dendrorhous and Phaffia rhodozyma.
Collapse
Affiliation(s)
- Carlos Echavarri-Erasun
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
18
|
Lund F, Nielsen AB, Skouboe P. Distribution of Penicillium commune isolates in cheese dairies mapped using secondary metabolite profiles, morphotypes, RAPD and AFLP fingerprinting. Food Microbiol 2003. [DOI: 10.1016/s0740-0020(02)00160-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Keiper FJ, Hayden MJ, Park RF, Wellings CR. Molecular genetic variability of Australian isolates of five cereal rust pathogens. MYCOLOGICAL RESEARCH 2003; 107:545-56. [PMID: 12884951 DOI: 10.1017/s0953756203007809] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rust fungi cause economically important diseases of cereals, and their ability to rapidly evolve new virulent races has hindered attempts to control them by genetic resistance. PCR-based molecular tools may assist in understanding the genetic structure of pathogen populations. The high multiplex DNA fingerprinting techniques, amplified fragment length polymorphisms (AFLP), selectively amplified microsatellites (SAM) and sequence-specific amplification polymorphisms (S-SAP) were assessed for their potential in investigations of the genetic relationships among isolates of the wheat rust pathogens, Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and P. striiformis f. sp. tritici (Pst), the oat stem rust pathogen P. graminis f. sp. avenae (Pga), and a putative new P. striiformis special form tentatively designated Barley grass yellow rust (Bgyr). Marker information content, as indicated by the number of species-specific fragments, polymorphic fragments among pathotypes, percentage of polymorphic loci, and the marker index, was highest for the SAM assay, followed by the AFLP and S-SAP assays. UPGMA analysis revealed that all marker types efficiently discriminated the five different taxa and Mantel tests revealed significant correlations between the marker types. Within pathogen groups, the marker types differed in the amount of variation detected among isolates; however, the major differences were consistent and polymorphism was generally low. This was reflected by the AMOVA analysis that significantly partitioned 90% of the genetic variation between taxa. Of the three marker types, SAMS were the most informative, and have the potential for the development of locus-specific microsatellites.
Collapse
Affiliation(s)
- Felicity J Keiper
- Plant Breeding Institute, University of Sydney, Cobbitty, PMB 11, Camden NSW 2570, Australia.
| | | | | | | |
Collapse
|
20
|
Arenal F, Platas G, Martin J, Asensio FJ, Salazar O, Collado J, Vicente F, Basilio A, Ruibal C, Royo I, De Pedro N, Peláez F. Comparison of genotypic and phenotypic techniques for assessing the variability of the fungus Epicoccum nigrum. J Appl Microbiol 2002; 93:36-45. [PMID: 12067372 DOI: 10.1046/j.1365-2672.2002.01654.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The diversity within a collection of worldwide isolates of Epicoccum nigrum has been studied using several phenotypic approaches. In addition, the abilities of phenotypic and genotypic techniques for the differentiation of a set of isolates are compared. METHODS AND RESULTS The methodology used include the study of isozymes (acetyl esterase and alkaline phosphatase), HPLC profile of metabolites and antibiotic activities against a panel of bacteria, yeasts and filamentous fungi, and cytotoxicity against three mammalian cell lines. Two procedures for assessing the relationships within a collection of isolates, using a combination of the techniques, were evaluated, comparing the advantages and disadvantages of each method. CONCLUSIONS The results showed that each individual technique allows differentiation of the isolates studied to some degree and that the information provided by each technique could be considered as complementary. Genotypic techniques were more powerful than the phenotypic ones to discriminate among the strains. SIGNIFICANCE AND IMPACT OF THE STUDY This work evaluates the predictive value of several phenotypic techniques on a collection of fungal isolates, and compares the results obtained with genotypic techniques performed on the same strains.
Collapse
Affiliation(s)
- F Arenal
- Centro de Investigación Basica Merck Sharp & Dohme de España S.A., Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
González-Lamothe R, Segura R, Trapero A, Baldoni L, Botella MA, Valpuesta V. Phylogeny of the fungus Spilocaea oleagina, the causal agent of peacock leaf spot in olive. FEMS Microbiol Lett 2002; 210:149-55. [PMID: 12023092 DOI: 10.1111/j.1574-6968.2002.tb11174.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The fungus Spilocaea oleagina causes peacock leaf spot in olive. Virtually nothing is known about S. oleagina despite the loss of crop yield caused by this fungus. In order to get insight, an in vitro culture of the fungus has been established and its identity confirmed by amplified fragment length polymorphism analysis. Using this in vitro culture, we have cloned and analysed the DNA sequences of the 18S and 28S ribosomal RNA genes (rDNA) as well as the internal transcribed spacers (ITS) and 5.8S rDNA region of S. oleagina. Sequence analysis and comparison to other fungi determined that this fungus belongs to the Dothideomycetes class. We have also determined that S. oleagina is an anamorphic phase of a yet unidentified Venturia species based on phylogenetic analysis using the 28S rDNA and ITS sequences.
Collapse
Affiliation(s)
- Rocío González-Lamothe
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus de Teatinos s/n, 29071, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Wong A, Forbes MR, Smith ML. Characterization of AFLP markers in damselflies: prevalence of codominant markers and implications for population genetic applications. Genome 2001; 44:677-84. [PMID: 11550904 DOI: 10.1139/g01-051] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amplified fragment length polymorphism (AFLP) analysis is becoming increasingly popular as a method for generating molecular markers for population genetic applications. For practical considerations, it is generally assumed in population studies that AFLPs segregate as dominant markers, i.e., that present and absent are the only possible states of a given locus. We tested the assumption of dominance in natural populations of the damselfly Nehalennia irene (Hagen) (Odonata: Coenagrionidae). Electro-blotted AFLP products from 21 samples were probed with individual markers. Eleven markers were analyzed, of which two were monomorphic and nine were polymorphic. Only two of the polymorphic markers behaved in a strictly dominant manner. The remaining seven polymorphic markers displayed various degrees of codominance, with 2-10 visible alleles in the sample. Of the three markers displaying the highest degree of variability, two contained microsatellite repeat tracts. Our results suggest that the assumption of dominance is unfounded. As a result, AFLP analysis may be unsuitable for estimating several important population genetic parameters, including genetic diversity.
Collapse
Affiliation(s)
- A Wong
- Department of Biology, Carleton University, Ottawa, ON, Canada.
| | | | | |
Collapse
|
23
|
Carr E, Eason H, Feng S, Hoogenraad A, Croome R, Soddell J, Lindrea K, Seviour R. RAPD-PCR typing of Acinetobacter isolates from activated sludge systems designed to remove phosphorus microbiologically. J Appl Microbiol 2001; 90:309-19. [PMID: 11298224 DOI: 10.1046/j.1365-2672.2001.01245.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS This study investigated whether there were differences in RAPD fingerprints between already described genomic species of Acinetobacter and those from activated sludge systems. Whether plant-specific populations of acinetobacters exist was also examined. METHODS AND RESULTS Fifty-two isolates of Acinetobacter from four biological phosphorus removal (EBPR) systems of different configurations, and the known genomic species, were characterized using RAPD-PCR, and fragments separated on agarose gels. Patterns were analysed using Gel Pro software and data analysed numerically. RAPD-PCR produced patterns suggesting that many environmental isolates differ from known genomic species. In two cases, strains from individual plants clustered closely enough together to imply that there may be plant-specific populations of acinetobacters. CONCLUSION The data suggest that current understanding of the taxonomic status of Acinetobacter may need modifying to accommodate non-clinical isolates, as many of the clusters emerging after numerical analysis of RAPD-PCR fragments from activated sludge isolates were quite separate from the clusters containing the already described genomic species. Some evidence was also obtained from the clusters generated to support a view that particular populations of Acinetobacter may occur in individual activated sludge plants. SIGNIFICANCE AND IMPACT OF THE STUDY These data suggest that the current understanding of the systematics of Acinetobacter, based as it is almost exclusively on clinical isolates, may need drastic revision to accommodate environmental strains. They also suggest that a re-examination of the importance and role of Acinetobacter in the activated sludge process may be appropriate.
Collapse
Affiliation(s)
- E Carr
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Genetic and pathogenic variation among cereal, medic and sub-clover isolates of Pythium irregulare. ACTA ACUST UNITED AC 2001. [DOI: 10.1017/s0953756200002902] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|