1
|
Qiu Y, Ozturk S, Cui X, Qin W, Wu Q, Liu S. Increased heat tolerance and transcriptome analysis of Salmonella enterica Enteritidis PT 30 heat-shocked at 42 ℃. Food Res Int 2023; 167:112636. [PMID: 37087231 DOI: 10.1016/j.foodres.2023.112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
In this study, we compared the heat tolerance parameter (D65℃) values of Salmonella enterica serovar Enteritidis PT 30 (S. Enteritidis ) heat adapted at different degrees (at 42 ℃ for 20-180 min) and cultivated using two methods. The treated group with the highest D65℃ value (LP-42 ℃-60 min) and the untreated groups (Control-TSB and Control-TSA) were subjected to transcriptome analysis. Heat-adaptation increased the D65℃ values of S. Enteritidis by 24.5-60.8%. The D65℃ values of the LP-42 ℃-60 min group (1.85 ± 0.13 min, 7.7% higher) was comparable to that of the Control-TSA. A total of 483 up- and 443 downregulated genes of S. enteritidis were identified in the LP-42 ℃-60 min group (log2fold change > 1, adjusted p-value < 0.05). Among these genes, 5 co-expressed and 15 differentially expressed genes in the LP-42 ℃-60 min and Control-TSA grops possibly contributed to the high D65℃ values of S. Enteritidis . The Rpo regulon was involved in the heat adaptation of S. Enteritidis , as evidenced by the significant upregulation of rpoS, rpoN, and rpoE. KEGG enrichment pathways, such as biosynthesis of secondary metabolites, tricarboxylic acid, and ribosomes were identified and mapped to reveal the molecular mechanisms of S. enteritidis during heat adaptation. This study quantified the enhanced heat tolerance of S. Enteritidis heat adapted at different degrees of heat-adaptation. The results of this study may serve as a basis for elucidating the molecular mechanisms underlying the enhanced heat tolerance at the transcriptome level.
Collapse
Affiliation(s)
- Yan Qiu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Samet Ozturk
- Department of Food Engineering, Gümüşhane University, Gümüşhane, Turkey
| | - Xinyao Cui
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China; Food Processing and Safety Institute, Sichuan Agricultural University, Ya'an, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China; Food Processing and Safety Institute, Sichuan Agricultural University, Ya'an, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
2
|
|
3
|
Singh N, Anand S, Kraus B, Sutariya S. Short communication: Evaluating the recovery potential of injured cells of Listeria innocua under product temperature-abuse conditions and passage through simulated gastrointestinal fluids. J Dairy Sci 2021; 104:2787-2793. [PMID: 33485677 DOI: 10.3168/jds.2019-18071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/29/2020] [Indexed: 11/19/2022]
Abstract
Ice cream handling and serving conditions on the consumer side may result in temperature abuse before consumption. Under some extreme conditions, even the sporadic presence of injured bacterial cells might pose a health risk due to the possibility of recovery of those cells. We conducted this investigation to evaluate the potential of injured cells of Listeria innocua to recover under ice cream temperature abuse conditions and on exposure to simulated gastrointestinal (GI) fluids. Ice cream mix samples (42% total solids), spiked with 4 log10 cfu/g of Listeria innocua, were thermally treated at 69°C for 30 min. Potential heat-injured cells were recovered in buffered Listeria broth (BLEB), followed by isolation on Listeria-specific modified Oxford agar (MOX). The ice cream mix samples, containing potentially injured cells of Listeria innocua, were followed through overnight aging (7°C), freezing (-3.3°C), and overnight hardening (-40°C) steps to obtain the final ice cream samples. To simulate temperature abuse conditions, the samples were held for 12 h at 4.4°C, followed by 30 min at room temperature (22°C); this treatment was considered the first cycle of temperature abuse. To generate a worst-case scenario, the samples were exposed to 3 such consecutive temperature abuse cycles. At the end of each cycle, direct plating was done on MOX to recover viable cells, and BLEB enrichment verified the presence of potential injured cells. In addition, the ice cream samples, containing potential injured cells, were passed through simulated GI fluids. As a first step, samples were mixed (1:1) with simulated gastric fluids (pH 1.0 and 2.0 before mixing) and held at 37°C in a shaker incubator. Samples drawn at 15, 30, and 60 min were analyzed for viable and potential injured cells. To study the effect of sequential transit through simulated intestinal fluid, a mixture of ice cream and gastric fluid (1:1) from the gastric fluid experiment above was added to simulated intestinal fluid (pH 6.8) and held at 37°C. Samples were analyzed at 30 and 360 min for viable and potential injured cells. Three trials were conducted and the samples collected in duplicates. The temperature abuse or GI fluid exposure studies did not result in the recovery of potential injured cells of Listeria innocua in the ice cream samples under the conditions tested. Exposure to gastric fluids, however, did not eliminate the potential injured cells. Further studies are necessary to understand the exact risk implications of these findings.
Collapse
Affiliation(s)
- Neha Singh
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings 57007
| | - Sanjeev Anand
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings 57007.
| | | | | |
Collapse
|
4
|
He S, Fong K, Wang S, Shi X. Ethanol adaptation in foodborne bacterial pathogens. Crit Rev Food Sci Nutr 2020; 61:777-787. [DOI: 10.1080/10408398.2020.1746628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shoukui He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Karen Fong
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Neha N, Anand S. Short communication: Entrapment of Listeria cells within air pockets of ice cream mix matrix may lead to potentially heat-injured cells. J Dairy Sci 2019; 102:9721-9726. [DOI: 10.3168/jds.2018-15575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/02/2019] [Indexed: 11/19/2022]
|
6
|
Neha N, Anand S, Djira G, Kraus B, Sutariya S. Listeria cross contamination levels in raw ice cream mix can serve as a predictor of their potential presence as heat-injured cells. J Dairy Sci 2018; 101:9659-9669. [DOI: 10.3168/jds.2018-14486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022]
|
7
|
Saá Ibusquiza P, Herrera JJR, Vázquez-Sánchez D, Parada A, Cabo ML. A new and efficient method to obtain benzalkonium chloride adapted cells of Listeria monocytogenes. J Microbiol Methods 2012; 91:57-61. [PMID: 22841739 DOI: 10.1016/j.mimet.2012.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 11/25/2022]
Abstract
A new method to obtain benzalkonium chloride (BAC) adapted L. monocytogenes cells was developed. A factorial design was used to assess the effects of the inoculum size and BAC concentration on the adaptation (measured in terms of lethal dose 50 -LD50-) of 6 strains of Listeria monocytogenes after only one exposure. The proposed method could be applied successfully in the L. monocytogenes strains with higher adaptive capacity to BAC. In those cases, a significant empirical equation was obtained showing a positive effect of the inoculum size and a positive interaction between the effects of BAC and inoculum size on the level of adaptation achieved. However, a slight negative effect of BAC, due to the biocide, was also significant. The proposed method improves the classical method based on successive stationary phase cultures in sublethal BAC concentrations because it is less time-consuming and more effective. For the laboratory strain L. monocytogenes 5873, by applying the new procedure it was possible to increase BAC-adaptation 3.69-fold in only 33 h, whereas using the classical procedure 2.61-fold of increase was reached after 5 days. Moreover, with the new method, the maximum level of adaptation was determined for all the strains reaching surprisingly almost the same concentration of BAC (mg/l) for 5 out 6 strains. Thus, a good reference for establishing the effective concentrations of biocides to ensure the maximum level of adaptation was also determined.
Collapse
Affiliation(s)
- Paula Saá Ibusquiza
- Instituto de Investigaciones Marinas, Eduardo Cabello, 6. 36208 Vigo, Pontevedra, Spain
| | | | | | | | | |
Collapse
|
8
|
Wałecka E, Molenda J, Karpíšková R, Bania J. Effect of heat exposure on invasiveness of Listeria monocytogenes strains. Foodborne Pathog Dis 2011; 8:839-41. [PMID: 21381944 DOI: 10.1089/fpd.2010.0790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of a 54°C heat exposure lasting 20 and 60 minutes on the invasiveness of 10 Listeria monocytogenes strains in the exponential and stationary phases was investigated. It was shown that heat exposure significantly reduced the L. monocytogenes count. A maximal reduction of 5 log took place after 60 minutes of heating. No significant differences in survival between exponential and stationary phases were observed for most strains. Twenty minutes of heat exposure resulted in a reduction of the invasiveness of L. monocytogenes, which was more pronounced in the exponential-phase bacteria. Prolongation of heating to 60 minutes was shown to have a significant impact on the invasiveness of five stationary-phase strains. It was demonstrated that heat exposure influences the survival of L. monocytogenes strains as expected. Also, the invasiveness was significantly changed in a time- and growth phase-dependent manner. Low reductions of bacterial counts in milder conditions, that is, 20 minutes of heat, were accompanied by a decrease of the invasiveness of all L. monocytogenes strains. Prolongation of heating time to 60 minutes resulted in significant reduction of bacterial numbers. However, bacteria, especially those in the stationary phase, which survived this treatment can become more invasive.
Collapse
Affiliation(s)
- Ewa Wałecka
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | | |
Collapse
|
9
|
Szlachta K, Keller SE, Shazer A, Chirtel S. Thermal resistance of Listeria monocytogenes Scott A in ultrafiltered milk as related to the effect of different milk components. J Food Prot 2010; 73:2110-5. [PMID: 21219727 DOI: 10.4315/0362-028x-73.11.2110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pasteurization parameters for grade A milk are well established and set by regulation. However, as solids levels increase, an increased amount of heat is required to destroy any pathogens present. This effect is not well characterized. In this work, the effect of increased dairy solids levels on the thermal resistance of Listeria monocytogenes was examined through the use of ultrafiltered (UF) milk, reconstituted milk powder, and the milk components lactose and caseinate. From the results obtained, lactose and caseinate did not appear to affect thermal resistance. In addition, the level of milk fat, up to 10% of the total solids in UF whole milk, did not result in statistically significant changes to thermal resistance when compared with UF skim milk. Reconstituted skim milk powder at 27% total solids (D⁶²-value = 1.16 ± 0.2 [SD] min, z = 5.7) did result in increased thermal resistance, as compared with reconstituted skim milk powder at 17.5% (D⁶²-value = 0.86 ± 0.02 min, z = 5.57) and UF whole milk at 27% total solids (D⁶²-value = 0.66 ± 0.07 min, z = 5.16). However, that increase appeared to be due to the increase in salt levels, not to increases in caseinate, fat, or lactose. Consequently, total solids, as a single measure, could not be used to predict increased thermal resistance of L. monocytogenes in concentrated milk.
Collapse
Affiliation(s)
- Kinga Szlachta
- Illinois Institute of Technology, Summit-Argo, Illinois 60501, USA
| | | | | | | |
Collapse
|
10
|
Miller FA, Ramos B, Brandão TRS, Teixeira P, Silva CLM. Comparison of recovery methods for the enumeration of injured Listeria innocua cells under isothermal and non-isothermal treatments. Food Microbiol 2010; 27:1112-20. [PMID: 20832692 DOI: 10.1016/j.fm.2010.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 07/15/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022]
Abstract
This study compares the feature of different media with the combination of selective with non-selective media in a TAL method for recovery of Listeria innocua cells exposed to thermal treatments. Experiments were conducted in broth at constant temperature (52.5 and 65.0 °C) and pH (4.5 and 7.5) conditions, using NaCl or glycerol to adjust water activity to 0.95. Four different media were used in bacterial cell enumeration: (i) a non-selective medium - TSAYE, (ii) two selective media - TSAYE + 5%NaCl and Palcam Agar and (iii) TAL medium (consisting of a layer of Palcam Agar overlaid with one of TSAYE). Two food products were used as case studies aiming at comparison of results obtained on selective and TAL media enumeration. Parsley samples were inoculated with L. innocua and subjected to posterior thermal treatments both under isothermal (52.5, 60.0 and 65.0 °C) and non-isothermal (heating rate of 1.8 °C/min from 20.0 to 65.0 °C) conditions. The recovery capability of TAL method was also studied when a pre-cooked frozen food (i.e. meat pockets) was fried (oil temperature of ∼180 °C). TAL method proved to be better than Palcam Agar in terms of capability to recover injured cells and was effective in L. innocua enumeration when non-sterile samples were analysed.
Collapse
Affiliation(s)
- Fátima A Miller
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, CBQF-Centro de Biotecnologia e Química Fina, Porto, Portugal
| | | | | | | | | |
Collapse
|
11
|
Cebrián G, Sagarzazu N, Pagán R, Condón S, Mañas P. Development of stress resistance in Staphylococcus aureus after exposure to sublethal environmental conditions. Int J Food Microbiol 2010; 140:26-33. [DOI: 10.1016/j.ijfoodmicro.2010.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 02/11/2010] [Accepted: 02/13/2010] [Indexed: 10/19/2022]
|
12
|
Van Derlinden E, Lule I, Bernaerts K, Van Impe J. Quantifying the heterogeneous heat response ofEscherichia coliunder dynamic temperatures. J Appl Microbiol 2010; 108:1123-35. [DOI: 10.1111/j.1365-2672.2009.04512.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Miller FA, Gil MM, Brandão TR, Teixeira P, Silva CL. Sigmoidal thermal inactivation kinetics of Listeria innocua in broth: Influence of strain and growth phase. Food Control 2009. [DOI: 10.1016/j.foodcont.2009.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
McKinney JM, Williams RC, Boardman GD, Eifert JD, Sumner SS. Effect of acid stress, antibiotic resistance, and heat shock on the resistance of Listeria monocytogenes to UV light when suspended in distilled water and fresh brine. J Food Prot 2009; 72:1634-40. [PMID: 19722394 DOI: 10.4315/0362-028x-72.8.1634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure to sublethal processing treatments can stimulate bacterial stress responses. The purpose of this research was to determine whether adaptation to common food processing stresses encountered during the preparation of ready-to-eat foods affects the dose of UV light required to significantly reduce Listeria monocytogenes populations in sterile distilled water and a 9% NaCl solution, using uridine as a chemical actinometer. L. monocytogenes strains N1-227 (from hot dog batter), N3-031 (from turkey franks), and R2-499 (from ready-to-eat meat) were acid stressed for 3 h at 35 degrees C in Trypticase soy broth with yeast extract acidified to pH 5.0, heat shocked for 1 h at 48 degrees C in brain heart infusion broth (BHIB), and selected for sulfanilamide resistance (512 microg/ml). These strains were then mixed in equal proportions and suspended in water and 9% NaCl solution, each containing 10(-4) M uridine. Samples were exposed to UV light (253.7 nm) for 0, 5, 10, 15, 20, 25, or 30 min. Inactivation was evaluated by surface plating onto modified Oxford agar and Trypticase soy agar with yeast extract and by enrichment in BHIB followed by incubation at 37 degrees C for 24 h. The absorbance of each sample was measured before and after irradiation to calculate the dose of UV light. There were no significant differences between population estimates based on medium or suspension solution. There were no population differences between acid-stressed and antibiotic-resistant or unstressed and heat-shocked L. monocytogenes strains. However, acid-stressed and antibiotic-resistant strains were significantly more resistant to UV light than were unstressed and heat-shocked strains (P < or = 0.05).
Collapse
Affiliation(s)
- Julie M McKinney
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA.
| | | | | | | | | |
Collapse
|
15
|
McCann MS, McGovern AC, McDowell DA, Blair IS, Sheridan JJ. Effects of storage and the presence of a beef microflora on the thermal resistance of Salmonella Typhimurium DT104 in beef and broth systems. J Appl Microbiol 2007; 102:1561-9. [PMID: 17578421 DOI: 10.1111/j.1365-2672.2006.03223.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the effects of storage and the presence of a beef microflora on the thermal resistance of Salmonella serotype Typhimurium DT104 on beef surfaces and in a broth system during subsequent heat treatments after extended low-temperature storage (4 degrees C for 14 days) or mild temperature abuse (10 degrees C for 7 days). METHODS AND RESULTS Surviving Salm. Typhimurium DT104 cells were estimated after heating in a water bath (55 degrees C) by plating beef and broth samples on tryptone soya agar and overlaying with xylose-lysine-deoxycholate agar. In beef and broth systems, D(55) values for Salm. Typhimurium DT104 stored at 4 degrees C or 10 degrees C in the presence or absence of a beef microflora were significantly lower (P < 0.01) than the D values for this organism heat-treated immediately after inoculation. In beef systems, the D(55) values were significantly lower (P < 0.05) in the presence of a beef microflora than the D(55) values obtained in 'pure' culture under all temperature/storage combinations. However, in broth systems, there was no significant difference between the D(55) values obtained in 'pure' culture and the D(55) values obtained from systems containing beef microflora. CONCLUSIONS Storage of Salm. Typhimurium DT104 significantly reduced the thermal resistance of the pathogen in beef and broth systems. In the presence of high numbers of a Gram-negative beef microflora, the heat sensitivity of the pathogen was further increased on beef surfaces but not in broth. SIGNIFICANCE AND IMPACT OF THE STUDY Studies investigating the survival of Salm. Typhimurium DT104 in different food systems will help define safe food preservation processes and will aid in the elimination this pathogen from the food production environments.
Collapse
Affiliation(s)
- M S McCann
- Ashtown Food Research Centre, Teagasc, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
16
|
Chung HJ, Wang S, Tang J. Influence of heat transfer with tube methods on measured thermal inactivation parameters for Escherichia coli. J Food Prot 2007; 70:851-9. [PMID: 17477252 DOI: 10.4315/0362-028x-70.4.851] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to investigate the influence of heat transfer on measured thermal inactivation kinetic parameters of bacteria in solid foods when using tube methods. The bacterial strain selected for this study, Escherichia coli K-12, had demonstrated typical first-order inactivation characteristics under isothermal test conditions. Three tubes of different sizes (3, 13, and 20 mm outer diameter) were used in the heat treatments at 57, 60, and 63 degrees C with mashed potato as the test food. A computer model was developed to evaluate the effect of transit heat transfer behavior on microbial inactivation in the test tubes. The results confirmed that the survival curves of E. coli K-12 obtained in 3-mm capillary tubes were log linear at the three tested temperatures. The survival curves observed under nonisothermal conditions in larger tubes were no longer log linear. Slow heat transfer alone could only partially account for the large departures from log-linear behavior. Tests with the same bacterial strain after 5 min of preconditioning at a sublethal temperature of 45 degrees C revealed significantly enhanced heat resistance. Confirmative tests revealed that the increased heat resistance of the test bacterium in the center of the large tubes during the warming-up periods resulted in significantly larger D-values than those obtained with capillary tube methods.
Collapse
Affiliation(s)
- Hyun-Jung Chung
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164-6120, USA
| | | | | |
Collapse
|
17
|
Miller FA, Brandão TRS, Teixeira P, Silva CLM. Recovery of heat-injured Listeria innocua. Int J Food Microbiol 2006; 112:261-5. [PMID: 16784792 DOI: 10.1016/j.ijfoodmicro.2006.04.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2006] [Indexed: 11/13/2022]
Abstract
Listeria innocua was subjected to thermal inactivation and the extent of heat-injured cells was quantified. Cultures were heated in liquid medium for different times, using temperatures in the range of 52.5 to 65.0 degrees C, and plated on Tryptic Soy Agar with 0.6% yeast extract (TSAYE) used as non-selective medium and on TSAYE plus 5% NaCl (TSAYE+NaCl) and Palcam agar with selective supplement (Palcam agar) as selective media. The difference observed in counts in non-selective and in selective media gave an indication of cell injury during the heat treatment. D- and z- values were calculated for all conditions considered. For each temperature, D-values obtained using non-selective recovery procedures were higher than the ones obtained using the two selective media. When comparing the selective media, it can be concluded that Palcam agar allowed recovery and growth of thermally injured cells and so it was less inhibitor than TSAYE+NaCl. Another important result was the influence of temperature on the degree of cellular injury. As temperature increases, the degree of heat-injured cells also increases, and consequently concern has to be taken with the temperature and the counting medium used in food processing studies. The results of this work clearly demonstrated that selective media used for Listeria monocytogenes enumeration/detection might not be suitable for the recovery of heat-injured cells, which can dangerously underestimate the presence of this foodborne pathogen.
Collapse
Affiliation(s)
- Fátima A Miller
- Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | | | | | | |
Collapse
|
18
|
den Besten HMW, Mataragas M, Moezelaar R, Abee T, Zwietering MH. Quantification of the effects of salt stress and physiological state on thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579. Appl Environ Microbiol 2006; 72:5884-94. [PMID: 16957208 PMCID: PMC1563614 DOI: 10.1128/aem.00780-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/16/2006] [Indexed: 11/20/2022] Open
Abstract
The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50 degrees C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions.
Collapse
Affiliation(s)
- Heidy M W den Besten
- Wageningen University and Research Centre, Laboratory of Food Microbiology, P.O. Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Pucciarelli MG, Calvo E, Sabet C, Bierne H, Cossart P, García-del Portillo F. Identification of substrates of theListeria monocytogenes sortases A and B by a non-gel proteomic analysis. Proteomics 2005; 5:4808-17. [PMID: 16247833 DOI: 10.1002/pmic.200402075] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sortases are enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria by cleaving a sorting motif located in the C-terminus of the protein substrate. The best-characterized motif is LPXTG, which is cleaved between the T and G residues. In this study, a non-gel proteomic approach was used to identify surface proteins recognized by the two sortases of Listeria monocytogenes, SrtA and SrtB. Material containing peptidoglycan and strongly associated proteins was purified from sortase-defective mutants, digested with trypsin, and the resulting peptide mixture analysed by two-dimensional nano-liquid chromatography coupled to ion-trap mass spectrometry. Unlike enzymes involved in peptidoglycan metabolism, other surface proteins displayed uneven distribution in the mutants. A total of 13 LPXTG-containing proteins were identified exclusively in strains having a functional SrtA. In contrast, two surface proteins, Lmo2185 and Lmo2186, were identified only when SrtB was active. The analysis of the peptides identified in these proteins suggests that SrtB of L. monocytogenes may recognize two different sorting motifs, NXZTN and NPKXZ. Taken together, these data demonstrate that non-gel proteomics is a powerful technique to rapidly identify sortase substrates and to gain insights on potential sorting motifs.
Collapse
Affiliation(s)
- M Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
De Angelis M, Di Cagno R, Huet C, Crecchio C, Fox PF, Gobbetti M. Heat shock response in Lactobacillus plantarum. Appl Environ Microbiol 2004; 70:1336-46. [PMID: 15006751 PMCID: PMC368309 DOI: 10.1128/aem.70.3.1336-1346.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
Heat stress resistance and response were studied in strains of Lactobacillus plantarum. Stationary-phase cells of L. plantarum DPC2739 had decimal reduction times (D values) (D value was the time that it took to reduce the number of cells by 1 log cycle) in sterile milk of 32.9, 14.7, and 7.14 s at 60, 72, and 75 degrees C, respectively. When mid-exponential-phase cells were used, the D values decreased. The temperature increases which caused a 10-fold reduction in the D value ranged from 9 to 20 degrees C, depending on the strain. Part of the cell population treated at 72 degrees C for 90 s recovered viability during incubation at 7 degrees C in sterile milk for 20 days. When mid-exponential- or stationary-phase cells of L. plantarum DPC2739 were adapted to 42 degrees C for 1 h, the heat resistance at 72 degrees C for 90 s increased ca. 3 and 2 log cycles, respectively. Heat-adapted cells also showed increased growth at pH 5 and in the presence of 6% NaCl. Two-dimensional gel electrophoresis of proteins expressed by control and heat-adapted cells revealed changes in the levels of expression of 31 and 18 proteins in mid-exponential- and stationary-phase cells, respectively. Twelve proteins were commonly induced. Nine proteins induced in the heat-adapted mid-exponential- and/or stationary-phase cells of L. plantarum DPC2739 were subjected to N-terminal sequencing. These proteins were identified as DnaK, GroEL, trigger factor, ribosomal proteins L1, L11, L31, and S6, DNA-binding protein II HlbA, and CspC. All of these proteins have been found to play a role in the mechanisms of stress adaptation in other bacteria. Antibodies against GroES detected a protein which was induced moderately, while antibodies against DnaJ and GrpE reacted with proteins whose level of expression did not vary after heat adaptation. This study showed that the heat resistance of L. plantarum is a complex process involving proteins with various roles in cell physiology, including chaperone activity, ribosome stability, stringent response mediation, temperature sensing, and control of ribosomal function. The physiological mechanisms of response to pasteurization in L. plantarum are fundamental for survival in cheese during manufacture.
Collapse
Affiliation(s)
- Maria De Angelis
- Institute of Sciences of Food Production, CNR, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Weeks ME, James DC, Robinson GK, Smales CM. Global changes in gene expression observed at the transition from growth to stationary phase in
Listeria monocytogenes
ScottA batch culture. Proteomics 2003; 4:123-35. [PMID: 14730677 DOI: 10.1002/pmic.200300527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.
Collapse
Affiliation(s)
- Mark E Weeks
- Research School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | | |
Collapse
|
22
|
Helloin E, Bouttefroy A, Gay M, Phan Thanh L. Impact of preheating on the behavior of Listeria monocytogenes in a broth that mimics Camembert cheese composition. J Food Prot 2003; 66:265-71. [PMID: 12597487 DOI: 10.4315/0362-028x-66.2.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of preheating on the survival of L. monocytogenes in Richard's broth, which mimics the composition of Camembert cheese composition, was examined. Experiments were carried out to reproduce contamination of cheese with environmental heat-stressed cells of L. monocytogenes surviving hot-cleaning procedures. Cells in mid-log phase were heated for 30 min at 56 degrees C before being inoculated into Richard's broth. The pHs and temperatures of Richard's broth were chosen to recreate the conditions of curd dripping (pH 5, 25 degrees C), of the beginning of cheese ripening (pH 5, 12 degrees C), and of the beginning (pH 5, 4 degrees C) and the end (pH 7, 4 degrees C) of cheese storage. Immediately after heat treatment, the viability loss was especially high for strain 306715, which exhibited only 0.6% +/- 0.2% survival, compared with 22% +/- 8.7% for strain EGD. The percentages of the surviving heated cells that were injured were 93% +/- 8% for strain 306715 and 98% +/- 3% for strain EGD. The destruction of the surviving L. monocytogenes cells was accelerated when they encountered the pH and temperature conditions of Camembert cheese during manufacturing, ripening, and cold storage (pH 5 at 25, 12, and 4 degrees C, respectively). The multiplication of the surviving heated cells was retarded under favorable growth conditions similar to those of storage by the distributor and the consumer (pH 7 at 4 and 12 degrees C, respectively).
Collapse
Affiliation(s)
- E Helloin
- Association ASEPT, BP 2047, 53020 Laval cedex 9, France
| | | | | | | |
Collapse
|