1
|
Monteith AJ, Skaar EP. The impact of metal availability on immune function during infection. Trends Endocrinol Metab 2021; 32:916-928. [PMID: 34483037 PMCID: PMC8516721 DOI: 10.1016/j.tem.2021.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Nutrient transition metals are required cofactors for many proteins to perform functions necessary for life. As such, the concentration of nutrient metals is carefully maintained to retain critical biological processes while limiting toxicity. During infection, invading bacterial pathogens must acquire essential metals, such as zinc, manganese, iron, and copper, from the host to colonize and cause disease. To combat this, the host exploits the essentiality and toxicity of nutrient metals by producing factors that limit metal availability, thereby starving pathogens or accumulating metals in excess to intoxicate the pathogen in a process termed 'nutritional immunity'. As a result of inflammation, a heterogeneous environment containing both metal-replete and -deplete niches is created, in which nutrient metal availability may have an underappreciated role in regulating immune cell function during infection. How the host manipulates nutrient metal availability during infection, and the downstream effects that nutrient metals and metal-sequestering proteins have on immune cell function, are discussed in this review.
Collapse
Affiliation(s)
- Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Proteinous Components of Neutrophil Extracellular Traps Are Arrested by the Cell Wall Proteins of Candida albicans during Fungal Infection, and Can Be Used in the Host Invasion. Cells 2021; 10:cells10102736. [PMID: 34685715 PMCID: PMC8534323 DOI: 10.3390/cells10102736] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
One of defense mechanisms of the human immune system to counteract infection by the opportunistic fungal pathogen Candida albicans is the recruitment of neutrophils to the site of invasion, and the subsequent production of neutrophil extracellular traps (NETs) that efficiently capture and kill the invader cells. In the current study, we demonstrate that within these structures composed of chromatin and proteins, the latter play a pivotal role in the entrapment of the fungal pathogen. The proteinous components of NETs, such as the granular enzymes elastase, myeloperoxidase and lactotransferrin, as well as histones and cathelicidin-derived peptide LL-37, are involved in contact with the surface of C. albicans cells. The fungal partners in these interactions are a typical adhesin of the agglutinin-like sequence protein family Als3, and several atypical surface-exposed proteins of cytoplasmic origin, including enolase, triosephosphate isomerase and phosphoglycerate mutase. Importantly, the adhesion of both the elastase itself and the mixture of proteins originating from NETs on the C. albicans cell surface considerably increased the pathogen potency of human epithelial cell destruction compared with fungal cells without human proteins attached. Such an implementation of adsorbed NET-derived proteins by invading C. albicans cells might alter the effectiveness of the fungal pathogen entrapment and affect the further host colonization.
Collapse
|
3
|
Ito R, Mine Y, Yumisashi Y, Yoshioka R, Hamaoka M, Taji T, Murayama T, Nikawa H. In Vivo Efficacy of Lacticaseibacillus rhamnosus L8020 in a Mouse Model of Oral Candidiasis. J Fungi (Basel) 2021; 7:jof7050322. [PMID: 33919079 PMCID: PMC8143095 DOI: 10.3390/jof7050322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oral candidiasis presents with multiple clinical manifestations. Among known pathogenic Candida species, Candida albicans is the most virulent and acts as the main causative fungus of oral candidiasis. Novel treatment modalities are needed because of emergent drug resistance and frequent candidiasis recurrence. Here, we evaluated the ability of Lacticaseibacillus rhamnosus L8020, isolated from healthy and caries-free volunteers, to prevent against the onset of oral candidiasis in a mouse model. Mice were infected with C. albicans, in the presence or absence of L. rhamnosus L8020. The mice were treated with antibiotics and corticosteroid to disrupt the oral microbiota and induce immunosuppression. We demonstrated that oral consumption of L. rhamnosus L8020 by C. albicans-infected mice abolished the pseudomembranous region of the mouse tongue; it also suppressed changes in the expression levels of pattern recognition receptor and chemokine genes. Our results suggest that L. rhamnosus L8020 has protective or therapeutic potential against oral candidiasis, which supports the potential use of this probiotic strain for oral health management.
Collapse
Affiliation(s)
- Rei Ito
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| | - Yuichi Mine
- Department of Medical System Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.Y.); (T.M.)
- Correspondence: ; Tel.: +81-82-257-5446
| | - Yoshie Yumisashi
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| | - Reina Yoshioka
- Department of Medical System Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.Y.); (T.M.)
| | - Misa Hamaoka
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| | - Tsuyoshi Taji
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| | - Takeshi Murayama
- Department of Medical System Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.Y.); (T.M.)
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (R.I.); (Y.Y.); (M.H.); (T.T.); (H.N.)
| |
Collapse
|
4
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:E3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
5
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
6
|
Ballard E, Yucel R, Melchers WJG, Brown AJP, Verweij PE, Warris A. Antifungal Activity of Antimicrobial Peptides and Proteins against Aspergillus fumigatus. J Fungi (Basel) 2020; 6:jof6020065. [PMID: 32443413 PMCID: PMC7345740 DOI: 10.3390/jof6020065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial peptides and proteins (AMPs) provide an important line of defence against invading microorganisms. However, the activity of AMPs against the human fungal pathogen Aspergillus fumigatus remains poorly understood. Therefore, the aim of this study was to characterise the anti-Aspergillus activity of specific human AMPs, and to determine whether A. fumigatus can possess resistance to specific AMPs, as a result of in-host adaptation. AMPs were tested against a wide range of clinical isolates of various origins (including cystic fibrosis patients, as well as patients with chronic and acute aspergillosis). We also tested a series of isogenic A. fumigatus isolates obtained from a single patient over a period of 2 years. A range of environmental isolates, obtained from soil in Scotland, was also included. Firstly, the activity of specific peptides was assessed against hyphae using a measure of fungal metabolic activity. Secondly, the activity of specific peptides was assessed against germinating conidia, using imaging flow cytometry as a measure of hyphal growth. We showed that lysozyme and histones inhibited hyphal metabolic activity in all the A. fumigatus isolates tested in a dose-dependent fashion. In addition, imaging flow cytometry revealed that histones, β-defensin-1 and lactoferrin inhibited the germination of A. fumigatus conidia.
Collapse
Affiliation(s)
- Eloise Ballard
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Raif Yucel
- Iain Fraser Cytometry Centre (IFCC), Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Cytomics Centre, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK;
| | - Willem J. G. Melchers
- Centre for Expertise in Mycology and Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (W.J.G.M.); (P.E.V.)
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- MRC Centre for Medical Mycology at the University of Exeter, Exeter 4EX 4QD, UK;
| | - Paul E. Verweij
- Centre for Expertise in Mycology and Department of Medical Microbiology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (W.J.G.M.); (P.E.V.)
| | - Adilia Warris
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
- MRC Centre for Medical Mycology at the University of Exeter, Exeter 4EX 4QD, UK;
- Correspondence: ; Tel.: +44-1392-727-593
| |
Collapse
|
7
|
Lactoferrin Is Broadly Active against Yeasts and Highly Synergistic with Amphotericin B. Antimicrob Agents Chemother 2020; 64:AAC.02284-19. [PMID: 32094132 PMCID: PMC7179636 DOI: 10.1128/aac.02284-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional milk protein with antimicrobial activity against a range of pathogens. While numerous studies report that LF is active against fungi, there are considerable differences in the level of antifungal activity and the capacity of LF to interact with other drugs. Here we undertook a comprehensive evaluation of the antifungal spectrum of activity of three defined sources of LF across 22 yeast and 24 mold species and assessed its interactions with six widely used antifungal drugs. LF was broadly and consistently active against all yeast species tested (MICs, 8 to 64 μg/ml), with the extent of activity being strongly affected by iron saturation. LF was synergistic with amphotericin B (AMB) against 19 out of 22 yeast species tested, and synergy was unaffected by iron saturation but was affected by the extent of LF digestion. LF-AMB combination therapy significantly prolonged the survival of Galleria mellonella wax moth larvae infected with Candida albicans or Cryptococcus neoformans and decreased the fungal burden 12- to 25-fold. Evidence that LF directly interacts with the fungal cell surface was seen via scanning electron microscopy, which showed pore formation, hyphal thinning, and major cell collapse in response to LF-AMB synergy. Important virulence mechanisms were disrupted by LF-AMB treatment, which significantly prevented biofilms in C. albicans and C. glabrata, inhibited hyphal development in C. albicans, and reduced cell and capsule size and phenotypic diversity in Cryptococcus Our results demonstrate the potential of LF-AMB as an antifungal treatment that is broadly synergistic against important yeast pathogens, with the synergy being attributed to the presence of one or more LF peptides.
Collapse
|
8
|
Velliyagounder K, Rozario SD, Fine DH. The effects of human lactoferrin in experimentally induced systemic candidiasis. J Med Microbiol 2019; 68:1802-1812. [PMID: 31702539 DOI: 10.1099/jmm.0.001098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction. Candida albicans is responsible for several types of oral and systemic infections. In light of emerging resistance to antifungals, studies have demonstrated the antifungal effect of lactoferrin (LF), which is part of the innate immune system, has anticandidal activities.Methodology. C. albicans (2×106 c.f.u. ml-1) were incubated either with PBS or human LF (hLF) (100 µg ml-1) at 37 °C for 24 h and then RNA was isolated and virulence factors analysed. C. albicans (1×105 c.f.u.) was injected into the tail vein of immunocompromised wild-type and Ltf -/-. Then, 24 h later, the Ltf -/-I mice received hLF intravenously (100 µg g-1 body weight), while the control group received PBS. Then, 48 h later, the organs were collected, homogenized and C. albicans c.f.u.s were counted. In addition, the inflammatory mediators of kidneys and the virulence factors of C. albicans were analysed.Results. hLF-treated Ltf -/-I mice showed significant clearance of C. albicans in different organ tissues when compared to untreated Ltf -/-I mice. The inflammatory cytokines, such as IL-1β, IL-6 , TNF-α and MPO and iNOS were downregulated in hLF-treated Ltf -/-I mice when compared to untreated Ltf -/-I mice. Whereas, IL-10 and IL-17A were upregulated at 72 h post infection when compared to Ltf -/-C mice. Histological analysis also revealed a significant decrease in the size and number of infectious foci in the hLF-treated groups. hLF treatment significantly downregulated several virulence factors of C. albicans both in vitro and in vivo.Conclusion. We concluded that hLF-treated Ltf -/- mice can reduce the severity of C. albicans-induced systemic infection.
Collapse
|
9
|
Telang S. Lactoferrin: A Critical Player in Neonatal Host Defense. Nutrients 2018; 10:nu10091228. [PMID: 30181493 PMCID: PMC6165050 DOI: 10.3390/nu10091228] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Newborn infants are at a high risk for infection due to an under-developed immune system, and human milk has been shown to exhibit substantial anti-infective properties that serve to bolster neonatal defenses against multiple infections. Lactoferrin is the dominant whey protein in human milk and has been demonstrated to perform a wide array of antimicrobial and immunomodulatory functions and play a critical role in protecting the newborn infant from infection. This review summarizes data describing the structure and important functions performed by lactoferrin in protecting the neonate from infection and contributing to the maturation of the newborn innate and adaptive immune systems. We also briefly discuss clinical trials examining the utility of lactoferrin supplementation in the prevention of sepsis and necrotizing enterocolitis in newborn infants. The data reviewed provide rationale for the continuation of studies to examine the effects of lactoferrin administration on the prevention of sepsis in the neonate.
Collapse
Affiliation(s)
- Sucheta Telang
- Division of Neonatology, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA.
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
10
|
In vitro and in vivo anticandidal activities of alginate-enclosed chitosan-calcium phosphate-loaded Fe-bovine lactoferrin nanocapsules. Future Sci OA 2017; 4:FSO257. [PMID: 29379633 PMCID: PMC5778379 DOI: 10.4155/fsoa-2017-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022] Open
Abstract
Aim: To study the in vitro and in vivo anticandidal activity of nanocapsulated bovine lactoferrin. Materials & methods: In vitro and in vivo antimicrobial activities were conducted to study the anticandidal activities of nanocapsules (NCs). Results: The NCs showed good anticandidal activities. The disruption of cell wall and cell membrane was noted via microscopy studies. The NCs changed the normal growth profile of Candida albicans. NCs reduced the colony forming unit in kidney and blood samples. Histopathological examination showed better cell structure and coordination compared with untreated mice kidney. NCs also enhanced the natural killing properties of C. albicans by epithelial cells. Conclusion: NCs have effective anticandidal properties and have the potential as a therapeutic agent against candidiasis. Previous study revealed that lactoferrin had potent anticandidal action against C. albicans. However, encapsulated lactoferrin has never been tested for anticandidal activity in detail. In the present study, we evaluate nanocapsulated lactoferrin for anticandidal effects. To observe the anticandidal properties of encapsulated lactoferrin, various studies were conducted. Our findings showed that encapsulated lactoferrin demonstrates remarkable efficacy against C. albicans.
Collapse
|
11
|
Fernandes KE, Carter DA. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens. Front Microbiol 2017; 8:2. [PMID: 28149293 PMCID: PMC5241296 DOI: 10.3389/fmicb.2017.00002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/03/2017] [Indexed: 11/13/2022] Open
Abstract
Lactoferrin is a multifunctional iron-binding glycoprotein belonging to the transferrin family. It is found abundantly in milk and is present as a major protein in human exocrine secretions where it plays a role in the innate immune response. Various antifungal functions of lactoferrin have been reported including a wide spectrum of activity across yeasts and molds and synergy with other antifungal drugs in combination therapy, and various modes of action have been proposed. Bioactive peptides derived from lactoferrin can also exhibit strong antifungal activity, with some surpassing the potency of the whole protein. This paper reviews current knowledge of the spectrum of activity, proposed mechanisms of action, and capacity for synergy of lactoferrin and its peptides, including the three most studied derivatives: lactoferricin, lactoferrampin, and Lf(1-11), as well as some lactoferrin-derived variants and modified peptides.
Collapse
Affiliation(s)
- Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney Sydney, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
12
|
Whibley N, Gaffen SL. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine 2015; 76:42-52. [PMID: 26276374 DOI: 10.1016/j.cyto.2015.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022]
Abstract
The fungal genus Candida encompasses numerous species that inhabit a variety of hosts, either as commensal microbes and/or pathogens. Candida species are a major cause of fungal infections, yet to date there are no vaccines against Candida or indeed any other fungal pathogen. Our knowledge of immunity to Candida mainly comes from studies on Candida albicans, the most frequent species associated with disease. However, non-albicans Candida (NAC) species also cause disease and their prevalence is increasing. Although research into immunity to NAC species is still at an early stage, it is becoming apparent that immunity to C. albicans differs in important ways from non-albicans species, with important implications for treatment, therapy and predicted demographic susceptibility. This review will discuss the current understanding of immunity to NAC species in the context of immunity to C. albicans, and highlight as-yet unanswered questions.
Collapse
Affiliation(s)
- Natasha Whibley
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L Gaffen
- Division of Rheumatology & Clinical Immunology, Dept. of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Rheumatology & Clinical Immunology, BST S702, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta Gen Subj 2012; 1820:226-36. [PMID: 21726601 PMCID: PMC7127262 DOI: 10.1016/j.bbagen.2011.06.018] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lactoferrin (Lf) is an 80kDa iron-binding glycoprotein of the transferrin family. It is abundant in milk and in most biological fluids and is a cell-secreted molecule that bridges innate and adaptive immune function in mammals. Its protective effects range from anticancer, anti-inflammatory and immune modulator activities to antimicrobial activities against a large number of microorganisms. This wide range of activities is made possible by mechanisms of action involving not only the capacity of Lf to bind iron but also interactions of Lf with molecular and cellular components of both hosts and pathogens. SCOPE OF REVIEW This review summarizes the activities of Lf, its regulation and potential applications. MAJOR CONCLUSIONS The extensive uses of Lf in the treatment of various infectious diseases in animals and humans has been the driving force in Lf research however, a lot of work is required to obtain a better understanding of its activity. GENERAL SIGNIFICANCE The large potential applications of Lf have led scientists to develop this nutraceutical protein for use in feed, food and pharmaceutical applications. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Isui Abril García-Montoya
- Laboratorio de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus Universitario, CP 31125, Chihuahua, Mexico
| | | | | | | |
Collapse
|
14
|
Tyagi AK, Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 10:65. [PMID: 21067604 PMCID: PMC2994787 DOI: 10.1186/1472-6882-10-65] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/10/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND Use of essential oils for controlling Candida albicans growth has gained significance due to the resistance acquired by pathogens towards a number of widely-used drugs. The aim of this study was to test the antifungal activity of selected essential oils against Candida albicans in liquid and vapour phase and to determine the chemical composition and mechanism of action of most potent essential oil. METHODS Minimum Inhibitory concentration (MIC) of different essential oils in liquid phase, assayed through agar plate dilution, broth dilution & 96-well micro plate dilution method and vapour phase activity evaluated through disc volatilization method. Reduction of C. albicans cells with vapour exposure was estimated by kill time assay. Morphological alteration in treated/untreated C. albicans cells was observed by the Scanning electron microscopy (SEM)/Atomic force microscopy (AFM) and chemical analysis of the strongest antifungal agent/essential oil has been done by GC, GC-MS. RESULTS Lemon grass (Cymbopogon citratus) essential oil exhibited the strongest antifungal effect followed by mentha (Mentha piperita) and eucalyptus (Eucalyptus globulus) essential oil. The MIC of lemon grass essential oil in liquid phase (288 mg/l) was significantly higher than that in the vapour phase (32.7 mg/l) and a 4 h exposure was sufficient to cause 100% loss in viability of C. albicans cells. SEM/AFM of C. albicans cells treated with lemon grass essential oil at MIC level in liquid and vapour phase showed prominent shrinkage and partial degradation, respectively, confirming higher efficacy of vapour phase. GC-MS analysis revealed that lemon grass essential oil was dominated by oxygenated monoterpenes (78.2%); α-citral or geranial (36.2%) and β-citral or neral (26.5%), monoterpene hydrocarbons (7.9%) and sesquiterpene hydrocarbons (3.8%). CONCLUSION Lemon grass essential oil is highly effective in vapour phase against C. albicans, leading to deleterious morphological changes in cellular structures and cell surface alterations.
Collapse
Affiliation(s)
- Amit K Tyagi
- Applied Microbiology Laboratory, Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi- 110 016, India
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development & Technology, Indian Institute of Technology Delhi, New Delhi- 110 016, India
| |
Collapse
|
15
|
Okamoto T, Tanida T, Wei B, Ueta E, Yamamoto T, Osaki T. Regulation of fungal infection by a combination of amphotericin B and peptide 2, a lactoferrin peptide that activates neutrophils. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:1111-9. [PMID: 15539515 PMCID: PMC524744 DOI: 10.1128/cdli.11.6.1111-1119.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To establish a novel strategy for the control of fungal infection, we examined the antifungal and neutrophil-activating activities of antimicrobial peptides. The duration of survival of 50% of mice injected with a lethal dose of Candida albicans (5 x 10(8) cells) or Aspergillus fumigatus (1 x 10(8) cells) was prolonged 3 to 5 days by the injection of 10 microg of peptide 2 (a lactoferrin peptide) and 10 microg of alpha-defensin 1 for five consecutive days and was prolonged 5 to 13 days by the injection of 0.1 microg of granulocyte-monocyte colony-stimulating factor (GM-CSF) and 0.5 microg of amphotericin B. When mice received a combined injection of peptide 2 (10 microg/day) with amphotericin B (0.5 microg/day) for 5 days after the lethal fungal inoculation, their survival was greatly prolonged and some mice continued to live for more than 5 weeks, although the effective doses of peptide 2 for 50 and 100% suppression of Candida or Aspergillus colony formation were about one-third and one-half those of amphotericin B, respectively. In vitro, peptide 2 as well as GM-CSF increased the Candida and Aspergillus killing activities of neutrophils, but peptides such as alpha-defensin 1, beta-defensin 2, and histatin 5 did not upregulate the killing activity. GM-CSF together with peptide 2 but not other peptides enhanced the production of superoxide (O2-) by neutrophils. The upregulation by peptide 2 was confirmed by the activation of the O2- -generating pathway, i.e., activation of large-molecule guanine binding protein, phosphatidyl-inositol 3-kinase, protein kinase C, and p47phox as well as p67phox. In conclusion, different from natural antimicrobial peptides, peptide 2 has a potent neutrophil-activating effect which could be advantageous for its clinical use in combination with antifungal drugs.
Collapse
Affiliation(s)
- Tetsuro Okamoto
- Department of Oral Oncology, Kochi Medical School, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Viejo-Díaz M, Andrés MT, Fierro JF. Modulation of in vitro fungicidal activity of human lactoferrin against Candida albicans by extracellular cation concentration and target cell metabolic activity. Antimicrob Agents Chemother 2004; 48:1242-8. [PMID: 15047526 PMCID: PMC375254 DOI: 10.1128/aac.48.4.1242-1248.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anti-Candida activity of the innate defense protein human lactoferrin was investigated. Lactoferrin displayed a clear fungicidal effect against Candida albicans only under low-strength conditions. This candidacidal activity was inversely correlated with the extracellular concentration of the monovalent cations and was prevented by Na(+) and K(+) (> or 30 mM) and by divalent cations (Ca(2+) and Mg(2+) at > or 4 mM). A slight cellular release of K(+), cytosolic acidification, and a change in the membrane potential were observed in C. albicans cells treated with lactoferrin, suggesting that this protein directly or indirectly interacts with the cytoplasmic membrane. Mitochondrial inhibitors (carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, azide, and antimycin) as well as anaerobic conditions significantly reduced the killing effect of lactoferrin. These results suggest that low-strength conditions and the cellular metabolic state may modulate the candidacidal activity of human lactoferrin.
Collapse
Affiliation(s)
- Mónica Viejo-Díaz
- Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
17
|
Takakura N, Wakabayashi H, Ishibashi H, Teraguchi S, Tamura Y, Yamaguchi H, Abe S. Oral lactoferrin treatment of experimental oral candidiasis in mice. Antimicrob Agents Chemother 2003; 47:2619-23. [PMID: 12878528 PMCID: PMC166093 DOI: 10.1128/aac.47.8.2619-2623.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the potential of lactoferrin (LF), a multifunctional milk protein, for treatment of oral candidiasis with immunosuppressed mice, which have local symptoms characteristic of oral thrush. Oral administration of bovine LF in drinking water starting 1 day before the infection significantly reduced the number of Candida albicans in the oral cavity and the score of lesions on the tongue on day 7 after the inoculation. The symptomatic effect of LF was confirmed by macroscopic and microscopic observations of the tongue's surface. Similar effects were also observed upon administration of LF pepsin hydrolysate, but not lactoferricin B, an antimicrobial peptide of LF. The anticandidal activity of LF was evident on administration either in drinking water or by intragastric intubation with a stomach tube. These results suggest that the effect of LF in this oral candidiasis model is not due to direct antifungal action. In conclusion, LF could have potential as a food component supporting antifungal drug treatment.
Collapse
Affiliation(s)
- Natsuko Takakura
- Nutritional Science Laboratory, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Morrill JF, Pappagianis D, Heinig MJ, Lönnerdal B, Dewey KG. Detecting Candida albicans in human milk. J Clin Microbiol 2003; 41:475-8. [PMID: 12517899 PMCID: PMC149590 DOI: 10.1128/jcm.41.1.475-478.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Procedures for diagnosis of mammary candidosis, including laboratory confirmation, are not well defined. Lactoferrin present in human milk can inhibit growth of Candida albicans, thereby limiting the ability to detect yeast infections. The inhibitory effect of various lactoferrin concentrations on the growth of C. albicans in whole human milk was studied. The addition of iron to the milk led to a two- to threefold increase in cell counts when milk contained 3.0 mg of lactoferrin/ml and markedly reduced the likelihood of false-negative culture results. This method may provide the necessary objective support needed for diagnosis of mammary candidosis.
Collapse
Affiliation(s)
- Jimi Francis Morrill
- Department of Nutrition, University of California, Davis, Davis, California 95616-8669, USA
| | | | | | | | | |
Collapse
|
19
|
Samaranayake YH, Samaranayake LP, Pow EH, Beena VT, Yeung KW. Antifungal effects of lysozyme and lactoferrin against genetically similar, sequential Candida albicans isolates from a human immunodeficiency virus-infected southern Chinese cohort. J Clin Microbiol 2001; 39:3296-302. [PMID: 11526166 PMCID: PMC88334 DOI: 10.1128/jcm.39.9.3296-3302.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Accepted: 07/03/2001] [Indexed: 11/20/2022] Open
Abstract
A variety of innate defense factors in saliva such as lysozyme and lactoferrin contribute to mucosal protection and modulate Candida populations in the oral cavity. It is also known that in human immunodeficiency virus (HIV)-infected individuals significant variations in the concentrations of lysozyme and lactoferrin in saliva occur during disease progression. Therefore, the aim of this study was to determine the in vitro susceptibility to human lactoferrin and hen egg white lysozyme of genotypically similar oral Candida albicans isolates obtained from six HIV-infected ethnic Chinese during sequential visits over a 12-month period. The similarity of the genotypes (50 in total) was evaluated using a randomly amplified polymorphic DNA assay. A blastospore viability assay was performed to evaluate the sensitivity of the organisms to lysozyme and lactoferrin. Exposure to physiological concentrations of either lysozyme (30 microg/ml) or lactoferrin (20 microg/ml) caused a rapid loss of viability among all isolates to a varying extent. None of the sequential C. albicans isolates demonstrated significant differences in sensitivity to either protein from one visit to the next; similar results were noted when the different genotypes from the same individual were compared. On Spearman correlation analysis of two genotypes that were sequentially isolated from a single patient, a significant negative correlation between lysozyme (r = -0.88; P < 0.02) (but not lactoferrin) resistance and the duration of HIV disease was seen. These results imply that a minority of C. albicans isolates that persist intraorally in individuals with HIV disease develop progressive resistance to innate salivary antifungal defenses such as lysozyme, possibly as an adaptive response. However, the vast majority of the Candida isolates appear to succumb to these nonspecific host immune mediators abundantly present in the oral environment.
Collapse
Affiliation(s)
- Y H Samaranayake
- Oral Bio-Sciences, Faculty of Dentistry, University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
20
|
Tanida T, Rao F, Hamada T, Ueta E, Osaki T. Lactoferrin peptide increases the survival of Candida albicans-inoculated mice by upregulating neutrophil and macrophage functions, especially in combination with amphotericin B and granulocyte-macrophage colony-stimulating factor. Infect Immun 2001; 69:3883-90. [PMID: 11349055 PMCID: PMC98415 DOI: 10.1128/iai.69.6.3883-3890.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To develop a new strategy to control candidiasis, we examined in vivo the anticandidal effects of a synthetic lactoferrin peptide, FKCRRWQWRM (peptide 2) and the peptide that mimics it, FKARRWQWRM (peptide 2'). Although all mice that underwent intraperitoneal injection of 5 x 10(8) Candida cells with or without peptide 2' died within 8 or 7 days, respectively, the survival times of mice treated with 5 to 100 microg of intravenous peptide 2 per day for 5 days after the candidal inoculation were prolonged between 8.4 +/- 2.9 and 22.4 +/- 3.6 days, depending on the dose of peptide 2. The prolongation of survival by peptide 2 was also observed in mice that were infected with 1.0 x 10(9) Candida albicans cells (3.2 +/- 1.3 days in control mice versus 8.2 +/- 2.4 days in the mice injected with 10 microg of peptide 2 per day). In the high-dose inoculation, a combination of peptide 2 (10 microg/day) with amphotericin B (0.1 microg/day) and granulocyte-macrophage colony-stimulating factor (GM-CSF) (0.1 microg/day) brought prolonged survival. With a combination of these agents, 60% of the mice were alive for more than 22 days. Correspondingly, peptide 2 activated phagocytes inducing inducible NO synthase and the expression of p47(phox) and p67(phox), and peptide 2 increased phagocyte Candida-killing activities up to 1.5-fold of the control levels upregulating the generation of superoxide, lactoferrin, and defensin from neutrophils and macrophages. These findings indicated that the anticandidal effects of peptide 2 depend not only on the direct Candida cell growth-inhibitory activity, but also on the phagocytes' upregulatory activity, and that combinations of peptide 2 with GM-CSF and antifungal drugs will help in the development of new strategies for control of candidiasis.
Collapse
Affiliation(s)
- T Tanida
- Department of Oral Surgery, Kochi Medical School, Kohasu, Nankoku-city, Kochi 783-8505, Japan
| | | | | | | | | |
Collapse
|
21
|
Cirioni O, Giacometti A, Barchiesi F, Scalise G. Inhibition of growth of Pneumocystis carinii by lactoferrins alone and in combination with pyrimethamine, clarithromycin and minocycline. J Antimicrob Chemother 2000; 46:577-82. [PMID: 11020255 DOI: 10.1093/jac/46.4.577] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The in vitro activity of lactoferrins alone and in combination with clarithromycin, minocycline and pyrimethamine was investigated against three clinical isolates of Pneumocystis carinii. Susceptibility was tested by inoculating isolates on to cell monolayers and determining the parasite count after 72 h incubation at 37 degrees C. The culture medium was supplemented with serial dilutions of each agent. At 20 mg/L, bovine lactoferrin, the most active agent, suppressed the growth of cystic and trophic forms by >60%. Human lactoferrin, at the same concentration, suppressed the growth of cystic and trophic forms by >50%. Lactoferrins at 20 mg/L combined with clarithromycin 4 mg/L had high anti-P. carinii activity, with a >90% decrease in cystic and trophic form counts. Our study suggests that lactoferrins may inhibit P. carinii growth in vitro and act synergically with other clinically used compounds. These findings lend experimental support to the use of iron-chelating agents in the therapy of pneumocystis infections.
Collapse
Affiliation(s)
- O Cirioni
- Institute of Infectious Diseases and Public Health, University of Ancona, Italy.
| | | | | | | |
Collapse
|
22
|
Yamauchi K, Hiruma M, Yamazaki N, Wakabayashi H, Kuwata H, Teraguchi S, Hayasawa H, Suegara N, Yamaguchi H. Oral administration of bovine lactoferrin for treatment of tinea pedis. A placebo-controlled, double-blind study. Mycoses 2000; 43:197-202. [PMID: 10948819 DOI: 10.1046/j.1439-0507.2000.00571.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A clinical study was conducted to evaluate the effectiveness of lactoferrin, which is a protein component of cow's milk, in the treatment of tinea pedis. Doses of either 600 mg or 2000 mg of lactoferrin, or a placebo was orally administered daily for 8 weeks to 37 adults who were judged to have mild or moderate tinea pedis. Dermatological improvement and antifungal efficacy were assessed. In the analysis of all subjects, dermatological symptoms scores in all groups decreased but the differences were not statistically significant comparing the three groups. However, in the analysis limited to subjects with moderate vesicular or interdigital tinea pedis, dermatological symptoms scores in the lactoferrin-treated groups decreased significantly in comparison with the placebo group (P < 0.05). The organisms isolated were Trichophyton rubrum and Trichophyton mentagrophytes. A mycological cure was not seen in any of the subjects. In the 37 subjects there were no adverse events and no subject withdrew from the study because of an adverse event. These results suggest that orally administered lactoferrin can improve the dermatological symptoms in some subjects. The potential usefulness of lactoferrin as a functional food material for treating tinea pedis was seen for the first time in this study.
Collapse
Affiliation(s)
- K Yamauchi
- Nutritional Science Laboratory, Morinaga Milk Industry Co., Ltd, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|