1
|
Misztal T, Hasiec M, Szlis M, Tomaszewska-Zaremba D, Marciniak E. Stimulatory effect of dopamine derivative, salsolinol, on pulsatile luteinizing hormone secretion in seasonally anestrous sheep: Focus on dopamine, kisspeptin and gonadotropin-releasing hormone. Anim Reprod Sci 2019; 208:106102. [PMID: 31405485 DOI: 10.1016/j.anireprosci.2019.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/08/2019] [Accepted: 06/20/2019] [Indexed: 11/19/2022]
Abstract
In the present study, there was testing of the hypothesis that a centrally administered dopamine (DA) derivative, salsolinol, could affect pulsatile luteinizing hormone (LH) secretion in seasonally anestrous sheep by affecting the neuronal components of the estradiol (E2) negative feedback. In two experiments performed during early spring (increasing day length - March/April), salsolinol or Ringer-Locke solution (control) were administered into the third brain ventricle (IIIv): 1) in several injections for three consecutive days; and 2) in several hour-long infusions. In addition to determining the LH concentration (in both experiments), the abundances of gonadotropin-releasing hormone (GnRH) and kisspeptin mRNA were examined in the hypothalamus and LHβ subunit mRNA in the pituitary (Experiment 1). In Experiment 2, concentrations of DA and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined in perfusates collected from the infundibular nucleus/median eminence (IN/ME) by the push-pull method. In both experiments, salsolinol increased both LH pulse frequency (P < 0.05) and plasma LH concentration (P < 0.001) compared to controls. The injected salsolinol also increased (P < 0.05) the abundance of GnRH mRNA in the mediobasal hypothalamus and kisspeptin mRNA in the arcuate nucleus. The two doses of infused salsolinol decreased DA to undetectable concentrations and DOPAC concentration by 60% in perfusates collected from the IN/ME. In conclusion, exogenous salsolinol functioning centrally stimulates pulsatile LH secretion in sheep during seasonal anestrus. It is suggested that salsolinol may have this effect by reducing the activity of the hypothalamic neuroendocrine dopaminergic system, which results in an increase in both kisspeptin and GnRH neurons activity.
Collapse
Affiliation(s)
- Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland.
| | - Małgorzata Hasiec
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Dorota Tomaszewska-Zaremba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| |
Collapse
|
2
|
Marciniak E, Górski K, Hasiec M, Misztal T. Hypothalamic-pituitary GnRH/LH axis activity is affected by salsolinol in sheep during lactation: Effects of intracerebroventricular infusions of salsolinol and its antagonizing analogue. Theriogenology 2016; 86:1931-8. [PMID: 27393219 DOI: 10.1016/j.theriogenology.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/10/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
The aim of the study was to test the hypothesis that salsolinol, a derivative of dopamine, is involved in the regulation of hypothalamic-pituitary gonadotropic (GnRH/LH) axis activity in lactating sheep. In the first experiment performed on sheep during the fifth week of lactation, a structural analogue of salsolinol (1-MeDIQ) was infused into the third brain ventricle (IIIv) to antagonize its action within the central nervous system (CNS). A push-pull perfusion of the infundibular nucleus/median eminence was performed simultaneously, and blood samples were collected from the jugular vein. In the second experiment, sheep received infusions of salsolinol into the IIIv, 48 hours after the weaning of their 8-week-old lambs. Blood samples were collected during the experimental periods, and the anterior pituitary (AP) tissue was dissected immediately after the end of the experiment. Perfusate GnRH concentration (experiment 1), plasma LH concentration (experiments 1 and 2), and relative LHβ mRNA levels in the AP tissue (experiment 2) were assayed. Blocking of salsolinol action in the CNS of lactating sheep caused a significant (P < 0.001) decrease in the perfusate GnRH concentrations in comparison with controls. Treatment with 1-MEDIQ also significantly decreased (P < 0.001) the LH concentration in the blood plasma. In turn, salsolinol infused 48 hours after lamb weaning significantly (P < 0.001) increased plasma LH concentration, reflected in the significant (P < 0.05) increase in the amplitude of LH pulses in the treated sheep as compared to the control animals. There was no significant difference in the relative levels of LHβ-subunit mRNA in the AP between control and salsolinol-infused sheep. The results lead to a conclusion that salsolinol affects the secretory activity of the GnRH/LH axis in sheep during lactation. Whether salsolinol infused into the IIIv evokes this stimulatory effect by itself or by modulation of other regulatory systems needs to be clarified.
Collapse
Affiliation(s)
- Elżbieta Marciniak
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Konrad Górski
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Małgorzata Hasiec
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland
| | - Tomasz Misztal
- Department of Endocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Poland.
| |
Collapse
|
3
|
Calvey T, Patzke N, Kaswera C, Gilissen E, Bennett NC, Manger PR. Nuclear organisation of some immunohistochemically identifiable neural systems in three Afrotherian species—Potomogale velox, Amblysomus hottentotus and Petrodromus tetradactylus. J Chem Neuroanat 2013; 50-51:48-65. [DOI: 10.1016/j.jchemneu.2013.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
|
4
|
Lee CH, Choi JH, Chung DW, Hwang IK, Yoon YS, Won MH, Lee IS. Reduced immunoreactivity of tyrosine hydroxylase in the hypothalamic paraventricular nucleus of the seizure sensitive gerbil. J Vet Med Sci 2008; 70:645-8. [PMID: 18628612 DOI: 10.1292/jvms.70.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the immunoreactivity and numbers of tyrosine hydroxylase (TH) immunoreactive neurons and neuropil in the paraventricular nucleus (PVN) of the hypothalamus between the seizure sensitive (SS) and seizure resistant (SR) gerbils. The distributional pattern of TH immunoreactivity was similar in both groups: TH immunoreactivity was seen mainly in magnocellular neurons of the PVN. However, total TH immunoreactivity in the neurons and neuropil in the SS gerbils was significantly lower than that in the SR gerbils. In addition, the number of TH immunoreactive neurons in the SS gerbils was also much lower than those in the SR gerbils. These results indicate that SS gerbils have a low TH immunoreactivity in the hypothalamic PVN compared with that in SR gerbils.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Dufourny L, Migaud M, Thiery JC, Malpaux B. Development of an in vivo adeno-associated virus-mediated siRNA approach to knockdown tyrosine hydroxylase in the lateral retrochiasmatic area of the ovine brain. J Neurosci Methods 2008; 170:56-66. [DOI: 10.1016/j.jneumeth.2007.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/21/2007] [Accepted: 12/22/2007] [Indexed: 10/22/2022]
|
6
|
Adams VL, Goodman RL, Salm AK, Coolen LM, Karsch FJ, Lehman MN. Morphological plasticity in the neural circuitry responsible for seasonal breeding in the ewe. Endocrinology 2006; 147:4843-51. [PMID: 16857749 DOI: 10.1210/en.2006-0408] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An increase in the response of GnRH neurons to estrogen negative feedback is responsible for seasonal anestrus in the ewe, but the underlying neural mechanisms remain largely unknown. Neural plasticity may play an important role because the density of synaptic input to GnRH neurons changes with seasons. Moreover, the transition from breeding to anestrous season requires thyroid hormones, which are also required for neuronal development. In the first experiment, we examined whether the decrease in synapses on GnRH neurons is critical for the transition to anestrus by comparing synaptic input in thyroidectomized and thyroid-intact controls, using electron microscopic analysis. Thyroidectomized ewes remained in the breeding season, but the number of synaptic contacts on their GnRH cells was not different from those in thyroid-intact ewes that were anestrus. The next experiment tested whether there was a seasonal change in morphology of the A15 dopaminergic neurons that mediate estrogen negative feedback during anestrus by analyzing synapsin-positive close contacts onto A15 neurons with confocal microscopy. There was a 2-fold increase in these close contacts onto dendrites of A15 neurons in anestrus and a corresponding increase in the length of A15 dendrites at this time of year. The increase in dendritic length was blocked by thyroidectomy, but this procedure did not significantly affect synaptic input to A15 neurons. These results provide initial evidence that the seasonal change in synapses on GnRH neurons is not sufficient for the transition into anestrus but that plasticity of the A15 dopaminergic neurons mediating estrogen negative feedback may contribute to this seasonal alteration.
Collapse
Affiliation(s)
- Van L Adams
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, 26506, USA
| | | | | | | | | | | |
Collapse
|
7
|
Panayotacopoulou MT, Malidelis Y, van Heerikhuize J, Unmehopa U, Swaab D. Individual differences in the expression of tyrosine hydroxylase mRNA in neurosecretory neurons of the human paraventricular and supraoptic nuclei: positive correlation with vasopressin mRNA. Neuroendocrinology 2005; 81:329-38. [PMID: 16210867 DOI: 10.1159/000088760] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 08/05/2005] [Indexed: 11/19/2022]
Abstract
Previous studies indicated that in the human paraventricular nucleus (PVN) and in the supraoptic nucleus (SON) tyrosine hydroxylase (TH) - the first and rate-limiting enzyme in catecholamine synthesis - is localized mainly in magnocellular neurosecretory neurons. Individual differences were observed among control subjects in number and distribution of TH-immunoreactive (IR) perikarya, indicating that antemortem factors may regulate TH expression. Since a large number of TH-IR perikarya were observed in subjects who suffered from somatic illnesses leading to prolonged osmotic or nonosmotic stimulation of vasopressin (VP) release, we suggested that TH expression is related to the activation of VP neurons. The purpose of our study was to apply (1) in situ hybridization for TH mRNA on human PVN and SON to investigate how the previously reported individual differences in TH protein expression are depicted at the transcriptional level and (2) quantitative TH immunohistochemistry and in situ hybridization for VP mRNA throughout the dorsolateral part of the SON (dl-SON) in order to elucidate whether indeed expression of TH in neurosecretory nuclei depends on activation of VP neurons. Postmortem formalin-fixed, paraffin-embedded hypothalamic sections of 16 control subjects were studied for TH protein and TH and VP mRNAs. For 6 of the above cases, the number of TH-IR neurons and the total VP mRNA levels were estimated throughout the entire dl-SON using an image analysis system. Individual variation was observed in TH mRNA expression which appears to parallel the expression of TH-protein. Using Spearman's bivariate test, a positive correlation was found between the number of TH-IR- and TH-mRNA-expressing neurons in both PVN and SON (p < 0.01) as well as between the number of TH-IR neurons and the total VP mRNA in the dl-SON (p < 0.05). Our results show (1) that the individual variability in the number of TH-IR neurons within the neurosecretory nuclei might be due to differential expression and/or stability of TH mRNA and (2) that expression of TH-immunoreactivity in human PVN and SON depends on the activation of VP neurons.
Collapse
|
8
|
Vetillard A, Atteke C, Saligaut C, Jego P, Bailhache T. Differential regulation of tyrosine hydroxylase and estradiol receptor expression in the rainbow trout brain. Mol Cell Endocrinol 2003; 199:37-47. [PMID: 12581878 DOI: 10.1016/s0303-7207(02)00305-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In numerous fish species, dopamine has been found to strongly inhibit gonadotropin release. Among the enzymes that regulate dopamine turnover, tyrosine hydroxylase (TH), the rate-limiting anabolic enzyme, could be a target for endocrine feedback regulation. Since dopamine turnover is stimulated by estradiol in rainbow trout, we have investigated the effect of estradiol on TH and estradiol receptor expression. In situ hybridization was used to quantify mRNA levels in the brain of ovariectomized female rainbow trout implanted or not with estradiol pellets. We demonstrated that preoptic TH and estradiol receptor mRNA levels are greatly decreased by gonadectomy during vitellogenesis. For TH expression, this effect was reversed in part by estradiol supplementation. We have also confirmed the existence of an inhibitory gonadal feedback on FSH secretion, mediated by estradiol. The stimulating effect of estradiol on TH expression found in this study could be a pathway involved in gonadal feedback on gonadotropin release.
Collapse
Affiliation(s)
- A Vetillard
- UMR-CNRS 6026, Endocrinologie Moleculaire de la Reproduction, Universite de Rennes 1, Campus de Beaulieu, France.
| | | | | | | | | |
Collapse
|
9
|
Panayotacopoulou MT, Malidelis YI, Fliers E, Bouras C, Ravid R, Swaab DF. Increased expression of tyrosine hydroxylase immunoreactivity in paraventricular and supraoptic neurons in illnesses with prolonged osmotic or nonosmotic stimulation of vasopressin release. Neuroendocrinology 2002; 76:254-66. [PMID: 12411742 DOI: 10.1159/000065949] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous studies indicated that in the human paraventricular (PVN) and supraoptic (SON) nuclei, tyrosine hydroxylase (TH)--the first and rate-limiting enzyme in catecholamine synthesis--is localized mainly in magnocellular neurons and that antemortem factors regulate its expression. The purpose of the present study was to investigate the distribution of TH-immunoreactive (TH-IR) perikarya of the hypothalami of a large sample of well-documented adult subjects without neurological, psychiatric or endocrinological disease in order to identify factors that could regulate the expression of TH in the human neurosecretory neurons. Our material consisted of the hypothalami of 38 subjects studied immunohistochemically for TH using the peroxidase-antiperoxidase method. Striking individual differences were observed among the subjects studied concerning the number and distribution of TH-IR perikarya within the PVN and SON. These differences were evident throughout the entire rostrocaudal length of the hypothalamus and appeared to be related neither to the age or sex of the subjects nor to the postmortem interval or staining procedures. In the sample studied, a large number of TH-IR perikarya were observed specifically in all subjects that had suffered from right-sided heart failure due to pulmonary hypertension, liver cirrhosis or dehydration. In all the above illnesses, increased production and secretion of vasopressin (VP) are reported to occur due to a decrease in 'effective' blood volume or to osmotic stimulation. We conclude that somatic illnesses leading to prolonged osmotic or nonosmotic stimulation of VP release may induce increased expression of TH immunoreactivity in the human neurosecretory neurons related to neuronal activation.
Collapse
|
10
|
Smeets WJ, González A. Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:308-79. [PMID: 11011071 DOI: 10.1016/s0165-0173(00)00034-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative analysis of catecholaminergic systems in the brain and spinal cord of vertebrates forces to reconsider several aspects of the organization of catecholamine systems. Evidence has been provided for the existence of extensive, putatively catecholaminergic cell groups in the spinal cord, the pretectum, the habenular region, and cortical and subcortical telencephalic areas. Moreover, putatively dopamine- and noradrenaline-accumulating cells have been demonstrated in the hypothalamic periventricular organ of almost every non-mammalian vertebrate studied. In contrast with the classical idea that the evolution of catecholamine systems is marked by an increase in complexity going from anamniotes to amniotes, it is now evident that the brains of anamniotes contain catecholaminergic cell groups, of which the counterparts in amniotes have lost the capacity to produce catecholamines. Moreover, a segmental approach in studying the organization of catecholaminergic systems is advocated. Such an approach has recently led to the conclusion that the chemoarchitecture and connections of the basal ganglia of anamniote and amniote tetrapods are largely comparable. This review has also brought together data about the distribution of receptors and catecholaminergic fibers as well as data about developmental aspects. From these data it has become clear that there is a good match between catecholaminergic fibers and receptors, but, at many places, volume transmission seems to play an important role. Finally, although the available data are still limited, striking differences are observed in the spatiotemporal sequence of appearance of catecholaminergic cell groups, in particular those in the retina and olfactory bulb.
Collapse
Affiliation(s)
- W J Smeets
- Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences, Amsterdam, The Netherlands.
| | | |
Collapse
|
11
|
Barker-Gibb ML, Clarke IJ. Effect of season on neuropeptide Y and galanin within the hypothalamus of the ewe in relation to plasma luteinizing hormone concentrations and the breeding season: an immunohistochemical analysis. J Neuroendocrinol 2000; 12:618-26. [PMID: 10849206 DOI: 10.1046/j.1365-2826.2000.00514.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Within the hypothalamus, neurones that express neuropeptide Y (NPY) and galanin have been implicated in the regulation of gonadotropin-releasing hormone (GnRH) and gonadotropin secretion. We aimed to determine the extent to which the expression of these two neuronal systems is linked to the seasonal reproductive cycle, and the effect of chronic oestrogen treatment. Immunohistochemical analysis was used to examine changes between the breeding season and anestrus in ovariectomized (OVX) ewes with or without oestrogen treatment (s.c. implants for 2 weeks). Serial blood sampling established plasma luteinizing hormone (LH) profiles, and the ewes were subsequently killed and the brains perfused for immunohistochemistry. In OVX ewes, the amplitude of LH pulses was greater in the nonbreeding season than in the breeding season. Oestrogen treatment caused a marked reduction in plasma LH concentrations during anestrus, but not in the breeding season. The number of cells in the arcuate nucleus/median eminence region (ARC-ME) that stained for NPY was lower in ewes killed in anestrus (September) than in ewes killed in the breeding season (May), but there was no seasonal change in the number of galanin-stained cells. Within season, oestrogen treatment did not affect NPY- or galanin-cell number. There was no effect of season or oestrogen on the area of varicose fibres/terminals for either peptide in the ARC-ME, but galanin immunostaining was more intense during the breeding season. We conclude that the amount of NPY in cell bodies of the ARC-ME is lower in ewes in the nonbreeding season; this could reflect a steroid-independent effect of photoperiod. We also conclude that the long-term negative-feedback effect of oestrogen on GnRH/LH secretion does not appear to be mediated by NPY- or galanin-containing neurones in the ewe.
Collapse
Affiliation(s)
- M L Barker-Gibb
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | |
Collapse
|
12
|
Hern�ndez-Rauda R, Miguez J, Ruibal C, Aldegunde M. Effects of melatonin on dopamine metabolism in the hypothalamus and the pituitary of the rainbow trout,Oncorhynchus mykiss. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1097-010x(20001101)287:6<440::aid-jez5>3.0.co;2-s] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Chaillou E, Tramu G, Tillet Y. Distribution of galanin immunoreactivity in the sheep diencephalon. J Chem Neuroanat 1999; 17:129-46. [PMID: 10609862 DOI: 10.1016/s0891-0618(99)00032-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the physiological role of galanin has been demonstrated in several endocrine regulations in sheep, the anatomical characteristics of this neuronal system has never been studied. The distribution of galanin-containing neurones was described by immunohistochemistry using galanin antiserum in the diencephalon of adult ewes, both ovariectomized or treated with colchicine. Galanin-immunoreactivity was found throughout the diencephalon. In the ovariectomized ewes, galanin-immunoreactive neurones were mainly observed in the medial preoptic area and the infundibular nucleus. The highest density of immunoreactive fibres was found in the external layer of the median eminence. Numerous galanin-immunoreactive fibres were also observed in the preoptic area, the mediobasal hypothalamus, the periphery of the supraoptic and the paraventricular nuclei. With colchicine treatment, the number of labelled neurones increased, and additional galanin-immunoreactive perikarya were observed in the bed nucleus of the stria terminalis, the lateral septum, the supraoptic, the paraventricular and the periventricular nuclei and the paraventricular nucleus of the thalamus. In the caudal part of the diencephalon, the density of labelled neurones was lower in both groups of animals than in other species studied. Regardless of treatment, labelling was not seen in the suprachiasmatic nucleus and only rarely in the ventromedial nucleus. These results describe, for the first time, the distribution of galanin-immunoreactive neurones in the sheep diencephalon. Compared to other species studied, distribution in the sheep diencephalon has several distinct differences. In ovariectomized animals, the medial preoptic area presents more labelled neurones in sheep than in monkeys, whereas in the supraoptic nucleus the density of labelled neurones is lower in sheep than in humans or opossums. After colchicine treatment only very few differences were observed between sheep and rats, but in contrast to other species, the suprachiasmatic nucleus of the sheep does not contain labelled neurones.
Collapse
Affiliation(s)
- E Chaillou
- Laboratoire de Neuroendocrinologie Sexuelle, INRA-PRMD, Nouzilly, France
| | | | | |
Collapse
|
14
|
Chaillou E, Tramu G, Thibault J, Tillet Y. Presence of galanin in dopaminergic neurons of the sheep infundibular nucleus: a double staining immunohistochemical study. J Chem Neuroanat 1998; 15:251-9. [PMID: 9860090 DOI: 10.1016/s0891-0618(98)00048-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The distribution of tyrosine hydroxylase (TH) and of galanin immunoreactive (IR) neurons were examined in the sheep infundibular nucleus. Antisera raised against TH and galanin were used on adjacent sections and for double immunohistochemical staining of the same sections. There was considerable overlap in the distribution of TH and galanin-IR neurons in the medial part of the nucleus. Most of the galanin-IR neurons were also TH-IR, but less than 50% of the TH-IR neurons also expressed galanin immunoreactivity. Neurons immunoreactive to TH alone were observed close to the third ventricle and in the rostral part of the infundibular nucleus. In the median eminence, TH and galanin-IR fibres overlapped mainly in the lateral and dorsal parts of the external layer, but the colocalisation of both antigens could not be assessed on the available material. Thus, in sheep, the population of catecholaminergic neurons of the infundibular nucleus may be subdivided into different subpopulations according to their peptide content, but does not appear segregated as in rat and human.
Collapse
Affiliation(s)
- E Chaillou
- Laboratoire de Neuroendocrinologie Sexuelle, INRA, Nouzilly, France
| | | | | | | |
Collapse
|