Yalçin O, Baykan B, Ağan K, Yapici Z, Yalçin D, Dizdarer G, Türkdoğan D, Ozkara C, Unalp A, Uludüz D, Gül G, Kuşcu D, Ayta S, Tutkavul K, Comu S, Tatli B, Meral C, Bebek N, Cağlayan SH. An association analysis at 2q36 reveals a new candidate susceptibility gene for juvenile absence epilepsy and/or absence seizures associated with generalized tonic-clonic seizures.
Epilepsia 2011;
52:975-83. [PMID:
21320115 DOI:
10.1111/j.1528-1167.2010.02970.x]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE
To further evaluate the previously shown linkage of absence epilepsy (AE) to 2q36, both in human and WAG/Rij absence rat models, a 160-kb region at 2q36 containing eight genes with expressions in the brain was targeted in a case-control association study involving 205 Turkish patients with AE and 219 controls.
METHODS
Haplotype block and case-control association analysis was carried out using HAPLOVIEW 4.0 and inhibin alpha subunit (INHA) gene analysis by DNA sequencing.
KEY FINDINGS
An association was found between the G allele of rs7588807 located in the INHA gene and juvenile absence epilepsy (JAE) syndrome and patients having generalized tonic-clonic seizures (GTCS) with p-values of 0.003 and 0.0002, respectively (uncorrected for multiple comparisons). DNA sequence analysis of the INHA gene in 110 JAE/GTCS patients revealed three point mutations with possible damaging effects on inhibin function in three patients and the presence of a common ACTC haplotype (H1) with a possible dominant protective role conferred by the T allele of rs7588807 with respective p-values of 0.0005 and 0.0014.
SIGNIFICANCE
The preceding findings suggest that INHA could be a novel candidate susceptibility gene involved in the pathogenesis of JAE or AE associated with GTCS.
Collapse