1
|
Glocova K, Cizek P, Novotny R, Hauptman K, Tichy F. Effect of GnRH agonist deslorelin implant on spermatogenesis and testosterone concentration in Guinea pigs (Cavia aperea porcellus). Theriogenology 2020; 154:232-236. [PMID: 32679355 DOI: 10.1016/j.theriogenology.2020.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/01/2022]
Abstract
Guinea pigs are social animals that are often kept in groups regardless of their gender. Due to reproduction control and male aggressiveness prevention, surgical castration is commonly required. In the present study, we evaluated the effect of GnRH agonist implant (4.7 mg deslorelinum) on the serum testosterone concentration (T) and spermatogenesis in male guinea pigs. Twenty-four animals were divided into two groups. All animals in the first group were neutered (Group 1), animals in the second group (Group 2) were administered the implant subcutaneously and then neutered in one-month intervals. A histological examination was performed when cross sections of seminiferous tubules were assessed. Subsequently, these tubules were divided based on the most developed germ cell observed: spermatogonia, spermatocytes, round spermatids, elongating spermatids and elongated spermatids. The anticipated decrease in testosterone concentration and cessation of spermatogenesis was not achieved. Thus, the results obtained proved the inefficacy of the deslorelin implant in male guinea pigs so the alternative methods of contraception remain the methods of choice.
Collapse
Affiliation(s)
- Kristyna Glocova
- Department of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Palackeho 1946/1, 612 42, Czech Republic.
| | - Petr Cizek
- Department of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Palackeho 1946/1, 612 42, Czech Republic
| | - Robert Novotny
- Ruminant & Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Palackeho 1946/1, 612 42, Czech Republic
| | - Karel Hauptman
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Palackeho 1946/1, 612 42, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology & Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Palackeho 1946/1, 612 42, Czech Republic
| |
Collapse
|
2
|
Abstract
This article reviews ovarian cysts in the guinea pig (Cavia porcellus), a disease commonly associated with symmetric, nonpruritic alopecia of the dorsum and flanks. Relevant anatomy is discussed and current theories of pathogenesis are reviewed. Prevalence, predisposing factors, diagnosis, treatment, and prognosis are presented.
Collapse
Affiliation(s)
- Andrew D Bean
- Pet Care Veterinary Hospital, 5201 Virginia Beach Boulevard, Virginia Beach, VA 23462, USA.
| |
Collapse
|
3
|
Difference in receptor-binding contributes to difference in biological activity between the unique guinea pig GnRH and mammalian GnRH. Neurosci Lett 2012; 507:124-6. [DOI: 10.1016/j.neulet.2011.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/18/2011] [Accepted: 11/29/2011] [Indexed: 11/23/2022]
|
4
|
Gao CQ, Fraeyman N, Eertmans F, Dhooge W, Kaufman JM. Further evaluation of the biological activity of the unique gonadotropin-releasing hormone peptide in the guinea pig brain. Neurosci Lett 2010; 487:246-9. [PMID: 20970475 DOI: 10.1016/j.neulet.2010.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/24/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
Abstract
In this study we compared the biological activity of a unique form of gonadotropin-releasing hormone (GnRH) in the brain of the guinea pig (gpGnRH) with mammalian GnRH (mGnRH). In gpGnRH, the highly conserved histidine in position 2 (His(2)) and leucine in position 7 (Leu(7)) are substituted by tyrosine and valine, respectively. The gpGnRH was less potent than mGnRH in stimulating the release of luteinizing hormone (LH) in vivo in the guinea pig and displayed only low activity in the rat. The gpGnRH was more rapidly degraded by serum proteolytic enzymes than mGnRH. It is concluded that gpGnRH displays lower biological activity than mGnRH in both rat and guinea pig, which may be due in part to its greater susceptibility to proteolytic degradation besides differences in receptor affinity and/or activation.
Collapse
Affiliation(s)
- Chang-Qing Gao
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
5
|
Guilgur LG, Moncaut NP, Canário AVM, Somoza GM. Evolution of GnRH ligands and receptors in gnathostomata. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:272-83. [PMID: 16716622 DOI: 10.1016/j.cbpa.2006.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the ''midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET-Universidad Nacional de General San Martín, IIB-INTECH, Camino de Circunvalación Laguna Km. 6, CC 164, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
6
|
Fujii Y, Enomoto M, Ikemoto T, Endo D, Okubo K, Aida K, Park MK. Molecular cloning and characterization of a gonadotropin-releasing hormone receptor in the guinea pig, Cavia porcellus. Gen Comp Endocrinol 2004; 136:208-16. [PMID: 15028524 DOI: 10.1016/j.ygcen.2003.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/10/2003] [Accepted: 12/16/2003] [Indexed: 11/19/2022]
Abstract
Guinea pig gonadotropin-releasing hormone (gpGnRH) is predicted to have a unique structure among all known forms of GnRH molecule [Endocrinology 138 (1997) 4123] and it is of great interest to determine whether the unique structure of gpGnRH is manifested in the characteristics of the guinea pig GnRH receptor. In the present study, we isolated a full-length cDNA for a GnRH receptor from the pituitary gland of the guinea pig. The putative guinea pig GnRH receptor protein has an amino acid identity of 79-87% with mammalian type I GnRH receptors. The amino acid residues which have been demonstrated to be important for ligand binding and signal transduction were conserved in the guinea pig GnRH receptor. However, there are several specific amino acid substitutions among mammalian type I GnRH receptors. Moreover, though the guinea pig has generally been classified as a rodent, the putative GnRH receptor protein did not have some rodent-specific characteristics. Total IP assays demonstrated that the cloned guinea pig GnRH receptor is a functional GnRH receptor and that it shows different preference of ligand sensitivities from the rat GnRH receptor.
Collapse
Affiliation(s)
- Yukiko Fujii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Gao CQ, Kaufman JM. Stimulation of luteinizing hormone secretion by N-methyl-D,L-aspartic acid in the adult male guinea-pig: incomplete blockade by gonadotropin-releasing hormone receptor antagonism. J Neuroendocrinol 2003; 15:516-20. [PMID: 12694377 DOI: 10.1046/j.1365-2826.2003.01024.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stimulation of luteinizing hormone (LH) secretion by N-methyl-D,L-aspartic acid (NMA), reported for several mammalian species, is generally accepted to be mediated through stimulation of hypothalamic gonadotropin-releasing hormone (GnRH) release. In view of a previously reported unexpected inhibitory action of NMA on GnRH release from hypothalamic explant of intact male guinea-pigs, the aim of the present study was to assess the in vivo effects of NMA in the adult male guinea-pig. In the gonadally intact male, NMA (5 mg/animal) elicited a robust LH secretion, which was blocked by the N-methyl-D-asparte-receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP-5,12 mg/animal). In the castrated male, NMA elicited only a marginal and inconsistent LH secretion. Cetrorelix (CET), a GnRH receptor antagonist, administered intracardiacally 1 min or 45 min preceding bolus injection of NMA significantly reduced the LH response to NMA in the intact male. Surprisingly, following GnRH receptor blockade with CET, there still was a substantial residual serum LH response to NMA, while CET completely abolished the serum LH response to high dose (1 microg or 10 microg) guinea-pig GnRH (gpGnRH). These results indicate that NMA stimulates LH secretion in the gonadally intact male guinea-pig in vivo and that this effect is mediated in part through gpGnRH-independent mechanisms.
Collapse
Affiliation(s)
- C-Q Gao
- Department of Endocrinology and Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
8
|
Grove-Strawser D, Sower SA, Ronsheim PM, Connolly JB, Bourn CG, Rubin BS. Guinea pig GnRH: localization and physiological activity reveal that it, not mammalian GnRH, is the major neuroendocrine form in guinea pigs. Endocrinology 2002; 143:1602-12. [PMID: 11956141 DOI: 10.1210/endo.143.5.8803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The isolation of GnRH cDNA from guinea pig hypothalamus predicted a novel form of GnRH with two unique amino acid substitutions relative to all known forms of this essential decapeptide. The predicted substitution at amino acid 2 in guinea pig (gp) GnRH was particularly intriguing because of the proposed importance of position 2 for binding and activation of the GnRH receptor. In the present study, gpGnRH was synthesized, and a specific antibody was generated and used to assess translation of the gpGnRH transcript. The localization of intensely labeled gpGnRH-positive cell bodies and processes in tissue sections through the preoptic area and hypothalamus argue that gpGnRH is the major neuroendocrine form of GnRH in guinea pigs. Guinea pig GnRH stimulated LH release in guinea pigs and increased LH output from guinea pig pituitary fragments, thus demonstrating biological activity in this species. In contrast, gpGnRH demonstrated little ability to stimulate LH release in rats, a species known to possess the highly conserved mammalian GnRH receptor. These findings suggest that: (1) the amino acid substitutions in gpGnRH impede binding to and/or activation of the mammalian GnRH receptor, and (2) the unique amino acid substitutions in gpGnRH are accompanied by changes in the guinea pig GnRH receptor.
Collapse
Affiliation(s)
- Danielle Grove-Strawser
- Department of Anatomy and Cellular Biology, Tufts Medical School, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|