1
|
Talbi R, Laran-Chich MP, Magoul R, El Ouezzani S, Simonneaux V. Kisspeptin and RFRP-3 differentially regulate food intake and metabolic neuropeptides in the female desert jerboa. Sci Rep 2016; 6:36057. [PMID: 27805048 PMCID: PMC5090964 DOI: 10.1038/srep36057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/11/2016] [Indexed: 12/28/2022] Open
Abstract
Jerboas are wild rodents exhibiting exceptional adaptation to their desert environment. Under harsh autumn conditions, they shut down reproduction, increase body weight and hibernate, while during spring they become sexually active even under negative energy-balance. We recently reported that these rhythms are associated with synchronized changes in genes expressing reproductive (Kiss1, Rfrp) and metabolic (Npy and Pomc) peptides, raising the hypothesis of coordinated seasonal regulation of both functions. Here we analyzed whether kisspeptin and RFRP-3 regulate food-intake in parallel to their established reproductive functions. Intracerebroventricular administration of kisspeptin inhibited food intake by 1.5-fold in fasted, but not ad-libitum fed, female jerboas captured in spring, an effect associated with an increase in Pomc and decrease in Rfrp mRNA levels. By contrast, intracerebroventricular injection of RFRP-3 induced a 4-fold increase in food-intake in ad-libitum female jerboas, together with a decrease in Pomc and increase in Npy mRNA levels. This orexigenic effect of RFRP-3 was observed in both spring and autumn, whereas kisspeptin's anorexigenic effect was only observed in spring. Altogether, this study reports opposite metabolic effects of kisspeptin and RFRP-3 in the female jerboa and strengthens our hypothesis of a coordinated, season-dependent, regulation of reproductive activity and food intake through interactions of these hypothalamic peptides.
Collapse
Affiliation(s)
- Rajae Talbi
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco.,Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Marie-Pierre Laran-Chich
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Rabia Magoul
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco
| | - Seloua El Ouezzani
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
2
|
Talbi R, Klosen P, Laran-Chich MP, El Ouezzani S, Simonneaux V. Coordinated seasonal regulation of metabolic and reproductive hypothalamic peptides in the desert jerboa. J Comp Neurol 2016; 524:3717-3728. [PMID: 27113425 DOI: 10.1002/cne.24026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/03/2016] [Accepted: 04/20/2016] [Indexed: 11/12/2022]
Abstract
Jerboa (Jaculus orientalis) is a semi-desert rodent displaying strong seasonal variations in biological functions in order to survive harsh conditions. When environmental conditions become unfavorable in early autumn, it shuts down its reproductive axis, increases its body weight, and finally hibernates. In spring, the jerboa displays opposite regulations, with a reactivation of reproduction and reduction in body weight. This study investigated how genes coding for different hypothalamic peptides involved in the central control of reproduction (Rfrp and Kiss1) and energy homeostasis (Pomc, Npy, and Somatostatin) are regulated according to seasons in male jerboas captured in the wild in spring or autumn. Remarkably, a coordinated increase in the mRNA level of Rfrp in the dorso/ventromedial hypothalamus and Kiss1, Pomc, and Somatostatin in the arcuate nucleus was observed in jerboas captured in spring as compared to autumn animals. Only Npy gene expression in the arcuate nucleus displayed no significant variations between the two seasons. These variations appear in line with the jerboa's seasonal physiology, since the spring increase in Rfrp and Kiss1 expression might be related to sexual reactivation, while the spring increase in genes encoding anorexigenic peptides, POMC, and somatostatin may account for the reduced body weight reported at this time of the year. J. Comp. Neurol. 524:3717-3728, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajae Talbi
- Institute of Cellular and Integrative Neurosciences, Department of Neurobiology of Rhythms, CNRS UPR 3212, University of Strasbourg, Strasbourg, France.,Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University of Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco
| | - Paul Klosen
- Institute of Cellular and Integrative Neurosciences, Department of Neurobiology of Rhythms, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Marie-Pierre Laran-Chich
- Institute of Cellular and Integrative Neurosciences, Department of Neurobiology of Rhythms, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Seloua El Ouezzani
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University of Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences, Department of Neurobiology of Rhythms, CNRS UPR 3212, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Zhou S, Holmes MM, Forger NG, Goldman BD, Lovern MB, Caraty A, Kalló I, Faulkes CG, Coen CW. Socially regulated reproductive development: Analysis of GnRH-1 and kisspeptin neuronal systems in cooperatively breeding naked mole-rats (Heterocephalus glaber). J Comp Neurol 2013; 521:3003-29. [DOI: 10.1002/cne.23327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Shuzhi Zhou
- Reproductive Neurobiology; Division of Women's Health; School of Medicine; King's College London; London; UK
| | | | | | | | | | - Alain Caraty
- INRA; Physiology of Reproduction; Nouzilly; France
| | | | | | - Clive W. Coen
- Reproductive Neurobiology; Division of Women's Health; School of Medicine; King's College London; London; UK
| |
Collapse
|
4
|
Janati A, Talbi R, Klosen P, Mikkelsen JD, Magoul R, Simonneaux V, El Ouezzani S. Distribution and seasonal variation in hypothalamic RF-amide peptides in a semi-desert rodent, the jerboa. J Neuroendocrinol 2013; 25:402-11. [PMID: 23289624 DOI: 10.1111/jne.12015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 11/19/2012] [Accepted: 12/20/2012] [Indexed: 11/30/2022]
Abstract
The jerboa is a semi-desert rodent, in which reproductive activity depends on the seasons, being sexually active in the spring-summer. The present study aimed to determine whether the expression of two RF-amide peptides recently described to regulate gonadotrophin-releasing hormone neurone activity, kisspeptin (Kp) and RF-amide-related peptide (RFRP)-3, displays seasonal variation in jerboa. Kp and/or RFRP-3 immunoreactivity was investigated in the hypothalamus of jerboas captured in the field of the Middle Atlas mountain (Morocco), either in the spring or autumn. As in other rodents, the Kp-immunoreactive (-IR) neurones were found in the anteroventro-periventricular and arcuate nuclei. RFRP-3 neurones were noted within the dorso/ventromedial hypothalamus. A marked sexual dimorphism in the expression of Kp (but not RFRP-3) was observed. The number of Kp-IR neurones was nine-fold higher, and the density of Kp-IR fibres and terminal-like elements in the median eminence was two-fold higher in females than in males. Furthermore, a significant seasonal variation in peptide expression was obtained with an increase in both Kp- and RFRP-3-IR cell bodies in sexually active male jerboas captured in the spring compared to sexually inactive autumn animals. In the arcuate nucleus, the level of Kp-IR cells and fibres was significant higher during the sexually active period in the spring than during the autumnal sexual quiescence. Similarly, the number of RFRP-3-IR neurones in the ventro/dorsomedial hypothalamus was approximately three-fold higher in sexually active jerboa captured in the spring compared to sexually inactive autumn animals. Altogether, the present study reports the distribution of Kp and RFRP-3 neurones in the hypothalamus of a desert species and reveals a seasonal difference in their expression that correlates with sexual activity. These findings suggest that these two RF-amide peptides may act in concert to synchronise the gonadotrophic activity of jerboas with the seasons.
Collapse
Affiliation(s)
- A Janati
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, ATLAS-FES, Morocco
| | | | | | | | | | | | | |
Collapse
|
5
|
El Ouezzani S, Janati IA, Magoul R, Pévet P, Saboureau M. Overwinter body temperature patterns in captive jerboas (Jaculus orientalis): influence of sex and group. J Comp Physiol B 2010; 181:299-309. [PMID: 20981552 DOI: 10.1007/s00360-010-0519-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 09/19/2010] [Accepted: 09/24/2010] [Indexed: 10/18/2022]
Abstract
The jerboa (Jaculus orientalis) has been described in the past as a hibernator, but no reliable data exist on the daily and seasonal rhythmicity of body temperature (T (b)). In this study, T (b) patterns were determined in different groups of jerboas (isolated males and females, castrated males and grouped animals) maintained in captivity during autumn and winter, and submitted to natural variations of light and ambient temperature (T (a)). T (b) and T (a) variations were recorded with surgically implanted iButton temperature loggers at 30-min intervals for two consecutive years. About half (6/13) of isolated female jerboas hibernated with a T (b) < 33°C, with hibernation bouts interspersed with short periods of normothermy from November to February. Hibernation bout durations were longer (4-5 days) than those of normothermia phases (1-4 days). During hibernation, the minimum T (b) was low (T (b)min ~10.7°C). In contrast, one of the 12 isolated males showed short hibernation bouts of ca. 2 days late in the hibernation season, February-March. The males had T (b)min values of 15.1°C. In contrast to predictions, no castrated males hibernated. When jerboas were grouped, females and males exhibited concomitant torpor bouts. In males, the longest bouts were observed during the late hibernation season. These data suggest complex regulation of hibernation in jerboas.
Collapse
Affiliation(s)
- S El Ouezzani
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, BP 1796, ATLAS, Fes, Morocco.
| | | | | | | | | |
Collapse
|
6
|
Oosthuizen M, Bennett N, Coen C. An immunohistochemical study of the gonadotrophin-releasing hormone 1 system in solitary Cape mole-rats, Georychus capensis, and social Natal mole-rats, Cryptomys hottentotus natalensis. Neuroscience 2008; 157:164-73. [DOI: 10.1016/j.neuroscience.2008.08.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/18/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
7
|
Barakat Y, Pape JR, Boutahricht M, El Ouezzani S, Alaoui A, Chaigniau M, Tramu G, Magoul R. Immunocytochemical detection of cholecystokinin and corticotrophin-releasing hormone neuropeptides in the hypothalamic paraventricular nucleus of the jerboa (Jaculus orientalis): modulation by immobilisation stress. J Neuroendocrinol 2006; 18:767-75. [PMID: 16965295 DOI: 10.1111/j.1365-2826.2006.01474.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hypothalamic response to an environmental stress implicates the corticotrophin-releasing hormone (CRH) neuroendocrine system of the hypothalamic parvicellular paraventricular nucleus (PVN) in addition to other neuropeptides coexpressed within CRH neurones and controlling the hypothalamo-pituitary-adrenal (HPA) axis activity as well. Such neuropeptides are vasopressin, neurotensin and cholecystokinin (CCK). It has previously been demonstrated that the majority of the CRH neuronal population coexpresses CCK after a peripheral stress in rats. In the present study, we explored such neuroendocrine plasticity in the jerboa in captivity as another animal model. In particular, we studied CCK and CRH expression within the hypothalamic PVN by immunocytochemistry in control versus acute immobilisation stress-submitted jerboas. The results show that CCK- and CRH-immunoreactive neuronal systems are located in the hypothalamic parvicellular PVN. The number of CCK-immunoreactive neurones within the PVN was significantly increased (138% increase) in stressed animals compared to controls. Similarly, the number of CRH-containing neurones was higher in stressed jerboas (128%) compared to controls. These results suggest that the neurogenic stress caused by immobilisation stimulates CCK as well as CRH expression in jerboas, which correlates well with previous data obtained in rats using other stressors. The data obtained also suggest that, in addition to CRH, CCK is another neuropeptide involved in the response to stress in jerboa, acting by controlling HPA axis activity. Because CCK is involved in the phenotypical plasticity of CRH-containing neurones in response to an environmental stress, we also explored their coexpression by double immunocytochemistry within the PVN and the median eminence (i.e. the site of CRH and CCK corelease in the rat) following jerboa immobilisation. The results show that CCK is not coexpressed within CRH neurones in either control or stressed jerboa, suggesting differences between jerboas and rats in the neuroendocrine regulatory mechanisms of the stress response involving CRH and CCK. The adaptative physiological mechanisms to environmental conditions might vary from one mammal species to another.
Collapse
Affiliation(s)
- Y Barakat
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar-Mehraz, Fez-Atlas, Morocco
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Barakat Y, Pape JR, Boutahricht M, El Ouezzani S, Alaoui A, Chaigniau M, Barakat L, Tramu G, Mâgoul R. Vasopressin-containing neurons of the hypothalamic parvocellular paraventricular nucleus of the jerboa: plasticity related to immobilization stress. Neuroendocrinology 2006; 84:396-404. [PMID: 17384516 DOI: 10.1159/000100509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 11/30/2006] [Indexed: 11/19/2022]
Abstract
The corticotropin-releasing hormone (CRH) neurons of the hypothalamic parvocellular paraventricular nucleus (PVN) have a high potential for phenotypical plasticity, allowing them to rapidly modify their neuroendocrine output, depending upon the type of stressors. Indeed, these neurons coexpress other neuropeptides, such as cholecystokinin (CCK), vasopressin (VP), and neurotensin, subserving an eventual complementary function to CRH in the regulation of the pituitary. Unlike in rats, our previous data showed that in jerboas, CCK is not coexpressed within CRH neurons in control as well as stressed animals. The present study explored an eventual VP participation in the phenotypic plasticity of CRH neurons in the jerboa. We analyzed the VP expression within the PVN by immunocytochemistry in male jerboas submitted to acute stress. Our results showed that, contrary to CRH and CCK, no significant change concerned the number of VP-immunoreactive neurons following a 30-min immobilization. The VP/CRH coexpression within PVN and median eminence was investigated by double immunocytochemistry. In control as well as stressed animals, the CRH-immunopositive neurons coexpressed VP within cell bodies and terminals. No significant difference in the number of VP/CRH double-labeled cells was found between both groups. However, such coexpression was quantitatively more important into the posterior PVN as compared with the anterior PVN. This suggests an eventual autocrine/paracrine or endocrine role for jerboa parvocellular VP which is not correlated with acute immobilization stress. VP-immunoreactive neurons also coexpressed CCK within PVN and median eminence of control and stressed jerboas. Such coexpression was more important into the anterior PVN as compared with the posterior PVN. These results showed the occurrence of at least two VP neuronal populations within the jerboa PVN. In addition, the VP expression did not depend upon acute immobilization stress. These data highlight differences in the neuroendocrine regulatory mechanisms of the stress response involving CRH/CCK or VP. They also underline that adaptative physiological mechanisms to stress might vary from one mammal species to another.
Collapse
Affiliation(s)
- Y Barakat
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences Dhar-El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Boutahricht M, Guillemot J, Montero-Hadjadje M, Bellafqih S, El Ouezzani S, Alaoui A, Yon L, Vaudry H, Anouar Y, Magoul R. Biochemical characterisation and immunohistochemical localisation of the secretogranin II-derived peptide EM66 in the hypothalamus of the jerboa (Jaculus orientalis): modulation by food deprivation. J Neuroendocrinol 2005; 17:372-8. [PMID: 15929742 DOI: 10.1111/j.1365-2826.2005.01314.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The neuroendocrine protein secretogranin II is the precursor of several neuropeptides, including secretoneurin and a novel 66-amino acid peptide, EM66, the sequence of which has been highly conserved across the vertebrae phylum. The presence of EM66 has been detected in the adult and fetal human adrenal gland, as well as the rat pituitary and adrenal glands. The present study aimed to explore a possible neuroendocrine role of EM66 by analysing its occurrence and distribution within the jerboa hypothalamus, and its potential implication in the control of feeding behaviour. High-performance liquid chromatography analysis of jerboa hypothalamic extracts combined with a radioimmunoassay of EM66 revealed a single peak of immunoreactive material exhibiting the same retention time as recombinant EM66. Immunocytochemical labelling showed that EM66-producing neurones are widely distributed in several hypothalamic regions, including the preoptic area, the suprachiasmatic, supraoptic, parvocellular paraventricular and arcuate nuclei, and the lateral hypothalamus. Food deprivation for 5 days induced a significant increase in the number of EM66-containing neurones within the arcuate nucleus (105% increase) and the parvocellular aspect of the paraventricular nucleus (115% increase), suggesting that EM66 could be involved in the control of feeding behaviour and/or the response to stress associated with fasting. Altogether, these data reveal the physiological plasticity of the EM66 system in the hypothalamus and implicate this novel peptide in the regulation of neuroendocrine functions.
Collapse
Affiliation(s)
- M Boutahricht
- Laboratory of Animal Physiology, University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar-Mehraz, Fès-Atlas, Morocco
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
El Qandil S, Chakir J, El Moussaouiti R, Oukouchoud R, Rami N, Benjelloun WA, Lakhdar-Ghazal N. Role of the pineal gland and melatonin in the photoperiodic control of hypothalamic gonadotropin-releasing hormone in the male jerboa (Jaculus orientalis), a desert rodent. Brain Res Bull 2005; 64:371-80. [PMID: 15607825 DOI: 10.1016/j.brainresbull.2004.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2003] [Revised: 04/19/2004] [Accepted: 06/01/2004] [Indexed: 11/21/2022]
Abstract
The neuroendocrine mechanism underlying seasonal changes in gonadal activity of the jerboa, a desert hibernating rodent adapted to harsh climatic conditions, are poorly understood. We investigated the role of the pineal gland and melatonin in the photoperiodic control of hypothalamic gonadotropin-releasing hormone (GnRH). Intact and pinealectomized male jerboas were subjected to short photoperiod, while others were kept under long photoperiod and injected daily with melatonin or vehicle. Testes activity was monitored by evaluating the testes volume during 10 weeks. GnRH immunoreactivity was investigated quantitatively with image analysis. Following melatonin administration, the hormone peaked in plasma after 30 min, with return to control levels 2.5 h later. Exposure to short photoperiod and melatonin resulted in marked increase in the number of GnRH-containing cells in the preoptic area and mediobasal hypothalamus, whereas GnRH immunoreactivity of fibers and terminals in the median eminence decreased under these conditions. The findings indicate that in the jerboa short photoperiod induces testicular regression by prolonging the duration of melatonin as an endocrine signal. This mechanism probably involves inhibition of GnRH release in the median eminence, with consequent accumulation of GnRH in perikarya of the preoptic area and mediobasal hypothalamus. Interestingly, GnRH cells of the median eminence did not appear to be influenced by the photoperiod and pineal melatonin, whereas their number was increased by exogenous melatonin. The latter data suggest for the first time the involvement of an extrapineal melatonin, whose origin remains to be identified, in the modulation of the GnRH regulatory system in rodents.
Collapse
Affiliation(s)
- S El Qandil
- Department de Biologie, Unité de Neurosciences, Faculté des Sciences, Groupe de Recherche sur les Rythmes Biologiques, Université Mohammed V, BP. 1014, avenue Ibn Battouta 10000 Rabat, Morocco
| | | | | | | | | | | | | |
Collapse
|
11
|
El Ouezzani S, Lafon P, Tramu G, Magoul R. Neuropeptide Y gene expression in the jerboa arcuate nucleus: modulation by food deprivation and relationship with hibernation. Neurosci Lett 2001; 305:21-4. [PMID: 11356298 DOI: 10.1016/s0304-3940(01)01803-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY) was investigated in the arcuate nucleus (ARC) of jerboas under three different states of energy balance. (1) normally feeding animals, (2) hibernating animals and finally (3) animals food deprived for 5 days. The hibernating and food deprived jerboas exhibited a significant increase (130%; P < 0.05 and 210%; P < 0.01, respectively) of mRNA expression as compared with controls. This elevated NPY mRNA expression supports the hypothesis that NPY may be implicated in abnormal feeding behaviour associated with eating deprivation. The stimulation of NPY gene expression in hibernating jerboas may be related to food deprivation and / or cold exposure since NPY is known to be an hypothermiant factor. It is thus envisaged that NPY within neurons of the ARC plays an integrative role in the control of energy metabolism.
Collapse
Affiliation(s)
- S El Ouezzani
- Université Sidi Mohamed Ben Abdellah, Faculté des Sciences Dhar Mehrez -Fès, Laboratoire de Physiologie Animale, B.P.1796, Fès-Atlas, Morocco.
| | | | | | | |
Collapse
|
12
|
El Ouezzani S, Lafon P, Tramu G, Magoul R. Neuropeptide Y gene expression in the jerboa arcuate nucleus: modulation by food deprivation and relationship with hibernation. Neurosci Lett 2001; 305:127-30. [PMID: 11376900 DOI: 10.1016/s0304-3940(01)01825-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using in situ hybridization, the mRNA levels encoding neuropeptide Y (NPY) was investigated in the arcuate nucleus (ARC) of jerboas under three different states of energy balance. (1) normally feeding animals, (2) hibernating animals and finally (3) animals food deprived for 5 days. The hibernating and food deprived jerboas exhibited a significant increase (130%; P<0.05 and 210%; P<0.01, respectively) of mRNA expression as compared with controls. This elevated NPY mRNA expression supports the hypothesis that NPY may be implicated in abnormal feeding behaviour associated with eating deprivation. The stimulation of NPY gene expression in hibernating jerboas may be related to food deprivation and / or cold exposure since NPY is known to be a hypothermiant factor. It is thus envisaged that NPY within neurons of the ARC plays an integrative role in the control of energy metabolism.
Collapse
Affiliation(s)
- S El Ouezzani
- Université Sidi Mohamed Ben Abdellah, Faculté des Sciences Dhar Mehrez-Fès, Laboratoire de Physiologie Animale, B.P.1796, Fès-Atlas, Morocco
| | | | | | | |
Collapse
|