1
|
Szymanska K, Rytelewska E, Zaobidna E, Kiezun M, Gudelska M, Kopij G, Dobrzyn K, Mlyczynska E, Kurowska P, Kaminska B, Nynca A, Smolinska N, Rak A, Kaminski T. The Effect of Visfatin on the Functioning of the Porcine Pituitary Gland: An In Vitro Study. Cells 2023; 12:2835. [PMID: 38132154 PMCID: PMC10742260 DOI: 10.3390/cells12242835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Visfatin (VIS), also known as nicotinamide phosphoribosyltransferase (NAMPT), is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Recently, VIS has been also recognized as an adipokine. Our previous study revealed that VIS is produced in the anterior and posterior lobes of the porcine pituitary. Moreover, the expression and secretion of VIS are dependent on the phase of the estrous cycle and/or the stage of early pregnancy. Based on this, we hypothesized that VIS may regulate porcine pituitary function. This study was conducted on anterior pituitary (AP) glands harvested from pigs during specific phases of the estrous cycle. We have shown the modulatory effect of VIS in vitro on LH and FSH secretion by porcine AP cells (determined by ELISA). VIS was also found to stimulate cell proliferation (determined by Alamar Blue) without affecting apoptosis in these cells (determined using flow cytometry technique). Moreover, it was indicated that VIS may act in porcine AP cells through the INSR, AKT/PI3K, MAPK/ERK1/2, and AMPK signaling pathways (determined by ELISA or Western Blot). This observation was further supported by the finding that simultaneous treatment of cells with VIS and inhibitors of these pathways abolished the observed VIS impact on LH and FSH secretion (determined by ELISA). In addition, our research indicated that VIS affected the mentioned processes in a manner that was dependent on the dose of VIS and/or the phase of the estrous cycle. Thus, these findings suggest that VIS may regulate the functioning of the porcine pituitary gland during the estrous cycle.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, 30-348 Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Anna Nynca
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| |
Collapse
|
2
|
Szymanska K, Zaobidna E, Rytelewska E, Mlyczynska E, Kurowska P, Dobrzyn K, Kiezun M, Kaminska B, Smolinska N, Rak A, Kaminski T. Visfatin in the porcine pituitary gland: expression and regulation of secretion during the oestrous cycle and early pregnancy. Sci Rep 2023; 13:18253. [PMID: 37880346 PMCID: PMC10600231 DOI: 10.1038/s41598-023-45255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
3
|
Davis TL. Nonclassical actions of estradiol-17beta are not detectable in the alphaT3-1 and LbetaT2 immortalized gonadotrope cell lines†. Biol Reprod 2019; 101:791-799. [PMID: 31290547 DOI: 10.1093/biolre/ioz118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
The immortalized mouse gonadotrope cell lines alphaT3-1 and LbetaT2 cells have been a substitute model for primary gonadotropes. These cell lines have provided a homogeneous cell population, as compared to the dissociated anterior pituitaries, which contain a heterogeneous population of cells potentially responsive to estradiol-17beta (E2). Nonclassical actions of E2 assumed to occur through the plasma membrane estrogen receptor 1 (ESR1, also known as ERalpha). These actions have included inhibition of gonadotropin-releasing hormone (GnRH)-induced increases in intracellular calcium concentrations and phosphorylation of p44/42 mitogen-activated protein kinase (ERK-1/2) in ovine pituitaries including primary gonadotropes in vitro. The objective of the present experiment was to determine if alphaT3-1 and LbetaT2 are cell models with limitations to examine the nonclassical actions of E2 occurring in gonadotropes. Experiments were conducted to determine if the cells have ESR1 at the plasma membrane using biotinylation cell and isolation of surface protein and staining with a fluorescently labeled E2 conjugate. The alphaT3-1 cells contain ESR1 associated with but not enriched within lipid rafts of the plasma membrane and do not translocate to lipid rafts upon binding of E2. In contrast, LbetaT2 cells lack ESR1 associated with the plasma membrane. Pretreatment with E2 did not cause inhibition of GnRH-stimulated increases in intracellular concentrations of calcium for either cell type. Phosphorylation of ERK-1/2 was not stimulated by E2 in either cell type. Although these cells lines have been used extensively to study GnRH signaling, in vitro or in vivo effects of nonclassical actions of E2 cannot be replicated in either cell line.
Collapse
Affiliation(s)
- Tracy L Davis
- Department of Biology, Wingate University, Wingate, North Carolina, USA
| |
Collapse
|
4
|
Abstract
Plant-derived estrogens (phytoestrogens, PEs), like endogenous estrogens, affect a diverse array of tissues, including the bone, uterus, mammary gland, and components of the neural and cardiovascular systems. We hypothesized that PEs act directly at pituitary loci to attenuate basal FSH secretion and increase gonadotrope sensitivity to GnRH. To examine the effect of PEs on basal secretion and total production of FSH, ovine pituitary cells were incubated with PEs for 48 h. Conditioned media and cell extract were collected and assayed for FSH. Estradiol (E₂) and some PEs significantly decreased basal secretion of FSH. The most potent PEs in this regard were coumestrol (CM), zearalenone (ZR), and genistein (GN). The specificity of PE-induced suppression of basal FSH was indicated by the absence of suppression in cells coincubated with PEs and an estrogen receptor (ER) blocker (ICI 182 780; ICI). Secretion of LH during stimulation by a GnRH agonist (GnRH-A) was used as a measure of gonadotrope responsiveness. Incubation of cells for 12 h with E₂, CM, ZR, GN, or daidzein (DZ) enhanced the magnitude and sensitivity of LH secretion during subsequent exposure to graded levels of a GnRH-A. The E₂- and PE-dependent augmentation of gonadotrope responsiveness was nearly fully blocked during coincubation with ICI. Collectively, these data demonstrate that selected PEs (CM, ZR, and GN), like E₂, decrease basal secretion of FSH, reduce total FSH production, and enhance GnRH-A-induced LH secretion in a manner that is dependent on the ER.
Collapse
Affiliation(s)
- Sergio A Arispe
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
5
|
Cell-specific distributions of estrogen receptor alpha (ERα) and androgen receptor (AR) in anterior pituitary glands from adult cockerels as revealed by immunohistochemistry. Cell Tissue Res 2012; 348:551-8. [DOI: 10.1007/s00441-012-1399-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/05/2012] [Indexed: 02/03/2023]
|
6
|
Robinson JE, Hastie PM, Shah A, Smith A, Evans NP. Developmental programming: prenatal androgen exposure alters the gonadotroph population of the ovine pituitary gland. J Neuroendocrinol 2012; 24:434-42. [PMID: 22129152 DOI: 10.1111/j.1365-2826.2011.02264.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In utero exposure of the female foetus to androgens during development disrupts the reproductive axis and results in hypersecretion of luteinising hormone (LH) (but not follicle-stimulating hormone) in postnatal life. Abnormalities in the neural circuits controlling hypothalamic gonadotrophin-releasing hormone have been documented; however, androgens could also programme abnormalities in the pituitary gland. Ovine foetuses were exposed to either testosterone propionate or the non-aromatisable androgen dihydro-testosterone from days 30-90 of gestation (term 147 days) and the effects on the functional morphology of the pituitary were determined. Exogenous testosterone propionate exposure resulted in pituitary glands in adult male and female sheep that were 40% heavier than controls. Because this effect was not observed in the dihydro-testosterone-exposed animals, these actions are mediated via the oestrogen receptor (ER). No significant differences were apparent in 90- or 140-day foetuses. There was no difference between control and androgen-exposed animals in the density of LHβ or ERα immunoreactive cells in the pituitary although the density of follicle-stimulating hormone-β immunoreactive cells was lower in the testosterone-treated animals. The percentage of cells co-localising LHβ and ERα was lower in the testosterone-treated ewes and this may, in part, explain a reduced ability to respond to steroid feedback. Thus, enlargement of the pituitary gland, coupled with a reduced sensitivity to oestrogen negative-feedback, may contribute to the hyper-secretion of LH observed in animals that have been exposed to excess androgens during foetal life.
Collapse
Affiliation(s)
- J E Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
7
|
Iqbal J, Latchoumanin O, Sari IP, Lang RJ, Coleman HA, Parkington HC, Clarke IJ. Estradiol-17beta inhibits gonadotropin-releasing hormone-induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone release. Endocrinology 2009; 150:4213-20. [PMID: 19477939 DOI: 10.1210/en.2009-0092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In pituitary gonadotropes, estrogens have biphasic actions to cause an initial negative feedback followed by a positive feedback on LH secretion, but the mechanisms involved are not clearly understood. To investigate the feedback effects of estrogen, we used mixed ovine pituitary cell cultures (48-72 h), which were treated with 10(-9) M estradiol-17beta (E(2)) or vehicle followed by a pulse of 10(-9) M GnRH. Medium was collected for LH assay and cells extracted to determine activation of MAPK (phosphorylated ERK-1/2). E(2) treatment for 5 min reduced GnRH-induced LH release and caused phosphorylation of ERK-1/2. E(2) alone also caused phosphorylation of ERK-1/2, similar to the response evoked by GnRH alone. GnRH increased cytoplasmic intracellular free calcium concentration ([Ca(2+)](i)) and this was abolished by 2 min pretreatment with E(2) or E-bovine serum albumen conjugate. Blockade of Ca(2+) channels with nifedipine had no effect on the initial peak of GnRH-induced increase in [Ca(2+)](i) but reduced its duration by 27 +/- 6%. Depletion of intracellular Ca(2+) stores with thapsigargin prevented GnRH-induced increase in [Ca(2+)](i). Thapsigargin (10(-7) M) or nifedipine (10(-5) M) pretreatment (15 min) of cells lowered GnRH-induced LH secretion by 30 +/- 6 and 50% +/- 4%, respectively. We conclude that inhibition of the GnRH-induced increase in [Ca(2+)](i) in gonadotropes by E(2) is a likely mechanism for the negative feedback effect of E(2) on LH secretion involving a rapid nongenomic effect of E(2). Activation of the MAPK pathway by E(2) may be the mechanism for the time-delayed positive feedback effect on LH secretion at the level of the gonadotrope.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Relationship between serum gonadotropins and pituitary immunoreactive gonadotropins and steroid receptors during the first FSH increase of the estrous cycle and following steroid treatment in heifers. Anim Reprod Sci 2009; 112:66-82. [DOI: 10.1016/j.anireprosci.2008.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/14/2008] [Accepted: 04/02/2008] [Indexed: 11/24/2022]
|
9
|
González M, Reyes R, Damas C, Alonso R, Bello AR. Oestrogen receptor alpha and beta in female rat pituitary cells: an immunochemical study. Gen Comp Endocrinol 2008; 155:857-68. [PMID: 18067893 DOI: 10.1016/j.ygcen.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/17/2007] [Accepted: 10/23/2007] [Indexed: 01/05/2023]
Abstract
Estradiol is a critical factor in the anterior pituitary secretory activity of mammalian females. Previous reports have demonstrated the presence of oestrogen receptor alpha (ERalpha) and beta (ERbeta) in specific anterior pituitary cells from ovariectomized rats, as well as in the whole anterior pituitary at particular stages of the rat oestrous cycle. However, the ERalpha and ERbeta distribution patterns in specific hormone producing cells of the anterior pituitary during the oestrous cycle remain to be clarified. The purpose of this study was to determine the cellular and subcellular distribution of both ER-subtypes during the rat oestrous cycle, using immunochemistry at light- and electron-microscope levels. ERalpha-immunoreactive (ir) cells mainly corresponded to PRL-ir cells and, to a lesser extent, to TSH-, FSH- and GH-ir cells. ERbeta-ir cells corresponded to a few GH-, PRL- and FSH-ir cells, whichever the phase of the cycle. ERalpha-ir was found either in the cytoplasm and/or the nucleus, depending on the phase of the oestrous cycle, while ERbeta-ir was always detected in the cytoplasm. Both ER-subtypes were immunoreactives inside the rough endoplasmic reticulum (RER), secretory vesicles (SV) and free in the cytosol. The highest number of ERalpha-ir cells was consistently found at pro-oestrus midday and the lowest at metaoestrous, while the number of ERbeta-ir cells was low in all stages of the cycle. These results indicate that the genomic actions of oestrogen in the anterior pituitary cells during the oestrous cycle are mediated by ERalpha. However, the localization of ERalpha and ERbeta in the RER and SV suggest a different translational and/or post-translational pathway, which could be involved in non-genomic mechanisms.
Collapse
Affiliation(s)
- Miriam González
- Cell Biology Section, University of La Laguna School of Biology and FICIC, 38230 La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
10
|
Polkowska J, Wańkowska M, Riddestråle Y, Wójcik-Gładysz A, Madej A, Tillet Y. Prepubertal changes in the synthesis, storage and release of growth hormone and luteinising hormone and in the immunoreactivity of oestrogen receptor-alpha in lamb pituitary cells. A morphofunctional study. J Chem Neuroanat 2008; 35:257-67. [PMID: 18282688 DOI: 10.1016/j.jchemneu.2007.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
The present study was designed to determine the changes in the synthesis, storage and release of luteinising hormone (LH) and growth hormone (GH) in the hypophyseal cells by investigating the presence of oestrogen receptor-alpha (ERalpha) in developing prepubertal female lambs. The experiment was carried out on 14 prepubertal (17-week-old) and 14 peripubertal (32-week-old) ovary-intact lambs. Morphofunctional changes in the cells of the adenohypophyseal population were assayed with immunohistochemistry (IH), in situ hybridisation (ISH), Real-time PCR and radioimmunoassay (RIA). Blood samples (n=14) were taken every 2 weeks from 17 to 32 weeks of age for estimation of GH and LH by RIA. Computer image analysis was used to determine the percent of cells exhibiting IH and/or ISH reaction. The percentage of cells stained for LHbeta and GH increased for both LH- and GH-producing cells and were higher (P<0.001) in the peripubertal than prepubertal group. The percentage of mRNA LHbeta-expressing cells decreased and were lower for the peripubertal (P<0.001) than prepubertal group. The GH mRNA in pituitaries of prepubertal lambs was higher in comparison to peripubertal ones (P<0.001). The percentage of ERalpha positive cells increased significantly (P<0.001) in peripubertal compared to prepubertal lambs and this increase was significant (P<0.001) in both LH- and GH-producing cells. Plasma LH concentrations increased from 27 weeks of age, while GH concentrations gradually decreased from 17 weeks of age (P<0.05). The histomorphological changes in the LH- and GH-producing cells reflect the increasing pattern of the regulation of secretory processes of these hormones and an escalating regulatory role of oestrogen in the physiology of these cells during the prepubertal period. These results support the involvement of both hormones in the events leading up to puberty.
Collapse
Affiliation(s)
- Jolanta Polkowska
- Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-11 Jabłonna, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Iqbal J, Latchoumanin O, Clarke IJ. Rapid in vivo effects of estradiol-17beta in ovine pituitary gonadotropes are displayed by phosphorylation of extracellularly regulated kinase, serine/threonine kinase, and 3',5'-cyclic adenosine 5'-monophosphate-responsive element-binding protein. Endocrinology 2007; 148:5794-802. [PMID: 17823264 DOI: 10.1210/en.2007-0986] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have determined the time course of phosphorylation of MAPK/ERK, cAMP-responsive element-binding protein (CREB), and serine/threonine kinase (Akt) in ovine pituitary gonadotropes after in vivo injection (iv) of either 25 mug estradiol-17beta (E17beta) or vehicle. In ovariectomized ewes, E17beta increased the number of gonadotropes expressing phosphorylated (p)ERK-1/2 and pCREB immunoreactivity (-IR) within 90 min, as assessed by immunohistochemistry. By Western blot, we also showed that pERK-1/2, pCREB, and pAkt (ser 473) proteins were up-regulated by E17beta. In ovariectomized, hypothalamo-pituitary-disconnected animals, gonadotrope function was restored with hourly GnRH pulses (iv), and E17beta injection (iv) reduced LH response within 1 h. Immunohistochemistry showed that E17beta increased pERK-1/2-IR in gonadotropes within 15 min and peak response at 60 min. The number of cells immunoreactive for pCREB was greater in E17beta-treated animals than in vehicle-injected controls at 60 and 90 min. Western blot revealed a pERK-1/2 response within 15 min and pCREB response at 30 min. Up-regulation of pAkt occurred within 60 min of E17beta treatment. Thus, rapid effects of E17beta on gonadotropes involve phosphorylation of second messenger proteins with a time course that may relate to the rapid negative feedback effect to reduce responsiveness to GnRH.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Physiology, Monash University, Clayton, Victoria 3880, Australia
| | | | | |
Collapse
|
12
|
Cui S, Liu JL, Shao YJ, Zhang JC. Parallel changes between the percentage of fetal pituitary cells immunoreactive to oestrogen receptor alpha and the concentration of 17beta-oestradiol in fetal and maternal plasma during gestation in sheep. Reprod Fertil Dev 2007; 16:611-6. [PMID: 15740683 DOI: 10.1071/rd02104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2002] [Accepted: 04/23/2004] [Indexed: 11/23/2022] Open
Abstract
The present study was designed to investigate the relationship between fetal sheep pituitary oestrogen receptor (ER) alpha expression and changes in fetal and maternal plasma 17beta-oestradiol (E2) concentrations during gestation. The results revealed that immunoreactivity for ER was located in the nuclei and distributed throughout the fetal pituitary gland during gestation. The percentage of ERalpha-positive cells was approximately 2% of the total cell population in female fetuses at Day 60 of gestation, increased to approximately 7% and 13% of the total cell population at Days 90 and 120 of gestation, respectively, and then declined to approximately 10% at birth. The fetal plasma E2 concentrations were approximately 19 and 71 pg mL(-1) at Days 90 and 120 of gestation, respectively, and decreased to 22 pg mL(-1) after birth. In male fetuses, plasma E2 concentrations and the percentage of ERalpha-positive cells were similar to values in female fetuses throughout gestation, except on Day 120 when the plasma E2 level in female fetuses was significantly higher than in male fetuses. These data demonstrate that changes in the percentage of fetal pituitary ERalpha-positive cells parallel fetal plasma E2 concentrations throughout gestation.
Collapse
Affiliation(s)
- Sheng Cui
- Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing, PR China
| | | | | | | |
Collapse
|
13
|
Tasende C, Rodríguez-Piñón M, Acuña S, Garófalo EG, Forsberg M. Corpus luteum life span and pituitary oestrogen and progesterone receptors in cyclic and gonadotrophin-releasing hormone-treated anoestrous ewes. Reprod Fertil Dev 2005; 17:721-6. [PMID: 16364226 DOI: 10.1071/rd05058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 09/16/2005] [Indexed: 11/23/2022] Open
Abstract
The present study investigated the pituitary oestrogen (ER) and progesterone (PR) receptor concentrations in ewes during the oestrous cycle in the breeding season (n = 19), and in anoestrous ewes treated with gonadotrophin-releasing hormone (GnRH) (n = 11) and anoestrous ewes treated with progesterone + GnRH (n = 11). The pituitary ER and PR concentrations at the expected time of ovulation and in the early and late luteal phases were measured by binding assay. The pattern of pituitary ER and PR concentrations in the progesterone + GnRH-treated ewes resembled the pattern found during the normal oestrous cycle, with ER and PR concentrations decreasing from the time of ovulation to the early luteal phase. In contrast, in ewes treated with GnRH alone, ER and PR concentrations increased in the early luteal phase, which may increase the inhibitory effects of steroid hormones on luteinising hormone secretion, ultimately leading to the development of subnormal luteal phases.
Collapse
Affiliation(s)
- C Tasende
- Biochemistry, Department of Molecular and Cellular Biology, Faculty of Veterinary, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Advances in our understanding of the complexity of GnRH actions at the pituitary and the various mechanisms involved in mediating differential LH and FSH biosynthesis and secretion at the gonadotrope, are continually emerging. In this review, we summarise recent studies pertaining to GnRH and GnRH receptor phylogeny, the divergent signalling and trafficking pathways initiated and utilised by GnRH and its receptor, and the pathways that mediate gonadotropin secretion from the gonadotrope.
Collapse
Affiliation(s)
- Adam J Pawson
- Human Reproductive Sciences Unit, Medical Research Council, The University of Edinburgh Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | | |
Collapse
|
15
|
Liu J, Cui S. Ontogeny of estrogen receptor (ER) alpha and its co-localization with pituitary hormones in the pituitary gland of chick embryos. Cell Tissue Res 2005; 320:235-42. [PMID: 15789219 DOI: 10.1007/s00441-004-1051-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
Estrogen is involved in regulating the development and hormone secretion of the anterior pituitary gland following its binding to estrogen receptors (ERs) expressed on pituitary cells. However, the pituitary is comprised of several cell types, and to date, there is no data about the specific cell types expressing ERs in embyonic chick pituitary. We therefore followed, by immunohistochemistry, the ontogeny of the pituitary ER alpha (ERalpha), and the cell types expressing ERalpha throughout chick embryo development. ERalpha immunoreacitivity was restricted to the nuclei of pituitary cells. ERalpha-immunopositive (ERalpha(+)) cells were first detected at embryonic day 6.5 (E6.5), after which ERalpha(+) cells were consistently detected throughout the anterior pituitary gland, although the density of ERalpha(+) cells in the caudal lobe of the pars distalis was higher than that in the cephalic lobe. The proportion of ERalpha(+) cells in the pituitary was about 6% at E8.5; expression increased to 22% by E18.5 of gestation, with no additional change until hatching. Double-labeling of ERalpha and pituitary hormones showed that the dominant cell types expressing ERalpha were gonadotrophs immunopositive for luteinizing hormone (LH); the proportion of ERalpha(+) cells expressing LH increased throughout gestation and reached approximately 57% at hatching. About 2%-6% of thyroid-stimulating-hormone-immunopositive and 1%-2% prolactin-immunopositive cells expressed ERalpha at later stages of embryonic development, but no growth-hormone-positive or adrenocorticotropic-hormone-positive cells expressed ERalpha during the embryonic period. Thus, gonadotrophs are the main cell population expressing ERalpha in the anterior pituitary gland of chick embryo, and ERalpha is involved in regulating the development of the pituitary gland and the maturation of the hormone-secreting function.
Collapse
Affiliation(s)
- Jiali Liu
- College of Biological Sciences, Faculty of Veterinary Medicine, China Agricultural University, Beijing
| | | |
Collapse
|
16
|
Polkowska J, Ridderstråle Y, Wańkowska M, Romanowicz K, Misztal T, Madej A. Effects of intracerebroventricular infusion of genistein on gonadotrophin subunit mRNA and immunoreactivity of gonadotrophins and oestrogen receptor-alpha in the pituitary cells of the anoestrous ewe. J Chem Neuroanat 2005; 28:217-24. [PMID: 15531133 DOI: 10.1016/j.jchemneu.2004.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2003] [Revised: 02/05/2004] [Accepted: 07/03/2004] [Indexed: 10/26/2022]
Abstract
The present study was designed to demonstrate whether genistein, a synthetic phytoestrogen, infused into the third ventricle of the brain could affect the gonadotrophic cells regarding the presence of oestrogen receptor-alpha immunoreactivity and gonadotrophin subunit mRNA hybridising reaction in the ewe. Ewes (n=7), aged 2 years, in early anoestrous season were infused with Ringer-Locke solution (control, n=3) or 10 microg/100 microl/h of genistein (n=4) into the third ventricle over a 5 h period and slaughtered the following morning. Immunoreactivity of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and oestrogen receptor-alpha (ERalpha) was determined in the adenohypophysis by immunohistochemistry using antibodies raised against LHbeta, FSHbeta, and ERalpha. Messenger RNA analyses were performed by non-isotope in situ hybridisation using sense and antisense riboprobes produced from beta subunits of LH and FSH cDNA clones. Computer image analysis was used to determine the percent of cells exhibiting immunohistochemical and/or hybridising reaction. It was found that in ewes infused with genistein, the percentage of LH-positive cells and the density of immunoreactive-LHbeta material decreased significantly (P<or=0.001), but the percentage of mRNA LHbeta-expressing cells and the intensity of the hybridisation signal increased significantly (P<or=0.001), compared to the vehicle-infused animals. The genistein infusions had no effect on the immunoreactivity of FSH cells or on the expression of mRNA for FSHbeta. The percentage of ERalpha-positive cells increased significantly after genistein infusions (P<or=0.001) and this increase was significant in the LH but not in FSH cells (P<or=0.001). In conclusion, we suggest that genistein can stimulate the expression of immunoreactive ERalpha in the pituitary LH-cells but not in FSH-cells and change the endocrine activity of LH-producing cells of anoestral ewes.
Collapse
Affiliation(s)
- Jolanta Polkowska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna near Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Clarke IJ, Tobin VA, Pompolo S, Pereira A. Effects of changing gonadotropin-releasing hormone pulse frequency and estrogen treatment on levels of estradiol receptor-alpha and induction of Fos and phosphorylated cyclic adenosine monophosphate response element binding protein in pituitary gonadotropes: studies in hypothalamo-pituitary disconnected ewes. Endocrinology 2005; 146:1128-37. [PMID: 15564326 DOI: 10.1210/en.2004-0980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor-alpha (ER alpha) levels in gonadotropes are increased during the follicular phase of the ovine estrous cycle, a time of increased frequency of pulsatile secretion of GnRH and elevated plasma estrogen levels. In the present study, our first aim was to determine which of these factors causes the rise in the number of gonadotropes with ER alpha. Ovariectomized hypothalamo-pituitary disconnected ewes (n = 4-6) received the following treatments: 1) no treatment, 2) injection (im) of 50 microg estradiol benzoate (EB), 3) pulses (300 ng iv) of GnRH every 3 h, 4) GnRH treatment as in group 3 and EB treatment as in group 2, 5) increased frequency of GnRH pulses commencing 20 h before termination, and 6) GnRH treatment as in group 5 with EB treatment. These treatments had predictable effects on plasma LH levels. The number of gonadotropes in which ER alpha was present (by immunohistochemistry) was increased by either GnRH treatment or EB injection, but combined treatment had the greatest effect. Immunohistochemistry was also performed to detect phosphorylated cAMP response element binding protein (pCREB) and Fos protein in gonadotropes. The number of gonadotropes with Fos and with pCREB was increased only in group 6. We conclude that either estrogen or GnRH can up-regulate ER alpha in pituitary gonadotropes. On the other hand, during the period of positive feedback action of estrogen, the appearance of pCREB and Fos in gonadotropes requires the combined action of estrogen and increased frequency of GnRH input. This suggests convergence of signaling for GnRH and estrogen.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
18
|
Mignot M, Skinner DC. Colocalization of GH, TSH and prolactin, but not ACTH, with betaLH-immunoreactivity: evidence for pluripotential cells in the ovine pituitary. Cell Tissue Res 2005; 319:413-21. [PMID: 15647919 DOI: 10.1007/s00441-004-1009-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022]
Abstract
Increasing evidence suggests that multihormonal cells in the pituitary gland may be more commonplace than previously thought. This has forced us to reconsider our classical view of cell populations in the pituitary gland. Studies so far have focused almost exclusively on the rat, and there is a dearth of information on other species. Our first objective was to determine whether a subpopulation of gonadotropes also express somatotropin in the ewe, as reported in the rat. In addition, we sought to determine whether gonadotropes express any of the other known pituitary hormones. Finally, we investigated whether the stage of the estrous cycle influenced the occurrence of these pluripotential gonadotropes. We found that a small population of betaLH-immunoreactive cells also expresses immunoreactive GH, prolactin and TSH. No gonadotropes colocalized with ACTH. Significantly (P<0.001) more gonadotropes expressed GH during the luteal (10.7+/-0.4%) than the late follicular (5.4+/-0.3%) phase but there was no difference between the luteal and follicular phases in the proportion of gonadotropes expressing prolactin (follicular: 5.7+/-0.7%; luteal: 5.5+/-0.6%) or TSH (follicular: 3.1+/-0.7%; luteal: 4.2+/-0.5%). Similarly, there was a significant (P<0.05) difference in the proportion of GH-immunoreactive cells expressing betaLH immunoreactivity in the luteal (5.9+/-0.3%) and follicular (3.4+/-0.5%) phases but no difference in the proportion of prolactin- (follicular: 2.2+/-0.7%; luteal: 2.0+/-0.8%) or TSH-immunoreactive cells (follicular: 9.6+/-3.7%; luteal: 10.8+/-2.9%) expressing betaLH. The specific function of these multihormonal gonadotropes in sheep remains to be determined.
Collapse
Affiliation(s)
- Mallory Mignot
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071-3166, USA
| | | |
Collapse
|
19
|
Meikle A, Tasende C, Sosa C, Garófalo EG. The role of sex steroid receptors in sheep female reproductive physiology. Reprod Fertil Dev 2004. [DOI: 10.1071/rd04036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell responsiveness to steroid hormones is related to the number and affinity of its receptors, thus factors affecting steroid expression will influence tissue sensitivity and functionality. The present review discusses the role of oestrogen and progesterone receptors in sheep female reproductive physiology. The mechanism of steroid hormone action in the target cell is introduced first; the tissue distribution, physiological functions and regulation of oestrogen receptor subtypes and progesterone receptor isoforms in ruminants are reported. The role of steroid receptors in target tissues (with emphasis on the uterus and pituitary gland) during different physiological events is addressed in an attempt to clarify oestrogen and progesterone actions in different developmental and reproductive stages: prepubertal period, oestrous cycle, pregnancy, post-partum period and seasonal anoestrus. The present review shows how the distinct reproductive stages are accompanied by dramatic changes in uterine receptor expression. The role of oestrogen and progesterone receptors in the molecular mechanism responsible for premature luteolysis that results in subnormal luteal function is discussed. Finally, the effect of nutrition on sex steroid receptor expression and the involvement on reproductive performance is reported.
Collapse
|