1
|
Kleemann S, Sandow D, Stevens M, Schultz DJ, Taggart DA, Croxford A. Non-invasive monitoring and reintroduction biology of the brush-tailed rock-wallaby (. AUST J ZOOL 2022. [DOI: 10.1071/zo21009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thirty-nine endangered brush-tailed rock-wallabies (Petrogale penicillata) were reintroduced to Grampians National Park, western Victoria, between 2008 and 2012. Subsequent high mortality, low breeding, and no recruitment were linked to fox predation and physical disturbance during monitoring. From 2014 to 2017, the colony was left undisturbed and monitored only by remote camera. Five adult animals were identified across this period (1 ♂ and 3 ♀s – all tagged; and one untagged female), and an average of 0.7 pouch young were birthed per tagged female per year. In 2019, camera-monitoring and non-invasive genetic monitoring (faecal) were used to identify colony members, genetic diversity, and breeding. Camera monitoring in 2019 identified the same five individuals, whereas genetic monitoring using 12 microsatellites identified eight individuals (two male and six female genotypes). Genetic diversity within the colony was moderate (expected heterozygosity (He) = 0.655, observed heterozygosity (Ho) = 0.854). Leaving the colony undisturbed after 2013 correlated with improved adult survival, increased breeding, and successful recruitment of young to the population. Recommendations for the Grampians colony include continuation of regular camera- and scat monitoring to improve our understanding of the reintroduction biology of P. penicillata and other marsupials in open, unfenced landscapes.
Collapse
|
2
|
Thavornkanlapachai R, Mills HR, Ottewell K, Dunlop J, Sims C, Morris K, Donaldson F, Kennington WJ. Mixing Genetically and Morphologically Distinct Populations in Translocations: Asymmetrical Introgression in A Newly Established Population of the Boodie ( Bettongia lesueur). Genes (Basel) 2019; 10:E729. [PMID: 31546973 PMCID: PMC6770996 DOI: 10.3390/genes10090729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 11/22/2022] Open
Abstract
The use of multiple source populations provides a way to maximise genetic variation and reduce the impacts of inbreeding depression in newly established translocated populations. However, there is a risk that individuals from different source populations will not interbreed, leading to population structure and smaller effective population sizes than expected. Here, we investigate the genetic consequences of mixing two isolated, morphologically distinct island populations of boodies (Bettongia lesueur) in a translocation to mainland Australia over three generations. Using 18 microsatellite loci and the mitochondrial D-loop region, we monitored the released animals and their offspring between 2010 and 2013. Despite high levels of divergence between the two source populations (FST = 0.42 and ϕST = 0.72), there was clear evidence of interbreeding between animals from different populations. However, interbreeding was non-random, with a significant bias towards crosses between the genetically smaller-sized Barrow Island males and the larger-sized Dorre Island females. This pattern of introgression was opposite to the expectation that male-male competition or female mate choice would favour larger males. This study shows how mixing diverged populations can bolster genetic variation in newly established mammal populations, but the ultimate outcome can be difficult to predict, highlighting the need for continued genetic monitoring to assess the long-term impacts of admixture.
Collapse
Affiliation(s)
- Rujiporn Thavornkanlapachai
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Harriet R Mills
- Centre for Ecosystem Management, School of Science, Edith Cowan University, Joondalup, Western Australia 6027, Australia.
| | - Kym Ottewell
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6152, Australia.
| | - Judy Dunlop
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Colleen Sims
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Keith Morris
- Department of Biodiversity, Conservation and Attractions, PO Box 51, Wanneroo, Western Australia 6946, Australia.
| | - Felicity Donaldson
- 360 Environmental, 10 Bermondsey Street, West Leederville, Western Australia 6007, Australia.
| | - W Jason Kennington
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
3
|
Nakonechnaya OV, Yatsunskaya MS. Genetic and Genotypic Variation of Nelumbo komarovii Grossh. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Donaldson FR, Vercoe PE. PERMANENT GENETIC RESOURCES: Cross-family amplification: microsatellites isolated from Macropodidae are polymorphic in Potoroidae. Mol Ecol Resour 2013; 8:452-4. [PMID: 21585819 DOI: 10.1111/j.1471-8286.2007.01990.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The superfamily Macropodoidea consists of two families - the Macropodidae and Potoroidae. Cross-species amplification and polymorphism of microsatellite loci is widely recognized within the macropodid family; however, the success of macropodid loci in potoroid species has not been as widely published. In this study, we tested the amplification and polymorphism of 17 cross-species microsatellite loci isolated from macropodids and potoroids in Bettongia lesueur (a potoroid). Success varied between loci and was not predicted by genetic distance from the species of isolation.
Collapse
Affiliation(s)
- F R Donaldson
- School of Animal Biology, The University of Western Australia, Crawley 6009, WA, Australia
| | | |
Collapse
|
5
|
Frankham GJ, Reed RL, Eldridge MDB, Handasyde KA. The genetic mating system of the long-nosed potoroo (Potorous tridactylus) with notes on male strategies for securing paternity. AUST J ZOOL 2012. [DOI: 10.1071/zo12064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The potoroids are a small group of cryptic macropodoid marsupials that are difficult to directly monitor in the wild. Consequently, information regarding their social and mating systems is limited. A population of long-nosed potoroos (Potorous tridactylus) on French Island, Victoria, was monitored from June 2005 to August 2010. Tissue samples were collected from 32 (19 ♂, 13 ♀) independent potoroos and 17 pouch young. We aimed to determine the genetic mating system and identify patterns of paternity through genotyping individuals at 10 microsatellite loci. Additionally, we investigated the importance of body mass and site residency as strategies in securing paternity. Twelve of the 17 pouch young sampled were assigned paternity with confidence to five males. Multiple pouch young were sampled from two long-term resident females, one of which had 10 pouch young sired by multiple partners, with some repeat paternity, while the other had three young sired by one male, suggesting that the mating system is not entirely promiscuous. Sires were recorded on site for significantly longer periods than non-sires but were not significantly larger than non-sires at conception. This suggests that sires employ strategies other than direct competition, such as scramble competition, to secure paternity in P. tridactylus.
Collapse
|
6
|
Absence of isolation by distance patterns at the regional scale in the fungal plant pathogen Leptosphaeria maculans. Fungal Biol 2011; 115:649-59. [DOI: 10.1016/j.funbio.2011.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 11/24/2022]
|
7
|
Pacioni C, Wayne AF, Spencer PBS. Effects of habitat fragmentation on population structure and long-distance gene flow in an endangered marsupial: the woylie. J Zool (1987) 2010. [DOI: 10.1111/j.1469-7998.2010.00750.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Kathiravan P, Mishra BP, Kataria RS, Goyal S, Tripathy K, Sadana DK. Short tandem repeat based analysis of genetic variability in Kanarese buffalo of South India. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gutiérrez LA, Gómez GF, González JJ, Castro MI, Luckhart S, Conn JE, Correa MM. Microgeographic genetic variation of the malaria vector Anopheles darlingi root (Diptera: Culicidae) from Cordoba and Antioquia, Colombia. Am J Trop Med Hyg 2010; 83:38-47. [PMID: 20595475 DOI: 10.4269/ajtmh.2010.09-0381] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia.
Collapse
Affiliation(s)
- Lina A Gutiérrez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | | | | | |
Collapse
|
10
|
Pacioni C, Spencer PBS. Capturing genetic information using non-target species markers in a species that has undergone a population crash. AUSTRALIAN MAMMALOGY 2010. [DOI: 10.1071/am09018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Species conservation has relied on the enormous potential of information that arises from field, laboratory and other tools. When using molecular-based tools, the technology involves a considerable effort to develop, both in resources and time. A long-held practice has been to utilise pre-existing primers developed for other closely related species to evaluate conservation questions. In this study, we present a practical approach on how to utilise pre-existing microsatellite markers in bettong and potoroo species. This information is relevant before, during and after a species crash and the approach we describe could be particularly appropriate when there is an immediate need to retrieve a knowledge-base in order to support management decisions. We determined that cross-species amplification success of microsatellite markers is inversely related to evolutionary distance of the source species although their polymorphism is not. A ‘priority-list’ of potential markers for potoroids is given for future conservation genetic studies.
Collapse
|
11
|
Koren OG, Nakonechnaya OV, Zhuravlev YN. Genetic structure of natural populations of the relict species Aristolochia manshuriensis (Aristolochiaceae) in disturbed and intact habitats. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409060076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Firestone KB, Elphinstone MS, Sherwin WB, Houlden BA. Phylogeographical population structure of tiger quolls Dasyurus maculatus (Dasyuridae: Marsupialia), an endangered carnivorous marsupial. Mol Ecol 1999; 8:1613-25. [PMID: 10583825 DOI: 10.1046/j.1365-294x.1999.00745.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tiger quolls, Dasyurus maculatus, are the largest carnivorous marsupials still extant on the mainland of Australia, and occupy an important ecological niche as top predators and scavengers. Two allopatric subspecies are recognized, D.m. gracilis in north Queensland, and D.m. maculatus in the southeast of the mainland and Tasmania. D.m. gracilis is considered endangered while D.m. maculatus is listed as vulnerable to extinction; both subspecies are still in decline. Phylogeographical subdivision was examined to determine evolutionarily significant units (ESUs) and management units (MUs) among populations of tiger quolls to assist in the conservation of these taxa. Ninety-three tiger quolls from nine representative populations were sampled from throughout the species range. Six nuclear microsatellite loci and the mitochondrial DNA (mtDNA) control region (471 bp) were used to examine ESUs and MUs in this species. We demonstrated that Tasmanian tiger quolls are reciprocally monophyletic to those from the mainland using mtDNA analysis, but D.m. gracilis was not monophyletic with respect to mainland D.m. maculatus. Analysis of microsatellite loci also revealed significant differences between the Tasmanian and mainland tiger quolls, and between D.m. gracilis and mainland D.m. maculatus. These results indicate that Tasmanian and mainland tiger quolls form two distinct evolutionary units but that D.m. gracilis and mainland D.m. maculatus are different MUs within the same ESU. The two marker types used in this study revealed different male and female dispersal patterns and indicate that the most appropriate units for short-term management are local populations. A revised classification and management plan are needed for tiger quolls, particularly in relation to conservation of the Tasmanian and Queensland populations.
Collapse
Affiliation(s)
- K B Firestone
- Zoological parks Board of New South Wales, Mosman, NSW, Australia.
| | | | | | | |
Collapse
|