1
|
Evans JS, Erwin PM, Sihaloho HF, López‐Legentil S. Cryptic genetic lineages of a colonial ascidian host distinct microbiomes. ZOOL SCR 2021. [DOI: 10.1111/zsc.12482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- James S. Evans
- Department of Biology & Marine Biology Center for Marine Science University of North Carolina Wilmington Wilmington NC USA
| | - Patrick M. Erwin
- Department of Biology & Marine Biology Center for Marine Science University of North Carolina Wilmington Wilmington NC USA
| | - Hendra F. Sihaloho
- Department of Biology & Marine Biology Center for Marine Science University of North Carolina Wilmington Wilmington NC USA
| | - Susanna López‐Legentil
- Department of Biology & Marine Biology Center for Marine Science University of North Carolina Wilmington Wilmington NC USA
| |
Collapse
|
2
|
DNA (meta)barcoding of biological invasions: a powerful tool to elucidate invasion processes and help managing aliens. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0854-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Barbosa SS, Klanten SO, Puritz JB, Toonen RJ, Byrne M. Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: influence of mating system and dispersal potential. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio S. Barbosa
- School of Medical Science; University of Sydney; Sydney; NSW; 2006; Australia
| | - Selma O. Klanten
- School of Medical Science; University of Sydney; Sydney; NSW; 2006; Australia
| | - Jonathan B. Puritz
- Hawaii Institute of Marine Biology; University of Hawai'i at Mānoa; Kaneohe; HI; 96744; USA
| | - Robert J. Toonen
- Hawaii Institute of Marine Biology; University of Hawai'i at Mānoa; Kaneohe; HI; 96744; USA
| | | |
Collapse
|
4
|
Yasuda N, Hamaguchi M, Sasaki M, Nagai S, Saba M, Nadaoka K. Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus. BMC Genomics 2006; 7:17. [PMID: 16438737 PMCID: PMC1382216 DOI: 10.1186/1471-2164-7-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 01/27/2006] [Indexed: 11/18/2022] Open
Abstract
Background The crown-of-thorns starfish, Acanthaster planci (L.), has been blamed for coral mortality in a large number of coral reef systems situated in the Indo-Pacific region. Because of its high fecundity and the long duration of the pelagic larval stage, the mechanism of outbreaks may be related to its meta-population dynamics, which should be examined by larval sampling and population genetic analysis. However, A. planci larvae have undistinguished morphological features compared with other asteroid larvae, hence it has been difficult to discriminate A. planci larvae in plankton samples without species-specific markers. Also, no tools are available to reveal the dispersal pathway of A. planci larvae. Therefore the development of highly polymorphic genetic markers has the potential to overcome these difficulties. To obtain genomic information for these purposes, the complete nucleotide sequences of the mitochondrial genome of A. planci and its putative sibling species, A. brevispinus were determined and their characteristics discussed. Results The complete mtDNA of A. planci and A. brevispinus are 16,234 bp and 16,254 bp in size, respectively. These values fall within the length variation range reported for other metazoan mitochondrial genomes. They contain 13 proteins, 2 rRNA, and 22 tRNA genes and the putative control region in the same order as the asteroid, Asterina pectinifera. The A + T contents of A. planci and A. brevispinus on their L strands that encode the majority of protein-coding genes are 56.3% and 56.4% respectively and are lower than that of A. pectinifera (61.2%). The percent similarity of nucleotide sequences between A. planci and A. brevispinus is found to be highest in the CO2 and CO3 regions (both 90.6%) and lowest in ND2 gene (84.2%) among the 13 protein-coding genes. In the deduced putative amino acid sequences, CO1 is highly conserved (99.2%), and ATP8 apparently evolves faster any of the other protein-coding gene (85.2%). Conclusion The gene arrangement, base composition, codon usage and tRNA structure of A. planci are similar to those of A. brevispinus. However, there are significant variations between A. planci and A. brevispinus. Complete mtDNA sequences are useful for the study of phylogeny, larval detection and population genetics.
Collapse
Affiliation(s)
- Nina Yasuda
- Mechanical and Environmental Informatics, Graduate school of Information Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552. Japan
| | - Masami Hamaguchi
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Miho Sasaki
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Satoshi Nagai
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Masaki Saba
- 581-60 Sakura-cho, Matsuzaka, Mie 515-0071, Japan
| | - Kazuo Nadaoka
- Mechanical and Environmental Informatics, Graduate school of Information Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552. Japan
| |
Collapse
|
5
|
Maynard BT, Kerr LJ, McKiernan JM, Jansen ES, Hanna PJ. Mitochondrial DNA sequence and gene organization in the [corrected] Australian blacklip [corrected] abalone Haliotis rubra (leach). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:645-58. [PMID: 16206015 DOI: 10.1007/s10126-005-0013-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 04/07/2005] [Indexed: 05/04/2023]
Abstract
The complete mitochondrial DNA of the blacklip abalone Haliotis rubra (Gastropoda: Mollusca) was cloned and 16,907 base pairs were sequenced. The sequence represents an estimated 99.85% of the mitochondrial genome, and contains 2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes found in other metazoan mtDNA. An AT tandem repeat and a possible C-rich domain within the putative control region could not be fully sequenced. The H. rubra mtDNA gene order is novel for mollusks, separated from the black chiton Katharina tunicata by the individual translocations of 3 tRNAs. Compared with other mtDNA regions, sequences from the ATP8, NAD2, NAD4L, NAD6, and 12S rRNA genes, as well as the control region, are the most variable among representatives from Mollusca, Arthropoda, and Rhynchonelliformea, with similar mtDNA arrangements to H. rubra. These sequences are being evaluated as genetic markers within commercially important Haliotis species, and some applications and considerations for their use are discussed.
Collapse
Affiliation(s)
- Ben T Maynard
- School of Biological & Chemical Sciences, Deakin University, Geelong, VIC 3217, Australia
| | | | | | | | | |
Collapse
|
6
|
Bendezu IF, Slater JW, Carney BF. Identification of Mytilus spp. and Pecten maximus in Irish waters by standard PCR of the 18S rDNA gene and multiplex PCR of the 16S rDNA gene. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:687-96. [PMID: 16206017 DOI: 10.1007/s10126-004-0124-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 05/09/2005] [Indexed: 05/04/2023]
Abstract
Two molecular protocols for the identification of mussel and scallop have been developed using specific primers targeting the mitochondrial 16S ribosomal DNA gene and the nuclear 18S ribosomal DNA gene. Primers for the mitochondrial 16S ribosomal DNA gene in multiplex polymerase chain reaction (PCR) protocols yielded diagnostic DNA fragments for the mussels Mytilus edulis, Mytilus galloprovincialis, and the hybrid Mytilus edulis/galloprovincialis (335 bp), the king scallop Pecten maximus (382 bp) and the black scallop Mimachlamys varia (398 bp). DNA from the queen scallop Aequipecten opercularis showed no consistent PCR amplification of the 16S rDNA gene. Primers for the nuclear 18S rDNA gene in standard PCR protocols yielded similar-sized, diagnostic DNA fragments (approx. 190 bp) for the mussels Mytilus edulis, Mytilus galloprovincialis, and the hybrid Mytilus edulis/galloprovincialis, the king scallop Pecten maximus, the black scallop Mimachlamys varia, and the queen scallop Aequipecten opercularis. Both protocols have been tested with Mytilus spp., P. maximus, and 6 other bivalve species from a wide range of locations in Irish and European waters. Cross reaction of the specific primers with DNA template from any of the 6 other bivalve species was not observed. Rapid DNA extraction using FTA Card technology and the16S rDNA primers allowed for the detection of at least 10 mussel larvae in a subsample of natural plankton.
Collapse
Affiliation(s)
- Ivan F Bendezu
- Science Department, Letterkenny Institute of Technology, Port Road, Letterkenny, County Donegal, Ireland.
| | | | | |
Collapse
|
7
|
Jarman SN, Deagle BE, Gales NJ. Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol Ecol 2004; 13:1313-22. [PMID: 15078466 DOI: 10.1111/j.1365-294x.2004.02109.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unique DNA sequences are present in all species and can be used as biomarkers for the detection of cells from that species. These DNA sequences can most easily be detected using the polymerase chain reaction (PCR), which allows very small quantities of target DNA sequence to be amplified even when the target is mixed with large amounts of nontarget DNA. PCR amplification of DNA markers that are present in a wide range of species has proven very useful for studies of species diversity in environmental samples. The taxonomic range of species to be identified from environmental samples may often need to be restricted to simplify downstream analyses and to ensure that less abundant sequences are amplified. Group-specific PCR primer sets are one means of specifying the range of taxa that produce an amplicon in a PCR. We have developed a range of group-specific PCR primers for studying the prey diversity found in predator stomach contents and scats. These primers, their design and their application to studying prey diversity and identity in predator diet are described.
Collapse
Affiliation(s)
- S N Jarman
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia.
| | | | | |
Collapse
|
8
|
Sharley DJ, Pettigrove V, Parsons YM. Molecular identification of Chironomus spp. (Diptera) for biomonitoring of aquatic ecosystems. ACTA ACUST UNITED AC 2004. [DOI: 10.1111/j.1440-6055.2004.00417.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Waters JM, Roy MS. Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow? Mol Ecol 2004; 13:2797-806. [PMID: 15315690 DOI: 10.1111/j.1365-294x.2004.02282.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
New Zealand's (NZ) geographical isolation, extensive coastline and well-characterized oceanography offer a valuable system for marine biogeographical research. Here we use mtDNA control region sequences in the abundant endemic sea-star Patiriella regularis to test the following literature-based predictions: that coastal upwelling disrupts north-south gene flow and promotes population differentiation (hypothesis 1); and that an invasive Tasmanian population of the species was introduced anthropogenically from southern New Zealand (hypothesis 2). We sequenced 114 samples from 22 geographical locations, including nine sites from North Island, nine from South Island, one from Stewart Island and three from Tasmania. Our analysis of these sequences revealed an abundance of shallow phylogenetic lineages within P. regularis (68 haplotypes, mean divergence 0.9%). We detected significant genetic heterogeneity between pooled samples from northern vs. southern New Zealand (FST = 0.072; P = 0.0002), consistent with the hypothesis that upwelling disrupts gene flow between these regions (hypothesis 1). However, we are currently unable to rule out the alternative hypothesis that Cook Strait represents a barrier to dispersal (North Island vs. South Island; FST = 0.031; P = 0.0467). The detection of significant spatial structure in NZ samples is consistent with restricted gene flow, and the strong structure evident in northern NZ may be facilitated by distinct ocean current systems. Four shared haplotypes and nonsignificant differentiation (FST = 0.025; P = 0.2525) between southern New Zealand and Tasmanian samples is consistent with an anthropogenic origin for the latter population (hypothesis 2).
Collapse
Affiliation(s)
- J M Waters
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | |
Collapse
|
10
|
Perrin C, Wing SR, Roy MS. Effects of hydrographic barriers on population genetic structure of the sea star Coscinasterias muricata (Echinodermata, Asteroidea) in the New Zealand fiords. Mol Ecol 2004; 13:2183-95. [PMID: 15245393 DOI: 10.1111/j.1365-294x.2004.02241.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
New Zealand's 14 deep-water fiords possess persistent salinity stratification and mean estuarine circulation that may serve to isolate populations of marine organisms that have a dispersal larval phase. In order to investigate this idea, we analysed the population structure of the sea star Coscinasterias muricata using a mitochondrial DNA marker. Genetic differentiation among populations of C. muricata was analysed using 366 base pairs of mtDNA D-loop. We compared populations from the fiords with several others sampled from around New Zealand. At a macro-geographical scale (> 1000 km), restricted gene flow between the North and South Islands was observed. At a meso-geographical scale (10-200 km), significant population structure was found among fiords and between fiords and open coast. The pattern of population genetic structure among the fiords suggests a secondary contact between a northern population and a southern one, separated by a contact or mixing zone. These populations may have diverged by the effects of random genetic drift and population isolation as a consequence of the influence of estuarine circulation on dispersal. In northern Fiordland, genetic structure approximated an isolation by distance model. However, the pattern in genetic differences suggests that distance alone cannot explain the most divergent populations and that fiord hydrography may increase the effect of genetic drift within populations in the fiords. Finally, our study indicates that populations within the fiords underwent recent rapid expansion, followed most probably by genetic drift due to a lack of gene flow among the fiords.
Collapse
Affiliation(s)
- Cecile Perrin
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | | |
Collapse
|
11
|
Waters JM, O'Loughlin PM, Roy MS. Cladogenesis in a starfish species complex from southern Australia: evidence for vicariant speciation? Mol Phylogenet Evol 2004; 32:236-45. [PMID: 15186810 DOI: 10.1016/j.ympev.2003.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2003] [Revised: 11/10/2003] [Indexed: 11/30/2022]
Abstract
DNA sequencing (cytochrome oxidase I; 82 sequences; 25 locations) of a species complex of Australian six-rayed sea-stars (genus Patiriella) reveals four well-supported mtDNA clades, corresponding to P. oriens, P. occidens, P. medius, and P. gunnii. These clades have non-random geographic distributions along an east to west axis that are broadly consistent with the biogeographic provinces of southern Australia proposed by. The taxa are deeply divergent (minimum 7.5%) and are estimated to have originated during the late Pliocene. By contrast, intra-clade divergences are small, typically less than 1.0%. Phylogenetic analysis of mtDNA provides strong support for the combined monophyly of multicoloured forms (P. oriens, P. occidens, and P. medius; 100% bootstrap support) and suggests that P. medius (central) and P. occidens (western) may be sister taxa (up to 76% bootstrap support). Maximum likelihood analysis of nuclear DNA sequences (actin; 1437 bp) yields an optimal tree largely consistent with mtDNA groupings, but with little bootstrap support. The biogeographic distribution of P. oriens (eastern) and P. occidens (western) is roughly consistent with a vicariant model involving allopatric divergence during glaciation. In addition, we propose that the Great Australian Bight may also have retained isolated populations during glacial periods, perhaps explaining the "central" distributions of P. gunnii and P. medius.
Collapse
Affiliation(s)
- Jonathan M Waters
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | | | |
Collapse
|
12
|
Abstract
We used mitochondrial DNA (mtDNA) sequences to test biogeographic hypotheses for Patiriella exigua (Asterinidae), one of the world's most widespread coastal sea stars. This small intertidal species has an entirely benthic life history and yet occurs in southern temperate waters of the Atlantic, Indian, and Pacific oceans. Despite its abundance around southern Africa, southeastern Australia, and several oceanic islands, P. exigua is absent from the shores of Western Australia, New Zealand, and South America. Phylogenetic analysis of mtDNA sequences (cytochrome oxidase I, control region) indicates that South Africa houses an assemblage of P. exigua that is not monophyletic (P = 0.04), whereas Australian and Lord Howe Island specimens form an interior monophyletic group. The placement of the root in Africa and small genetic divergences between eastern African and Australian haplotypes strongly suggest Pleistocene dispersal eastward across the Indian Ocean. Dispersal was probably achieved by rafting on wood or macroalgae, which was facilitated by the West Wind Drift. Genetic data also support Pleistocene colonization of oceanic islands (Lord Howe Island, Amsterdam Island, St. Helena). Although many biogeographers have speculated about the role of long-distance rafting, this study is one of the first to provide convincing evidence. The marked phylogeographic structure evident across small geographic scales in Australia and South Africa indicates that gene flow among populations may be generally insufficient to prevent the local evolution of monophyly. We suggest that P. exigua may rely on passive mechanisms of dispersal.
Collapse
Affiliation(s)
- Jonathan M Waters
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | | |
Collapse
|