Lallias D, Gomez-Raya L, Haley CS, Arzul I, Heurtebise S, Beaumont AR, Boudry P, Lapègue S. Combining two-stage testing and interval mapping strategies to detect QTL for resistance to bonamiosis in the european flat oyster Ostrea edulis.
MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009;
11:570-584. [PMID:
19139958 DOI:
10.1007/s10126-008-9173-y]
[Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/15/2008] [Indexed: 05/27/2023]
Abstract
We have identified quantitative trait loci (QTL) in the flat oyster (Ostrea edulis) for resistance to Bonamia ostreae, a parasite responsible for the dramatic reduction in the aquaculture of this species. An F(2) family from a cross between a wild oyster and an individual from a family selected for resistance to bonamiosis was cultured with wild oysters injected with the parasite, leading to 20% cumulative mortality. Selective genotyping of 92 out of a total of 550 F(2) progeny (i.e., 46 heavily infected oysters that died and 46 parasite-free oysters that survived) was performed using 20 microsatellites and 34 amplification fragment length polymorphism primer pairs. Both a two-stage testing strategy and QTL interval mapping methods were used. The two-stage detection strategy had a high power with a low rate of false positives and identified nine and six probable markers linked to genes of resistance and susceptibility, respectively. Parent-specific genetic linkage maps were built for the family, spanning ten linkage groups (n = 10) with an observed genome coverage of 69-84%. Three QTL were identified by interval mapping in the first parental map and two in the second. Good concordance was observed between the results obtained after the two-stage testing strategy and QTL mapping.
Collapse