1
|
Ben-Zvi T, Pushkarev A, Seri H, Elgrably-Weiss M, Papenfort K, Altuvia S. mRNA dynamics and alternative conformations adopted under low and high arginine concentrations control polyamine biosynthesis in Salmonella. PLoS Genet 2019; 15:e1007646. [PMID: 30742606 PMCID: PMC6386406 DOI: 10.1371/journal.pgen.1007646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/22/2019] [Accepted: 01/15/2019] [Indexed: 01/21/2023] Open
Abstract
Putrescine belongs to the large group of polyamines, an essential class of metabolites that exists throughout all kingdoms of life. The Salmonella speF gene encodes an inducible ornithine decarboxylase that produces putrescine from ornithine. Putrescine can be also synthesized from arginine in a parallel metabolic pathway. Here, we show that speF expression is controlled at multiple levels through regulatory elements contained in a long leader sequence. At the heart of this regulation is a short open reading frame, orf34, which is required for speF production. Translation of orf34 interferes with Rho-dependent transcription termination and helps to unfold an inhibitory RNA structure sequestering speF ribosome-binding site. Two consecutive arginine codons in the conserved domain of orf34 provide a third level of speF regulation. Uninterrupted translation of orf34 under conditions of high arginine allows the formation of a speF mRNA structure that is degraded by RNase G, whereas ribosome pausing at the consecutive arginine codons in the absence of arginine enables the formation of an alternative structure that is resistant to RNase G. Thus, the rate of ribosome progression during translation of the upstream ORF influences the dynamics of speF mRNA folding and putrescine production. The identification of orf34 and its regulatory functions provides evidence for the evolutionary conservation of ornithine decarboxylase regulatory elements and putrescine production. Polyamines are widely distributed in nature, they bind nucleic acids and proteins and although their exact mechanism of action is not clear, their effect on fundamental cellular functions is well documented. The canonical biosynthesis pathway of polyamines is conserved and begins with speF encoding ornithine decarboxylase, an inducible enzyme that produces putrescine from ornithine. Putrescine can also be produced from arginine in an alternative metabolic pathway. Here, we show that the rate of ribosome progression during translation of a short ORF (ORF34) upstream of speF influences the dynamics of speF mRNA folding and thus putrescine production. Uninterrupted translation of orf34 carrying two consecutive arginine codons, under conditions of high arginine, results in the formation of a speF mRNA structure that is degraded by RNase G, whereas ribosomes slow-down at the consecutive arginine codons in the absence of arginine enables the formation of an alternative structure that is unsusceptible to RNase G and thus results in putrescine production. The study of Salmonella speF regulation provides evidence that, despite variations in the mechanistic details, RNA-based regulation of putrescine biosynthesis and ornithine decarboxylase is conserved from bacteria to mammals.
Collapse
Affiliation(s)
- Tamar Ben-Zvi
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Alina Pushkarev
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hemda Seri
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maya Elgrably-Weiss
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Kai Papenfort
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-University of Munich, Martinsried, Germany
| | - Shoshy Altuvia
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
2
|
Karimi Z, Nezafat N, Negahdaripour M, Berenjian A, Hemmati S, Ghasemi Y. The effect of rare codons following the ATG start codon on expression of human granulocyte-colony stimulating factor in Escherichia coli. Protein Expr Purif 2015; 114:108-14. [DOI: 10.1016/j.pep.2015.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
3
|
A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity. J Bacteriol 2011; 193:6733-41. [PMID: 21965565 DOI: 10.1128/jb.05792-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydial heat shock proteins have important roles in Chlamydia infection and immunopathogenesis. Transcription of chlamydial heat shock genes is controlled by the stress response regulator HrcA, which binds to its cognate operator CIRCE, causing repression by steric hindrance of RNA polymerase. All Chlamydia spp. encode an HrcA protein that is larger than other bacterial orthologs because of an additional, well-conserved C-terminal region. We found that this unique C-terminal tail decreased HrcA binding to CIRCE in vitro as well as HrcA-mediated transcriptional repression in vitro and in vivo. When we isolated HrcA from chlamydiae, we only detected the full-length protein, but we found that endogenous HrcA had a higher binding affinity for CIRCE than recombinant HrcA. To examine this difference further, we tested the effect of the heat shock protein GroEL on the function of HrcA since endogenous chlamydial HrcA has been previously shown to associate with GroEL as a complex. GroEL enhanced the ability of HrcA to bind CIRCE and to repress transcription in vitro, but this stimulatory effect was greater on full-length HrcA than HrcA lacking the C-terminal tail. These findings demonstrate that the novel C-terminal tail of chlamydial HrcA is an inhibitory region and provide evidence that its negative effect on repressor function can be counteracted by GroEL. These results support a model in which GroEL functions as a corepressor that interacts with HrcA to regulate chlamydial heat shock genes.
Collapse
|
4
|
Castillo-Méndez MA, Jacinto-Loeza E, Olivares-Trejo JJ, Guarneros-Peña G, Hernández-Sánchez J. Adenine-containing codons enhance protein synthesis by promoting mRNA binding to ribosomal 30S subunits provided that specific tRNAs are not exhausted. Biochimie 2011; 94:662-72. [PMID: 21971529 DOI: 10.1016/j.biochi.2011.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 09/19/2011] [Indexed: 11/26/2022]
Abstract
Adenines downstream of the initiation codon promote protein synthesis; however, some adenine-containing codons (AGA, AGG and AUA) at early positions inhibit protein synthesis when cognate tRNA is exhausted. It has also been reported, although not convincingly, the presence of adenines enhancing mRNA binding to the ribosome. To understand these apparent inconsistencies we analyzed the effect of these codons in mRNA-ribosome binding strength, mRNA stability, the production of peptidyl-tRNA (pep-tRNA) and protein synthesis. Constructs harboring lacZ derivatives were obtained by site directed mutagenesis where tandems of GGG, AGG, AGA, ATA and AAA codons were inserted at codon positions 2-3 and 3-4. Codons containing more adenines, irrespective of being common or rare, (AAA, ATA and AGA) promoted a higher synthesis of β-galactosidase (β-gal) in comparison with those rich in guanines (GGG and AGG) in a wild type transcription-translation system. Full-length mRNAs were also detected when the adenine-rich constructs were expressed in wild type cells. Under conditions where the pool of tRNAs is readily exhausted (pep-tRNA hydrolase defective cells), the adenine-rich lacZ derivatives caused a stronger and general inhibition of protein synthesis and cell growth. With the exception of the ATA lacZ derivative, only plasmid constructs containing hungry codons generated pep-tRNA (AGA and to a lesser extent AGG) in Pth defective cells. Codons containing more adenines clearly promoted lacZ mRNA binding to 30S subunit. The GGG lacZ mRNA showed a moderate increase in binding when mRNA secondary structures were disrupted by heating mRNAs before the binding assay which agrees with the lacZ mRNA secondary structures predicted with MFOLD. Altogether, these results indicate that mRNA binding to ribosome plays a major role in the enhancement of translation by adenine-rich codons irrespective of codon usage. This effect is naturally expressed in wild type systems and depends on adenine content, in contrast to the inhibition caused after over-expressing the lacZ derivatives containing rare codons in Pth defective cells.
Collapse
Affiliation(s)
- M A Castillo-Méndez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida IPN No. 2508, C.P. 07360 México, D.F., Mexico
| | | | | | | | | |
Collapse
|
5
|
Nunes A, Nogueira PJ, Borrego MJ, Gomes JP. Adaptive evolution of the Chlamydia trachomatis dominant antigen reveals distinct evolutionary scenarios for B- and T-cell epitopes: worldwide survey. PLoS One 2010; 5. [PMID: 20957150 PMCID: PMC2950151 DOI: 10.1371/journal.pone.0013171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022] Open
Abstract
Background Chlamydia trachomatis is one of the most disseminated human pathogens, for which no vaccine is available yet. Understanding the impact of the host pressure on pathogen antigens is crucial, but so far it was only assessed for highly-restricted geographic areas. We aimed to evaluate the evolutionary picture of the chlamydial key antigen (MOMP), which is one of the leading multi-subunit vaccine candidates, in a worldwide basis. Methodology/Principal Findings Using genetics, molecular evolution methods and mathematical modelling, we analyzed all MOMP sequences reported worldwide, composed by 5026 strains from 33 geographic regions of five continents. Overall, 35.9% of variants were detected. The evolutionary pattern of MOMP amino acid gains/losses was found to differ from the remaining chromosome, reflecting the demanding constraints of this porin, adhesin and dominant antigen. Amino acid changes were 4.3-fold more frequent in host-interacting domains (P<10−12), specifically within B-cell epitopes (P<10−5), where 25% of them are at fixation (P<10−5). According to the typical pathogen-host arms race, this rampant B-cell antigenic variation likely represents neutralization escape mutants, as some mutations were previously shown to abrogate neutralization of chlamydial infectivity in vitro. In contrast, T-cell clusters of diverse HLA specificities are under purifying selection, suggesting a strategy that may lead to immune subversion. Moreover, several silent mutations are at fixation, generating preferential codons that may influence expression, and may also reflect recombination-derived ‘hitchhiking-effect’ from favourable nonsilent changes. Interestingly, the most prevalent C. trachomatis genotypes, E and F, showed a mutation rate 22.3-fold lower than that of the remainder (P<10−20), suggesting more fitted antigenic profiles. Conclusions/Significance Globally, the adaptive evolution of the C. trachomatis dominant antigen is likely driven by its complex pathogenesis-related function and reflects distinct evolutionary antigenic scenarios that may benefit the pathogen, and thus should be taking into account in the development of a MOMP-based vaccine.
Collapse
Affiliation(s)
- Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Paulo J. Nogueira
- Department of Epidemiology, National Institute of Health, Lisbon, Portugal
| | - Maria J. Borrego
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P. Gomes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
6
|
Eschenfeldt WH, Maltseva N, Stols L, Donnelly MI, Gu M, Nocek B, Tan K, Kim Y, Joachimiak A. Cleavable C-terminal His-tag vectors for structure determination. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2010; 11:31-9. [PMID: 20213425 PMCID: PMC2885959 DOI: 10.1007/s10969-010-9082-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
High-throughput structural genomics projects seek to delineate protein structure space by determining the structure of representatives of all major protein families. Generally this is accomplished by processing numerous proteins through standardized protocols, for the most part involving purification of N-terminally His-tagged proteins. Often proteins that fail this approach are abandoned, but in many cases further effort is warranted because of a protein's intrinsic value. In addition, failure often occurs relatively far into the path to structure determination, and many failed proteins passed the first critical step, expression as a soluble protein. Salvage pathways seek to recoup the investment in this subset of failed proteins through alternative cloning, nested truncations, chemical modification, mutagenesis, screening buffers, ligands and modifying processing steps. To this end we have developed a series of ligation-independent cloning expression vectors that append various cleavable C-terminal tags instead of the conventional N-terminal tags. In an initial set of 16 proteins that failed with an N-terminal appendage, structures were obtained for C-terminally tagged derivatives of five proteins, including an example for which several alternative salvaging steps had failed. The new vectors allow appending C-terminal His(6)-tag and His(6)- and MBP-tags, and are cleavable with TEV or with both TEV and TVMV proteases.
Collapse
Affiliation(s)
- William H. Eschenfeldt
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| | - Lucy Stols
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Mark I. Donnelly
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Minyi Gu
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| | - Kemin Tan
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Youngchang Kim
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Bldg. 202/Rm. BE111, 9700 South Cass Avenue, Argonne, IL 60439, USA; Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL 60667, USA
| |
Collapse
|
7
|
Cambray G, Mazel D. Synonymous genes explore different evolutionary landscapes. PLoS Genet 2008; 4:e1000256. [PMID: 19008944 PMCID: PMC2575237 DOI: 10.1371/journal.pgen.1000256] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 10/07/2008] [Indexed: 11/18/2022] Open
Abstract
The evolutionary potential of a gene is constrained not only by the amino acid sequence of its product, but by its DNA sequence as well. The topology of the genetic code is such that half of the amino acids exhibit synonymous codons that can reach different subsets of amino acids from each other through single mutation. Thus, synonymous DNA sequences should access different regions of the protein sequence space through a limited number of mutations, and this may deeply influence the evolution of natural proteins. Here, we demonstrate that this feature can be of value for manipulating protein evolvability. We designed an algorithm that, starting from an input gene, constructs a synonymous sequence that systematically includes the codons with the most different evolutionary perspectives; i.e., codons that maximize accessibility to amino acids previously unreachable from the template by point mutation. A synonymous version of a bacterial antibiotic resistance gene was computed and synthesized. When concurrently submitted to identical directed evolution protocols, both the wild type and the recoded sequence led to the isolation of specific, advantageous phenotypic variants. Simulations based on a mutation isolated only from the synthetic gene libraries were conducted to assess the impact of sub-functional selective constraints, such as codon usage, on natural adaptation. Our data demonstrate that rational design of synonymous synthetic genes stands as an affordable improvement to any directed evolution protocol. We show that using two synonymous DNA sequences improves the overall yield of the procedure by increasing the diversity of mutants generated. These results provide conclusive evidence that synonymous coding sequences do experience different areas of the corresponding protein adaptive landscape, and that a sequence's codon usage effectively constrains the evolution of the encoded protein.
Collapse
Affiliation(s)
- Guillaume Cambray
- Unité Plasticité du Génome Bactérien, Institut Pasteur, CNRS URA 2171, Paris, France
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Institut Pasteur, CNRS URA 2171, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Jacinto-Loeza E, Vivanco-Domínguez S, Guarneros G, Hernández-Sánchez J. Minigene-like inhibition of protein synthesis mediated by hungry codons near the start codon. Nucleic Acids Res 2008; 36:4233-41. [PMID: 18583364 PMCID: PMC2490762 DOI: 10.1093/nar/gkn395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rare AGA or AGG codons close to the initiation codon inhibit protein synthesis by a tRNA-sequestering mechanism as toxic minigenes do. To further understand this mechanism, a parallel analysis of protein synthesis and peptidyl-tRNA accumulation was performed using both a set of lacZ constructs where AGAAGA codons were moved codon by codon from +2, +3 up to +7, +8 positions and a series of 3–8 codon minigenes containing AGAAGA codons before the stop codon. β-Galactosidase synthesis from the AGAAGA lacZ constructs (in a Pth defective in vitro system without exogenous tRNA) diminished as the AGAAGA codons were closer to AUG codon. Likewise, β-galactosidase expression from the reporter +7 AGA lacZ gene (plus tRNA, 0.25 μg/μl) waned as the AGAAGAUAA minigene shortened. Pth counteracted both the length-dependent minigene effect on the expression of β-galactosidase from the +7 AGA lacZ reporter gene and the positional effect from the AGAAGA lacZ constructs. The +2, +3 AGAAGA lacZ construct and the shortest +2, +3 AGAAGAUAA minigene accumulated the highest percentage of peptidyl-tRNAArg4. These observations lead us to propose that hungry codons at early positions, albeit with less strength, inhibit protein synthesis by a minigene-like mechanism involving accumulation of peptidyl-tRNA.
Collapse
Affiliation(s)
- Eva Jacinto-Loeza
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México DF, 07000, México
| | | | | | | |
Collapse
|
9
|
Ahn JH, Keum JW, Kim DM. High-Throughput, Combinatorial Engineering of Initial Codons for Tunable Expression of Recombinant Proteins. J Proteome Res 2008; 7:2107-13. [DOI: 10.1021/pr700856s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin-Ho Ahn
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea, School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea, and Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764, Korea
| | - Jung-Won Keum
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea, School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea, and Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764, Korea
| | - Dong-Myung Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea, School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea, and Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
10
|
Construction and characterization of a clostripain-like protease-deficient mutant of Clostridium perfringens as a strain for clostridial gene expression. Appl Microbiol Biotechnol 2008; 77:1063-71. [DOI: 10.1007/s00253-007-1245-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/05/2007] [Accepted: 10/08/2007] [Indexed: 12/14/2022]
|
11
|
Wang N, Lee YH, Lee J. Recombinant perlucin nucleates the growth of calcium carbonate crystals: molecular cloning and characterization of perlucin from disk abalone, Haliotis discus discus. Comp Biochem Physiol B Biochem Mol Biol 2007; 149:354-61. [PMID: 18068384 DOI: 10.1016/j.cbpb.2007.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/19/2022]
Abstract
Perlucin is well known as an important functional protein regulating pearl formation and shell biomineralization. In this study, we cloned the perlucin gene from the abalone Haliotis discus discus cDNA library. The full-length cDNA of the abalone H. discus discus perlucin gene consisted of 1038 bp nucleotides, encoding a putative signal peptide of 22 amino acids and a mature protein of 129 amino acids, which shared 55% identity with the homologous protein in greenlip abalone. The mature protein coding sequence was inserted into pMal-c2X expression vector and it expressed the recombinant protein in E. coli (Rosetta-gammi DE3). The maltose binding protein (MBP) fusion perlucin successfully promoted calcium carbonate precipitation and directed calcite crystal morphological modification. The successful expression of active recombinant perlucin suggested that recombinant perlucin gene transfer has the capability by color modification to improve the pearl's value. In the view of molecular structure, perlucin was a typical C-type lectin, which contained one highly conserved carbohydrate recognition domain. Reverse transcription polymerase chain reaction (RT-PCR) results showed that perlucin gene was expressed not only in the mantle, but also in the gill and digestive tract. Further characterization of perlucin in abalone non-self recognition and disease resistance is promising and anticipated.
Collapse
Affiliation(s)
- Ning Wang
- Department of Aquatic Life Medicine, College of Ocean Science, Cheju National University, Jeju-si 690-756, Republic of Korea
| | | | | |
Collapse
|
12
|
Zamora-Romo E, Cruz-Vera LR, Vivanco-Domínguez S, Magos-Castro MA, Guarneros G. Efficient expression of gene variants that harbour AGA codons next to the initiation codon. Nucleic Acids Res 2007; 35:5966-74. [PMID: 17726048 PMCID: PMC2034473 DOI: 10.1093/nar/gkm643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In an effort to improve the knowledge about the rules which direct the effect of the early ORF sequences on translation efficiency, we have analyzed the effect of pairs of the six arginine codons at the second and third positions on the expression of lacZ variants. Whereas the pairs of identical AGA or AGG codons were favorable for the gene expression, identical pairs of each of the four CGN codons were very inefficient. This result was unexpected because tandems of AGA or AGG codons located in more internal gene positions provoke deficient expression whilst internally located CGU and CGC are the most abundant and efficiently translated arginine codons. The mixed combinations of AGA and each of the CGN codons usually resulted in efficient rates of lacZ expression independently of the peptidyl-tRNA propensity to dissociate from the ribosome. Thus, the variant harboring the pair of AGA codons was expressed as efficiently as the variant carrying a pair of AAA codons in the same positions, a configuration reported as one of the most common and efficient for gene expression. We explain these results assuming that the presence of adenines in these early positions enhance gene expression. As expected, specific mRNA levels correlated with the intensity of lacZ expression for each variant. However, the induction of lacZ AGA AGA gene in pth cells accumulated peptidyl-tRNAArg4 as well as a short 5′-proximal lacZ mRNA fragment suggesting ribosome stalling due to depletion of aminoacylated-tRNAArg4.
Collapse
Affiliation(s)
- Efraín Zamora-Romo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Luis Rogelio Cruz-Vera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Serafín Vivanco-Domínguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Marco Antonio Magos-Castro
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México D. F. and Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
- *To whom correspondence should be addressed. +52 55 5061 3338+52 55 5061 3392
| |
Collapse
|
13
|
Večerek B, Moll I, Bläsi U. Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J 2007; 26:965-75. [PMID: 17268550 PMCID: PMC1852835 DOI: 10.1038/sj.emboj.7601553] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 12/18/2006] [Indexed: 11/08/2022] Open
Abstract
The Fe2+-dependent Fur protein serves as a negative regulator of iron uptake in bacteria. As only metallo-Fur acts as an autogeneous repressor, Fe2+scarcity would direct fur expression when continued supply is not obviously required. We show that in Escherichia coli post-transcriptional regulatory mechanisms ensure that Fur synthesis remains steady in iron limitation. Our studies revealed that fur translation is coupled to that of an upstream open reading frame (uof), translation of which is downregulated by the non-coding RNA (ncRNA) RyhB. As RyhB transcription is negatively controlled by metallo-Fur, iron depletion creates a negative feedback loop. RyhB-mediated regulation of uof-fur provides the first example for indirect translational regulation by a trans-encoded ncRNA. In addition, we present evidence for an iron-responsive decoding mechanism of the uof-fur entity. It could serve as a backup mechanism of the RyhB circuitry, and represents the first link between iron availability and synthesis of an iron-containing protein.
Collapse
Affiliation(s)
- Branislav Večerek
- Department of Microbiology and Immunobiology, Max F Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology and Immunobiology, Max F Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology and Immunobiology, Max F Perutz Laboratories, University of Vienna, Vienna, Austria
- Department of Microbiology and Immunobiology, Max F Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/4, Vienna 1030, Austria. Tel.: +43 1 4277 54609; Fax: +43 1 4277 9546; E-mail:
| |
Collapse
|
14
|
Hernández I, Molenaar D, Beekwilder J, Bouwmeester H, van Hylckama Vlieg JET. Expression of plant flavor genes in Lactococcus lactis. Appl Environ Microbiol 2007; 73:1544-52. [PMID: 17209074 PMCID: PMC1828780 DOI: 10.1128/aem.01870-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lactic acid bacteria, such as Lactococcus lactis, are attractive hosts for the production of plant-bioactive compounds because of their food grade status, efficient expression, and metabolic engineering tools. Two genes from strawberry (Fragaria x ananassa), encoding an alcohol acyltransferase (SAAT) and a linalool/nerolidol synthase (FaNES), were cloned in L. lactis and actively expressed using the nisin-induced expression system. The specific activity of SAAT could be improved threefold (up to 564 pmol octyl acetate h-1 mg protein-1) by increasing the concentration of tRNA1Arg, which is a rare tRNA molecule in L. lactis. Fermentation tests with GM17 medium and milk with recombinant L. lactis strains expressing SAAT or FaNES resulted in the production of octyl acetate (1.9 microM) and linalool (85 nM) to levels above their odor thresholds in water. The results illustrate the potential of the application of L. lactis as a food grade expression platform for the recombinant production of proteins and bioactive compounds from plants.
Collapse
Affiliation(s)
- Igor Hernández
- NIZO food research, P.O. Box 20, 6710 BA Ede, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Kim S, Lee SB. Rare codon clusters at 5'-end influence heterologous expression of archaeal gene in Escherichia coli. Protein Expr Purif 2006; 50:49-57. [PMID: 16962338 DOI: 10.1016/j.pep.2006.07.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 07/18/2006] [Accepted: 07/24/2006] [Indexed: 11/28/2022]
Abstract
Proteins from hyperthermophilic microorganisms are attractive candidates for novel biocatalysts because of their high resistance to temperature extremes. However, archaeal genes are usually poorly expressed in Escherichia coli because of differences in codon usage. Genes from the thermoacidophilic archaea Sulfolobus solfataricus and Thermoplasma acidophilum contain high proportions of rare codons for arginine, isoleucine, and leucine, which are recognized by the tRNAs encoded by the argU, ileY, and leuW genes, respectively, and which are rarely used in E. coli. To examine the effects of these rare codons on heterologous expression, we expressed the Sso_gnaD and Tac_gnaD genes from S. solfataricus and T. acidophilum, respectively, in E. coli. The Sso_gnaD product was expressed at very low levels when the open reading frame (ORF) was cloned in pRSET and expressed in E. coli BL21(DE3), and was expressed at much higher levels in the E. coli BL21(DE3)-CodonPlus RIL strain, which contains extra copies of the argU, ileY, and leuW tRNA genes. In contrast, Tac_gnaD was expressed at similar levels in both E. coli strains. Comparison of the Sso_gnaD and Tac_gnaD gene sequences revealed that the 5'-end of the Sso_gnaD sequence was rich in AGA(arg) and ATA(Ile) codons. These codons were replaced with the codons commonly used in E. coli by polymerase chain reaction-mediated site-directed mutagenesis. The results of expression studies showed that a non-tandem repeat of rare codons is critical in the observed interference in heterologous expression of this gene. We concluded that the level of heterologous expression of Sso_gnaD in E. coli was limited by the clustering of the rare codons in the ORF, rather than on the rare codon frequency.
Collapse
Affiliation(s)
- Seonghun Kim
- School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Republic of Korea
| | | |
Collapse
|
16
|
Jin H, Zhao Q, Gonzalez de Valdivia EI, Ardell DH, Stenström M, Isaksson LA. Influences on gene expression in vivo by a Shine-Dalgarno sequence. Mol Microbiol 2006; 60:480-92. [PMID: 16573696 DOI: 10.1111/j.1365-2958.2006.05110.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Shine-Dalgarno (SD+: 5'-AAGGAGG-3') sequence anchors the mRNA by base pairing to the 16S rRNA in the small ribosomal subunit during translation initiation. We have here compared how an SD+ sequence influences gene expression, if located upstream or downstream of an initiation codon. The positive effect of an upstream SD+ is confirmed. A downstream SD+ gives decreased gene expression. This effect is also valid for appropriately modified natural Escherichia coli genes. If an SD+ is placed between two potential initiation codons, initiation takes place predominantly at the second start site. The first start site is activated if the distance between this site and the downstream SD+ is enlarged and/or if the second start site is weakened. Upstream initiation is eliminated if a stable stem-loop structure is placed between this SD+ and the upstream start site. The results suggest that the two start sites compete for ribosomes that bind to an SD+ located between them. A minor positive contribution to upstream initiation resulting from 3' to 5' ribosomal diffusion along the mRNA is suggested. Analysis of the E. coli K12 genome suggests that the SD+ or SD-like sequences are systematically avoided in the early coding region suggesting an evolutionary significance.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genes, Reporter
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Haining Jin
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Shu P, Dai H, Gao W, Goldman E. Inhibition of translation by consecutive rare leucine codons in E. coli: absence of effect of varying mRNA stability. Gene Expr 2006; 13:97-106. [PMID: 17017124 PMCID: PMC6032470 DOI: 10.3727/000000006783991881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Consecutive homologous codons that are rarely used in E. coli are known to inhibit translation to varying degrees. As few as two consecutive rare arginine codons exhibit a profound inhibition of translation when they are located in the 5' portion of a gene in E. coli. We have previously shown that nine consecutive rare CUA leucine codons cause almost complete inhibition of translation when they are placed after the 13th codon of a test message (although they do not inhibit translation when they are placed in the middle of the message). In the present work, we report that five consecutive rare CUA leucine codons exhibit approximately a threefold inhibition of translation when they are similarly placed after the 13th codon of a test message, compared to five consecutive common CUG leucine codons, in a T7 RNA polymerase-driven system. Further, by removing RNase III processing sites at the 3' ends of the mRNAs, we have manipulated the stability of the mRNAs encoding the test and control messages to see if decreasing mRNA stability might have an effect on the extent of translation inhibition by the rare leucine codons. However, the inhibition with the less stable mRNAs was similar to that with the stable mRNAs, approximately 3.4-fold, indicating that mRNA stability per se does not have a major influence on the effects of rare codons in this system.
Collapse
Affiliation(s)
- Ping Shu
- Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| | - Huacheng Dai
- Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| | - Wenwu Gao
- Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| | - Emanuel Goldman
- Department of Microbiology & Molecular Genetics, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ 07101-1709, USA
| |
Collapse
|
18
|
Gonzalez de Valdivia EI, Isaksson LA. Abortive translation caused by peptidyl-tRNA drop-off at NGG codons in the early coding region of mRNA. FEBS J 2005; 272:5306-16. [PMID: 16218960 DOI: 10.1111/j.1742-4658.2005.04926.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Escherichia coli the codons CGG, AGG, UGG or GGG (NGG codons) but not GGN or GNG (where N is non-G) are associated with low expression of a reporter gene, if located at positions +2 to +5. Induction of a lacZ reporter gene with any one of the NGG codons at position +2 to +5 does not influence growth of a normal strain, but growth of a strain with a defective peptidyl-tRNA hydrolase (Pth) enzyme is inhibited. The same codons, if placed at position +7, did not give this effect. Other codons, such as CGU and AGA, at location +2 to +5, did not give any growth inhibition of either the wild-type or the mutant strain. The inhibitory effect on the pth mutant strain by NGG codons at location +5 was suppressed by overexpression of the Pth enzyme from a plasmid. However, the overexpression of cognate tRNAs for AGG or GGG did not rescue from the growth inhibition associated with these codons early in the induced model gene. The data suggest that the NGG codons trigger peptidyl-tRNA drop-off if located at early coding positions in mRNA, thereby strongly reducing gene expression. This does not happen if these codons are located further down in the mRNA at position +7, or later.
Collapse
MESH Headings
- Base Sequence
- Carboxylic Ester Hydrolases/genetics
- Carboxylic Ester Hydrolases/metabolism
- Cell Division/genetics
- Codon/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Reporter/genetics
- Lac Operon/genetics
- Molecular Sequence Data
- Mutation/genetics
- Plasmids/genetics
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Arg/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Gly/metabolism
- Staphylococcal Protein A/genetics
- Temperature
- Transformation, Bacterial
Collapse
|
19
|
Duellman SJ, Burgess RR. Overproduction in Escherichia coli and purification of Epstein-Barr virus EBNA-1. Protein Expr Purif 2005; 47:434-40. [PMID: 16403648 DOI: 10.1016/j.pep.2005.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 11/17/2022]
Abstract
Epstein-Barr virus nuclear antigen 1 (EBNA-1) is a multi-functional protein of the Epstein-Barr virus (EBV). Due to its low abundance in EBV-transformed cells, overproduction in a foreign host is preferred to obtain purified EBNA-1 protein. The EBNA-1 gene possesses a large number of Escherichia coli rare codons (23%). By using E. coli BL21(DE3)Rosetta2 cells that augment the low-abundance tRNA genes, the expression level of EBNA-1 in E. coli was greatly enhanced. EBNA-1 was then purified by applying the whole cell extract soluble fraction to a Ni-NTA Superflow column and eluting with an imidazole gradient. The improved overexpression in E. coli followed by a one-step Ni-NTA purification resulted in a sufficient amount of pure EBNA-1 protein to test DNA binding activity, and prepare and test EBNA-1-specific monoclonal antibodies (mAbs).
Collapse
Affiliation(s)
- Sarah J Duellman
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, USA.
| | | |
Collapse
|
20
|
Gurvich OL, Baranov PV, Gesteland RF, Atkins JF. Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli. J Bacteriol 2005; 187:4023-32. [PMID: 15937165 PMCID: PMC1151738 DOI: 10.1128/jb.187.12.4023-4032.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rare codons AGG and AGA comprise 2% and 4%, respectively, of the arginine codons of Escherichia coli K-12, and their cognate tRNAs are sparse. At tandem occurrences of either rare codon, the paucity of cognate aminoacyl tRNAs for the second codon of the pair facilitates peptidyl-tRNA shifting to the +1 frame. However, AGG_AGG and AGA_AGA are not underrepresented and occur 4 and 42 times, respectively, in E. coli genes. Searches for corresponding occurrences in other bacteria provide no strong support for the functional utilization of frameshifting at these sequences. All sequences tested in their native context showed 1.5 to 11% frameshifting when expressed from multicopy plasmids. A cassette with one of these sequences singly integrated into the chromosome in stringent cells gave 0.9% frameshifting in contrast to two- to four-times-higher values obtained from multicopy plasmids in stringent cells and eight-times-higher values in relaxed cells. Thus, +1 frameshifting efficiency at AGG_AGG and AGA_AGA is influenced by the mRNA expression level. These tandem rare codons do not occur in highly expressed mRNAs.
Collapse
Affiliation(s)
- Olga L Gurvich
- Department of Human Genetics, University of Utah, 15N 2030E, Rm. 7410, Salt Lake City, Utah 84112-5330, USA
| | | | | | | |
Collapse
|
21
|
Chen D, Duggan C, Ganley JP, Kooragayala LM, Reden TB, Texada DE, Langford MP. Expression of enterovirus 70 capsid protein VP1 in Escherichia coli. Protein Expr Purif 2005; 37:426-33. [PMID: 15358366 DOI: 10.1016/j.pep.2004.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/22/2004] [Indexed: 10/26/2022]
Abstract
The VP1 gene of enterovirus 70 (EV70) possesses a large number of Escherichia coli low-usage codons (11.0%) and a bacterial ribosome binding site complementary sequence (RBSCS) 5'-UGUCUCCUUUUC-3' flanking the codon 139. Plasmids containing EV70 cDNA encoding the full-length VP1 failed to express in E. coli (BL21(DE3), Rosetta 2(DE3) or Rosetta (DE3)pLysS). High expression (>8% of total protein) of recombinant VP1 (rVP1m) in E. coli required engineering of the encoding cDNA (conserved modification of the native cDNA) by simultaneous substitution of a rare-codon cluster located between codons 103 and 132, and replacement of the RBSCS-TCCTTT sequence. The rare-codon frequencies of the cDNAs encoding VP1 non-overlapping terminal fragments N138 (1-138 aa) and C170 (141-310 aa) are similar (10.9 and 11.2%, respectively). However, in E. coli, high expression of recombinant C170 (rC170) required no modification of the native cDNA whereas high expression of recombinant N138 (rN138m) required minimal synonymous substitution of the above rare-codon cluster. The rare-codon cluster of EV70 VP1 gene has five least-usage arginine codons (AGG/AGA) and three tandem rare-codon pairs (AGGAGG, CUAAGG, and AGACUA). Our results suggest that the rare-codon cluster (its rare codon arrangement per se and/or its related mRNA secondary structure(s)) and the RBSCS in EV70 VP1 gene, not the rare-codon frequency, constitute the key elements that suppress its expression in E. coli.
Collapse
Affiliation(s)
- Dequan Chen
- Department of Ophthalmology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Olivares-Trejo JJ, Bueno-Martínez JG, Guarneros G, Hernández-Sánchez J. The pair of arginine codons AGA AGG close to the initiation codon of the lambda int gene inhibits cell growth and protein synthesis by accumulating peptidyl-tRNAArg4. Mol Microbiol 2003; 49:1043-9. [PMID: 12890027 DOI: 10.1046/j.1365-2958.2003.03611.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To analyse the mechanism by which rare codons near the initiation codon inhibit cell growth and protein synthesis, we used the bacteriophage lambda int gene or early codon substitution derivatives. The lambda int gene has a high frequency of rare ATA, AGA and AGG codons; two of them (AGA AGG) located at positions 3 and 4 of the int open reading frame (ORF). Escherichia coli pth (rap) cells, which are defective in peptidyl-tRNA hydrolase (Pth) activity, are more susceptible to the inhibitory effects of int expression as compared with wild-type cells. Cell growth and Int protein synthesis were enhanced by overexpression of Pth and tRNAArg4 cognate to AGG and AGA but not of tRNAIle2a specific for ATA. The increase of Int protein synthesis also takes place when the rare arginine codons AGA and AGG at positions 3 and 4 are changed to common arginine CGT or lysine AAA codons but not to rare isoleucine ATA codons. In addition, overexpression of int in Pth defective cells provokes accumulation of peptidyl-tRNAArg4 in the soluble fraction. Therefore, cell growth and Int synthesis inhibition may be due to ribosome stalling and premature release of peptidyl-tRNAArg4 from the ribosome at the rare arginine codons of the first tandem, which leads to cell starvation for the specific tRNA.
Collapse
Affiliation(s)
- José J Olivares-Trejo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | | | | | | |
Collapse
|
23
|
Janatova I, Costaglioli P, Wesche J, Masson JM, Meilhoc E. Development of a reporter system for the yeast Schwanniomyces occidentalis: influence of DNA composition and codon usage. Yeast 2003; 20:687-701. [PMID: 12794930 DOI: 10.1002/yea.997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In this paper we report on searching for suitable reporters to monitor gene expression and protein secretion in the amylolytic yeast Schwanniomyces occidentalis. Several potential reporter and marker genes, formerly shown to be functional in other yeasts, were cloned downstream from the homologous invertase gene (INV) promoter and their activity was followed in conditions of repression and derepression of the INV promoter. However, neither beta-glucuronidase nor beta-lactamase nor phleomycin resistance-conferring gene, all originating from E. coli, were expressed in S. occidentalis cells to such a level to allow for monitoring of their activity. All the reporter genes tested have a higher percentage of GC (47-62%) in their DNA compared to the DNA composition of S. occidentalis genes that are more AT-rich (36% GC). The codon usage of all the reporter genes also varies from that of 16 so far sequenced S. occidentalis genes. This suggests that an appropriate composition of DNA and a codon usage similar to S. occidentalis genes might be very important parameters for an efficient expression of a heterologous gene in Schwanniomyces occidentalis. Indeed, two genes originating from Staphylococcus aureus, with an AT-content in their DNA similar to that of S. occidentalis, were functionally expressed in S. occidentalis cells. Both a phleomycin resistance-conferring gene and a chloramphenicol acetyltransferase-encoding gene thus represent suitable reporters of gene expression and protein secretion in S. occidentalis. Additionally, we show in this work that the transcription-regulating region and the signal peptide sequence of the S. occidentalis invertase gene were efficient to direct gene expression and subsequent protein secretion in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Ivana Janatova
- Laboratory of Cell Reproduction, Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
24
|
Kapust RB, Routzahn KM, Waugh DS. Processive degradation of nascent polypeptides, triggered by tandem AGA codons, limits the accumulation of recombinant tobacco etch virus protease in Escherichia coli BL21(DE3). Protein Expr Purif 2002; 24:61-70. [PMID: 11812224 DOI: 10.1006/prep.2001.1545] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to its high degree of sequence specificity, the catalytic domain of the nuclear inclusion protease from tobacco etch virus (TEV protease) is a useful reagent for cleaving genetically engineered fusion proteins. However, the overproduction of TEV protease in Escherichia coli has been hampered in the past by low yield and poor solubility. Here we demonstrate that the low yield can be attributed to the presence of arginine codons in the TEV protease coding sequence that are rarely used in E. coli and specifically to a tandem pair of AGA codons. The yield of protease can be improved by replacing these rare arginine codons with synonymous ones or by increasing the supply of cognate tRNA that is available to the cell. Furthermore, we show that when ribosomes become stalled at rare arginine codons in the TEV protease mRNA, the nascent polypeptides are targeted for proteolytic degradation in BL21(DE3) cells by a mechanism that does not involve tmRNA-mediated peptide tagging.
Collapse
Affiliation(s)
- Rachel B Kapust
- Protein Engineering Section, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
25
|
Kuhar I, van Putten JP, Zgur-Bertok D, Gaastra W, Jordi BJ. Codon-usage based regulation of colicin K synthesis by the stress alarmone ppGpp. Mol Microbiol 2001; 41:207-16. [PMID: 11454213 DOI: 10.1046/j.1365-2958.2001.02508.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanism of the upregulation of Escherichia coli colicin K (Cka) synthesis during stress conditions was studied. Nutrient starvation experiments and the use of relA spoT mutant strains, IPTG-regulated overproduction of ppGpp and lacZ fusions revealed that the stringent response alarmone guanosine 3',5'-bispyrophosphate (ppGpp) is the main positive effector of Cka synthesis. Comparison of the amounts of protein produced (Western blotting) and specific mRNA (Northern blotting) before and after nutrient starvation demonstrated increases in Cka protein with unaltered specific mRNA levels, suggesting a post-transcriptional regulatory mechanism. Reporter (beta-galactosidase) assays using truncated cka of variable length fused to lacZ located the key regulatory region close to the 5' end of the cka mRNA. Closer analysis of this region indicated the presence of several rare codons, including the leucine-encoding codon CUA. Synonymous exchange of the rare codons with more frequently used ones abolished the regulatory effect of ppGpp. Supplementation of the strain with the plasmid CodonPlus carrying several rare tRNA genes yielded similar results, indicating that codon usage (in particular, the fifth codon for the amino acid leucine) and tRNA availability (i.e. tRNAleu) are the key elements of the regulatory function of ppGpp. We conclude that ppGpp regulates Cka synthesis via a novel post-transcriptional mechanism that is based on rare codon usage and variable cognate tRNA availability.
Collapse
Affiliation(s)
- I Kuhar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
26
|
Lorenz AR, Scheurer S, Haustein D, Vieths S. Recombinant food allergens. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 756:255-79. [PMID: 11419718 DOI: 10.1016/s0378-4347(01)00086-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Allergenic (glyco)proteins are the elicitors of food allergies and can cause acute severe hypersensitivity reactions. Recombinant food allergens are available in standardised quantity and constant quality. Therefore, they offer new perspectives to overcome current difficulties in the diagnosis, treatment and investigation of food allergies. This review summarises the expression strategies and characteristics of more than 40 recombinant food allergens that have been produced until today. Their IgE-binding properties are compared to those of their natural counterparts, in addition their application as diagnostic tools, the generation of hypoallergenic recombinant isoforms and mutants for therapeutic purposes, the determination of epitopes and cross-reactive structures are described.
Collapse
Affiliation(s)
- A R Lorenz
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | |
Collapse
|
27
|
Cheng L, Goldman E. Reversal of inhibition by the T7 concatemer junction sequence on expression from a downstream T7 promoter. Gene Expr 2001; 9:257-64. [PMID: 11763997 PMCID: PMC5964947 DOI: 10.3727/000000001783992524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2001] [Indexed: 11/24/2022]
Abstract
We have previously reported that placement of the phage T7 concatemer junction (CJ) just upstream of another gene on a plasmid in a T7 system proved to be inhibitory to expression of the downstream gene. We had hypothesized that the inhibition was a result of a readthrough transcript of the CJ element interacting with the translation start region of the downstream gene; also that in the absence of a T7 termination signal, transcription continued around the plasmid multiple times ("rolling circle" transcription), always juxtaposing the inhibitory CJ sequence proximal to the downstream gene mRNA. Two strong predictions were made from this model: 1) that introduction of a spacer sequence between the CJ element and the downstream gene should alleviate the inhibition, and 2) that reintroduction of a T7 transcription terminator should prevent rolling circle transcription, thereby reversing the inhibition by allowing some transcripts to be generated originating from the downstream promoter that did not contain the inhibitory CJ element upstream. We report here that both of these predictions have been fulfilled. However, the reversal of inhibition was only partial in the construct where the T7 terminator was reintroduced, indicating that there remains a residual inhibitory effect of the CJ element on expression of the downstream gene. A possible explanation is that the CJ element, acting as a pause site for transcription, blocks access to the downstream T7 promoter, thereby reducing transcription from that promoter. If this explanation is correct, steric hindrance of transcription starts resulting from an upstream RNA polymerase pause site may represent a previously unrecognized mechanism of transcriptional control.
Collapse
Affiliation(s)
- Li Cheng
- Department of Microbiology & Molecular Genetics, University of Medicine & Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103
| | - Emanuel Goldman
- Department of Microbiology & Molecular Genetics, University of Medicine & Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103
- Address correspondence to Emanuel Goldman, Department of Microbiology & Molecular Genetics, University of Medicine & Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07103. Tel: (973) 972-4367; Fax: (973) 972-3644; E-mail:
| |
Collapse
|
28
|
Affiliation(s)
- E Fuchs
- Institute of Molecular Genetics, University of Heidelberg, Germany
| |
Collapse
|
29
|
Vervoort EB, van Ravestein A, van Peij NN, Heikoop JC, van Haastert PJ, Verheijden GF, Linskens MH. Optimizing heterologous expression in dictyostelium: importance of 5' codon adaptation. Nucleic Acids Res 2000; 28:2069-74. [PMID: 10773074 PMCID: PMC105365 DOI: 10.1093/nar/28.10.2069] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expression of heterologous proteins in Dictyostelium discoideum presents unique research opportunities, such as the functional analysis of complex human glycoproteins after random mutagenesis. In one study, human chorionic gonadotropin (hCG) and human follicle stimulating hormone were expressed in Dictyostelium. During the course of these experiments, we also investigated the role of codon usage and of the DNA sequence upstream of the ATG start codon. The Dictyostelium genome has a higher AT content than the human, resulting in a different codon preference. The hCG-beta gene contains three clusters with infrequently used codons that were changed to codons that are preferred by Dictyostelium. The results reported here show that optimizing the first 5-17 codons of the hCG gene contributes to 4- to 5-fold increased expression levels, but that further optimization has no significant effect. These observations suggest that optimal codon usage contributes to ribosome stabilization, but does not play an important role during the elongation phase of translation. Furthermore, adapting the 5'-sequence of the hCG gene to the Dictyostelium 'Kozak'-like sequence increased expression levels approximately 1.5-fold. Thus, using both codon optimization and 'Kozak' adaptation, a 6- to 8-fold increase in expression levels could be obtained for hCG.
Collapse
Affiliation(s)
- E B Vervoort
- Cell Engineering Facility GBB, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Maier G, Dietrich U, Panhans B, Schröder B, Rübsamen-Waigmann H, Cellai L, Hermann T, Heumann H. Mixed reconstitution of mutated subunits of HIV-1 reverse transcriptase coexpressed in Escherichia coli - two tags tie it up. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:10-8. [PMID: 10103027 DOI: 10.1046/j.1432-1327.1999.00304.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The active form of HIV-1 reverse transcriptase (RT) is a p66/p51 heterodimer, in which the p51 subunit is generated by C-terminal proteolytic cleavage of p66. A well-known problem of p66 recombinant expression is partial cleavage of a 15-kDa peptide from the C-terminus by host proteases that can not be completely suppressed. In order to analyse the contribution of specific residues to a particular function in one distinct subunit, an expression and purification system is required that selects for the combination of the two individual subunits with the desired substitutions. We reconstituted the p66/p51 heterodimer from subunits coexpressed in Escherichia coli as an N-terminal fusion protein of glutathione S-transferase (GST) with p51 and a C-terminally His-tagged p66, respectively. The two-plasmid coexpression system ensures convenience for gene manipulation while degradation is reduced to a minimum, as dimerization protects the protein from further proteolysis. The combination of glutathione-agarose, phenyl-superose and Ni/nitrilotriacetate affinity chromatography allows rapid and selective purification of the desired subunit combination. Truncated forms of p51 are efficiently removed. Mobility-shift assay revealed that the preparations are free of p66 homodimer. In a successful test of the novel expression system, mixed reconstituted RTs with p51 selectively mutated in a putative nucleic acid binding motif (the so called helix clamp) show reduced binding of dsDNA in mobility-shift assays. This indicates the p51 subunit has an active role in DNA binding
Collapse
Affiliation(s)
- G Maier
- Max-Planck-Institut für Biochemie, Martinried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tenson T, Herrera JV, Kloss P, Guarneros G, Mankin AS. Inhibition of translation and cell growth by minigene expression. J Bacteriol 1999; 181:1617-22. [PMID: 10049395 PMCID: PMC93553 DOI: 10.1128/jb.181.5.1617-1622.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A random five-codon gene library was used to isolate minigenes whose expression causes cell growth arrest. Eight different deleterious minigenes were isolated, five of which had in-frame stop codons; the predicted expressed peptides ranged in size from two to five amino acids. Mutational analysis demonstrated that translation of the inhibitory minigenes is essential for growth arrest. Pulse-labeling experiments showed that expression of at least some of the selected minigenes results in inhibition of cellular protein synthesis. Expression of the deleterious minigenes in cells deficient in peptidyl-tRNA hydrolase causes accumulation of families of peptidyl-tRNAs corresponding to the last minigene codon; the inhibitory action of minigene expression could be suppressed by overexpression of the tRNA corresponding to the last sense codon in the minigene. Experimental data are compatible with the model that the deleterious effect of minigene expression is mediated by depletion of corresponding pools of free tRNAs.
Collapse
Affiliation(s)
- T Tenson
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|