1
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2024:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Generation of Lactose- and Protease-Positive Probiotic Lacticaseibacillus rhamnosus GG by Conjugation with Lactococcus lactis NCDO 712. Appl Environ Microbiol 2021; 87:AEM.02957-20. [PMID: 33419737 DOI: 10.1128/aem.02957-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Lacticaseibacillus rhamnosus GG (LGG) is the most studied probiotic bacterium in the world. It is used as a probiotic supplement in many foods, including various dairy products. However, LGG grows poorly in milk, as it neither metabolizes the main milk carbohydrate lactose nor degrades the major milk protein casein effectively. In this study, we made L. rhamnosus GG lactose and protease positive by conjugation with the dairy Lactococcus lactis strain NCDO 712 carrying the lactose-protease plasmid pLP712. A lactose-hydrolyzing transconjugant colony was obtained on agar containing lactose as the sole source of carbohydrates. By microscopic analysis and PCR with LGG- and pLP712-specific primers, the transconjugant was confirmed to have originated from LGG and to carry the plasmid pLP712. The transconjugant was named L. rhamnosus LAB49. The isolation of plasmids revealed that not only pLP712 but also other plasmids had been transferred from L. lactis into LGG during conjugation. With plasmid-specific PCR primers, four additional lactococcal plasmids were detected in LAB49. Proteolytic activity assay and SDS-PAGE analysis verified that L. rhamnosus LAB49 effectively degraded β-casein. In contrast to its parental strain, LGG, the ability of LAB49 to metabolize lactose and degrade casein enabled strong and fast growth in milk. As strains with new properties made by conjugation are not regarded as genetically modified organisms (GMOs), L. rhamnosus LAB49 could be beneficial in dairy fermentations as a probiotic starter culture.IMPORTANCE Probiotic strain Lacticaseibacillus rhamnosus GG (LGG) is widely sold on the market as a probiotic or added as a supplement in dairy foods because of its benefits in human health. However, due to the deficiency of lactose and casein utilization, LGG does not grow well in milk. On the other hand, lactose intolerance and cow's milk protein allergy are the two major problems related to milk consumption. One option to help with these two conditions is the use of probiotic or lactose- and casein-hydrolyzing bacteria in dairy products. The purpose of this study was to equip LGG with lactose/casein-hydrolyzing ability by bacterial conjugation. As a result, we generated a non-GMO LGG derivative with improved properties and better growth in milk.
Collapse
|
3
|
Abstract
The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980’s, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I–III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.
Collapse
Affiliation(s)
- Wil A M Loenen
- Leiden University Medical Center, P.O. Box 9600 2300RC Leiden, The Netherlands and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
4
|
Losurdo L, Quintieri L, Caputo L, Gallerani R, Mayo B, De Leo F. Cloning and expression of synthetic genes encoding angiotensin-I converting enzyme (ACE)-inhibitory bioactive peptides in Bifidobacterium pseudocatenulatum. FEMS Microbiol Lett 2013; 340:24-32. [PMID: 23278337 DOI: 10.1111/1574-6968.12068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 12/23/2022] Open
Abstract
A wide range of biopeptides potentially able to lower blood pressure through inhibition of the angiotensin-I converting enzyme (ACE) is produced in fermented foods by proteolytic starter cultures. This work applies a procedure based on recombinant DNA technologies for the synthesis and expression of three ACE-inhibitory peptides using a probiotic cell factory. ACE-inhibitory genes and their pro-active precursors were designed, synthesized by PCR, and cloned in Escherichia coli; after which, they were cloned into the pAM1 E. coli-bifidobacteria shuttle vector. After E. coli transformation, constructs carrying the six recombinant clones were electrotransferred into the Bifidobacterium pseudocatenulatum M115 probiotic strain. Interestingly, five of the six constructs proved to be stable. Their expression was confirmed by reverse transcription PCR. Furthermore, transformed strains displayed ACE-inhibitory activity linearly correlated to increasing amounts of cell-free cellular lysates. In particular, 50 μg of lysates from constructs pAM1-Pro-BP3 and pAM1-BP2 showed a 50% higher ACE-inhibitory activity than that of the controls. As a comparison, addition of 50 ng of Pro-BP1 and Pro-BP3 synthetic peptides to 50 μg of cell-free extracts of B. pseudocatenulatum M115 wild-type strain showed an average of 67% of ACE inhibition; this allowed estimating the amount of the peptides produced by the transformants. Engineering of bifidobacteria for the production of biopeptides is envisioned as a promising cell factory model system.
Collapse
Affiliation(s)
- Luca Losurdo
- Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Mruk I, Blumenthal RM. Tuning the relative affinities for activating and repressing operators of a temporally regulated restriction-modification system. Nucleic Acids Res 2009; 37:983-98. [PMID: 19126580 PMCID: PMC2647307 DOI: 10.1093/nar/gkn1010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most type II restriction-modification (R-M) systems produce separate endonuclease (REase) and methyltransferase (MTase) proteins. After R-M genes enter a new cell, MTase activity must appear before REase or the host chromosome will be cleaved. Temporal control of these genes thus has life-or-death consequences. PvuII and some other R-M systems delay endonuclease expression by cotranscribing the REase gene with the upstream gene for an autogenous activator/repressor (C protein). C.PvuII was previously shown to have low levels early, but positive feedback later boosts transcription of the C and REase genes. The MTase is expressed without delay, and protects the host DNA. C.PvuII binds to two sites upstream of its gene: OL, associated with activation, and OR, associated with repression. Even when symmetry elements of each operator are made identical, C.PvuII binds preferentially to OL. In this study, the intra-operator spacers are shown to modulate relative C.PvuII affinity. In light of a recently reported C.Esp1396I-DNA co-crystal structure, in vitro and in vivo effects of altering OL and OR spacers were determined. The results suggest that the GACTnnnAGTC consensus is the primary determinant of C.PvuII binding affinity, with intra-operator spacers playing a fine-tuning role that affects mobility of this R-M system.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, Toledo, OH 43614-2598, USA
| | | |
Collapse
|
6
|
Mruk I, Blumenthal RM. Real-time kinetics of restriction-modification gene expression after entry into a new host cell. Nucleic Acids Res 2008; 36:2581-93. [PMID: 18334533 PMCID: PMC2377437 DOI: 10.1093/nar/gkn097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Most type II restriction-modification (R-M) systems produce separate restriction endonuclease (REase) and methyltransferase (MTase) proteins. After R-M system genes enter a new cell, protective MTase must appear before REase to avoid host chromosome cleavage. The basis for this apparent temporal regulation is not well understood. PvuII and some other R-M systems appear to achieve this delay by cotranscribing the REase gene with the gene for an autogenous transcription activator/repressor (the 'C' protein C.PvuII). To test this model, bacteriophage M13 was used to introduce the PvuII genes into a bacterial population in a relatively synchronous manner. REase mRNA and activity appeared approximately 10 min after those of the MTase, but never rose if there was an inactivating pvuIIC mutation. Infection with recombinant M13pvuII phage had little effect on cell growth, relative to infection with parental M13. However, infection of cells pre-expressing C.PvuII led to cessation of growth. This study presents the first direct demonstration of delayed REase expression, relative to MTase, when type II R-M genes enter a new host cell. Surprisingly, though the C and REase genes are cotranscribed, the pvuIIC portion of the mRNA was more abundant than the pvuIIR portion after stable establishment of the R-M system.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, Toledo, OH 43614-2598, USA.
| | | |
Collapse
|
7
|
Mruk I, Rajesh P, Blumenthal RM. Regulatory circuit based on autogenous activation-repression: roles of C-boxes and spacer sequences in control of the PvuII restriction-modification system. Nucleic Acids Res 2007; 35:6935-52. [PMID: 17933763 PMCID: PMC2175313 DOI: 10.1093/nar/gkm837] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Type II restriction-modification (R-M) systems comprise a restriction endonuclease (REase) and a protective methyltransferase (MTase). After R-M genes enter a new cell, MTase must appear before REase or the chromosome will be cleaved. PvuII and some other R-M systems achieve this delay by cotranscribing the REase gene with the gene for an autogenous transcription activator (the controlling or 'C' protein C.PvuII). This study reveals, through in vivo titration, that C.PvuII is not only an activator but also a repressor for its own gene. In other systems, this type of circuit can result in oscillatory behavior. Despite the use of identical, symmetrical C protein-binding sequences (C-boxes) in the left and right operators, C.PvuII showed higher in vitro affinity for O(L) than for O(R), implicating the spacer sequences in this difference. Mutational analysis associated the repression with O(R), which overlaps the promoter -35 hexamer but is otherwise dispensable for activation. A nonrepressing mutant exhibited poor establishment in new cells. Comparing promoter-operator regions from PvuII and 29 R-M systems controlled by C proteins revealed that the most-highly conserved sequence is the tetranucleotide spacer separating O(L) from O(R). Any changes in that spacer reduced the stability of C.PvuII-operator complexes and abolished activation.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, Toledo, OH 43614-2598, USA
| | | | | |
Collapse
|
8
|
Miklič A, Rogelj I. Screening for natural defence mechanisms of Lactococcus lactis strains isolated from traditional starter cultures. Int J Food Sci Technol 2007. [DOI: 10.1111/j.1365-2621.2007.01175.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
McGeehan JE, Papapanagiotou I, Streeter SD, Kneale GG. Cooperative binding of the C.AhdI controller protein to the C/R promoter and its role in endonuclease gene expression. J Mol Biol 2006; 358:523-31. [PMID: 16516922 DOI: 10.1016/j.jmb.2006.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
The controller (C) proteins of a wide variety of restriction-modification (R-M) systems are thought to regulate expression of the endonuclease (R) gene by a genetic switch that ensures that methylation precedes endonuclease expression. Previous DNA footprinting experiments with C.AhdI have located the binding site upstream of the C and R genes in the AhdI R-M system, and the structure of C.AhdI has recently been determined. Here, we provide evidence that the binding site can accommodate either one or two dimers of C.AhdI in a concentration-dependent manner. The dimer binding site is adjacent to the -35 hexamer site required for the interaction with RNA polymerase (RNAP); however, co-operative binding of a second dimer blocks this site. Optimum DNA binding site sizes for dimer and tetramer formation were determined to be ca 21 bp and 34 bp, respectively. The stoichiometry and affinities of relevant DNA-protein complexes have been characterised by sedimentation velocity and EMSA using native and mutant promoter sequences. Molecular models of the dimer and tetramer complexes have been constructed that are consistent with the hydrodynamic data. Our results suggest a mechanism for both positive and negative regulation of endonuclease expression, whereby at moderate levels of C.AhdI, the protein binds to the promoter as a dimer and stimulates transcription by the interaction with RNAP. As the levels of C.AhdI increase further, binding of the second dimer competes with RNAP, thus down-regulating transcription of its own gene, and hence that of the endonuclease.
Collapse
Affiliation(s)
- J E McGeehan
- Biophysics Laboratories Institute of Biomedical and Biomolecular Sciences University of Portsmouth PO1 2DT, UK
| | | | | | | |
Collapse
|
10
|
O'Driscoll J, Fitzgerald GF, van Sinderen D. A dichotomous epigenetic mechanism governs expression of the LlaJI restriction/modification system. Mol Microbiol 2005; 57:1532-44. [PMID: 16135222 DOI: 10.1111/j.1365-2958.2005.04769.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LlaJI restriction/modification (R/M) system is comprised of two 5mC MTase-encoding genes, llaJIM1 and llaJIM2, and two genes required for restriction activity, llaJIR1 and llaJIR2. Here, we report the molecular mechanism by which this R/M system is transcriptionally regulated. The recognition sequence for the LlaJI MTases was deduced to be 5'GACGC'3 for M1.LlaJI and 5'GCGTC'3 for M2.LlaJI, thus together constituting an asymmetric complementary recognition site. Two recognition sequences for both LlaJI MTases are present within the LlaJI promoter region, indicative of an epigenetic role. Following in vivo analysis of expression of the LlaJI promoter, we established that both LlaJI MTases were required for complete transcriptional repression. A mutational analysis and DNA binding studies of this promoter revealed that the methylation of two specific cytosines by M2.LlaJI within this region was required to trigger the specific and high affinity binding of M1.LlaJI, which serves to regulate expression of the LlaJI operon. This regulatory system therefore represents the amalgamation of an epigenetic stimulation coupled to the formation of a MTase/repressor:promoter complex.
Collapse
|
11
|
Sturino JM, Klaenhammer TR. Bacteriophage defense systems and strategies for lactic acid bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2005; 56:331-78. [PMID: 15566985 DOI: 10.1016/s0065-2164(04)56011-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
McGeehan JE, Streeter SD, Papapanagiotou I, Fox GC, Kneale GG. High-resolution crystal structure of the restriction-modification controller protein C.AhdI from Aeromonas hydrophila. J Mol Biol 2005; 346:689-701. [PMID: 15713456 DOI: 10.1016/j.jmb.2004.12.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/11/2004] [Accepted: 12/14/2004] [Indexed: 11/23/2022]
Abstract
Restriction-modification (R-M) systems serve to protect the host bacterium from invading bacteriophage. The multi-component system includes a methyltransferase, which recognizes and methylates a specific DNA sequence, and an endonuclease which recognises the same sequence and cleaves within or close to this site. The endonuclease will only cleave DNA that is unmethylated at the specific site, thus host DNA is protected while non-host DNA is cleaved. However, following DNA replication, expression of the endonuclease must be delayed until the host DNA is appropriately methylated. In many R-M systems, this regulation is achieved at the transcriptional level via the controller protein, or C-protein. We have solved the first X-ray structure of an R-M controller protein, C.AhdI, to 1.69 A resolution using selenomethionine MAD. C.AhdI is part of a Type IIH R-M system from the pathogen Aeromonas hydrophila. The structure reveals an all-alpha protein that contains a classical helix-turn-helix (HTH) domain and can be assigned to the Xre family of transcriptional regulators. Unlike its monomeric structural homologues, an extended helix generates an interface that results in dimerisation of the free protein. The dimer is electrostatically polarised and a positively charged surface corresponds to the position of the DNA recognition helices of the HTH domain. Comparison with the structure of the lambda cI ternary complex suggests that C.AhdI activates transcription through direct contact with the sigma70 subunit of RNA polymerase.
Collapse
Affiliation(s)
- J E McGeehan
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, PO1 2DT, UK
| | | | | | | | | |
Collapse
|
13
|
O'Driscoll J, Glynn F, Cahalane O, O'Connell-Motherway M, Fitzgerald GF, Van Sinderen D. Lactococcal plasmid pNP40 encodes a novel, temperature-sensitive restriction-modification system. Appl Environ Microbiol 2004; 70:5546-56. [PMID: 15345443 PMCID: PMC520859 DOI: 10.1128/aem.70.9.5546-5556.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel restriction-modification system, designated LlaJI, was identified on pNP40, a naturally occurring 65-kb plasmid from Lactococcus lactis. The system comprises four adjacent similarly oriented genes that are predicted to encode two m(5)C methylases and two restriction endonucleases. The LlaJI system, when cloned into a low-copy-number vector, was shown to confer resistance against representatives of the three most common lactococcal phage species. This phage resistance phenotype was found to be strongly temperature dependent, being most effective at 19 degrees C. A functional analysis confirmed that the predicted methylase-encoding genes, llaJIM1 and llaJIM2, were both required to mediate complete methylation, while the assumed restriction enzymes, specified by llaJIR1 and llaJIR2, were both necessary for the complete restriction phenotype. A Northern blot analysis revealed that the four LlaJI genes are part of a 6-kb operon and that the relative abundance of the LlaJI-specific mRNA in the cells does not appear to contribute to the observed temperature-sensitive profile. This was substantiated by use of a LlaJI promoter-lacZ fusion, which further revealed that the LlaJI operon appears to be subject to transcriptional regulation by an as yet unidentified element(s) encoded by pNP40.
Collapse
Affiliation(s)
- Jonathan O'Driscoll
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
14
|
Christensen LL, Josephsen J. The methyltransferase from the LlaDII restriction-modification system influences the level of expression of its own gene. J Bacteriol 2004; 186:287-95. [PMID: 14702296 PMCID: PMC305755 DOI: 10.1128/jb.186.2.287-295.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type II restriction-modification (R-M) system LlaDII isolated from Lactococcus lactis contains two tandemly arranged genes, llaDIIR and llaDIIM, encoding a restriction endonuclease (REase) and a methyltransferase (MTase), respectively. Interestingly, two LlaDII recognition sites are present in the llaDIIM promoter region, suggesting that they may influence the activity of the promoter through methylation status. In this study, separate promoters for llaDIIR and llaDIIM were identified, and the regulation of the two genes at the transcriptional level was investigated. DNA fragments containing the putative promoters were cloned in a promoter probe vector and tested for activity in the presence and absence of the active MTase. The level of expression of the MTase was 5- to 10-fold higher than the level of expression of the REase. The results also showed that the presence of M.LlaDII reduced the in vivo expression of the llaDIIM promoter (P(llaDIIM)) up to 1,000-fold, whereas the activity of the llaDIIR promoter (P(llaDIIR)) was not affected. Based on site-specific mutations it was shown that both of the LlaDII recognition sites within P(llaDIIM) are required to obtain complete repression of transcriptional activity. No regulation was found for llaDIIR, which appears to be constitutively expressed.
Collapse
Affiliation(s)
- Lisa Lystbaek Christensen
- Department of Dairy and Food Science, Centre of Advanced Food Studies, The Royal Veterinary and Agricultural University, DK-1958 Frederiksberg C, Denmark
| | | |
Collapse
|
15
|
|
16
|
Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 2001; 29:3742-56. [PMID: 11557807 PMCID: PMC55917 DOI: 10.1093/nar/29.18.3742] [Citation(s) in RCA: 393] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 07/12/2001] [Accepted: 07/23/2001] [Indexed: 11/14/2022] Open
Abstract
Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.
Collapse
Affiliation(s)
- I Kobayashi
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
17
|
Butler D, Fitzgerald GF. Transcriptional analysis and regulation of expression of the ScrFI restriction-modification system of Lactococcus lactis subsp. cremoris UC503. J Bacteriol 2001; 183:4668-73. [PMID: 11443105 PMCID: PMC95365 DOI: 10.1128/jb.183.15.4668-4673.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ScrFI is a type II restriction-modification system from Lactococcus lactis which recognizes the nucleotide sequence 5'-CC downward arrow NGG-3', cleaving at the point indicated by the arrow, and it comprises an endonuclease gene that is flanked on either side by genes encoding two 5-methylcytosine methylases. An open reading frame (orfX) of unknown function is located immediately upstream of these genes. In this study Northern analysis was performed, and it revealed that orfX, scrFIBM, and scrFIR are cotranscribed as a single polygenic mRNA molecule, while scrFIAM is transcribed independently. 5' extension analysis indicated that the start site for the scrFIAM promoter was a thymine located 4 bp downstream of the -10 motif. The transcriptional start site for the orfX promoter was also found to be a thymine which is more atypically located 24 bp downstream of the -10 motif proximal to the start codon. A helix-turn-helix motif was identified at the N-terminal end of one of the methylases (M.ScrFIA). In order to determine if this motif played a role in regulation of the ScrFI locus, M.ScrFIA was purified. It was then employed in gel retardation assays using fragments containing the two promoters found on the ScrFI operon, one located upstream of orfX and the other located just upstream of scrFIAM. M.ScrFIA was found to bind to the promoter region upstream of the gene encoding it, indicating that it may have a regulatory role. In further studies the two putative promoters were introduced into a vector (pAK80) upstream of a promoterless lacZ gene, and cloned fragments of the ScrFI locus were introduced in trans with each of these promoter constructs to investigate the effect on promoter activity. These results implicated M.ScrFIA in regulation of both promoters on the ScrFI locus.
Collapse
Affiliation(s)
- D Butler
- National Food Biotechnology Centre and Department of Microbiology, University College Cork, Cork, Ireland
| | | |
Collapse
|
18
|
Rao DN, Saha S, Krishnamurthy V. ATP-dependent restriction enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:1-63. [PMID: 10697406 DOI: 10.1016/s0079-6603(00)64001-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The phenomenon of restriction and modification (R-M) was first observed in the course of studies on bacteriophages in the early 1950s. It was only in the 1960s that work of Arber and colleagues provided a molecular explanation for the host specificity. DNA restriction and modification enzymes are responsible for the host-specific barriers to interstrain and interspecies transfer of genetic information that have been observed in a variety of bacterial cell types. R-M systems comprise an endonuclease and a methyltransferase activity. They serve to protect bacterial cells against bacteriophage infection, because incoming foreign DNA is specifically cleaved by the restriction enzyme if it contains the recognition sequence of the endonuclease. The DNA is protected from cleavage by a specific methylation within the recognition sequence, which is introduced by the methyltransferase. Classic R-M systems are now divided into three types on the basis of enzyme complexity, cofactor requirements, and position of DNA cleavage, although new systems are being discovered that do not fit readily into this classification. This review concentrates on multisubunit, multifunctional ATP-dependent restriction enzymes. A growing number of these enzymes are being subjected to biochemical and genetic studies that, when combined with ongoing structural analyses, promise to provide detailed models for mechanisms of DNA recognition and catalysis. It is now clear that DNA cleavage by these enzymes involves highly unusual modes of interaction between the enzymes and their substrates. These unique features of mechanism pose exciting questions and in addition have led to the suggestion that these enzymes may have biological functions beyond that of restriction and modification. The purpose of this review is to describe the exciting developments in our understanding of how the ATP-dependent restriction enzymes recognize specific DNA sequences and cleave or modify DNA.
Collapse
Affiliation(s)
- D N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|