1
|
Discovery of Two Inhibitors of the Type IV Pilus Assembly ATPase PilB as Potential Antivirulence Compounds. Microbiol Spectr 2022; 10:e0387722. [PMID: 36377931 PMCID: PMC9769694 DOI: 10.1128/spectrum.03877-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament. Here, we describe the identification of two PilB inhibitors by a high-throughput screen (HTS) in vitro and their validation as effective inhibitors of T4P assembly in vivo. We used Chloracidobacterium thermophilum PilB as a model enzyme to optimize an ATPase assay for the HTS. From a library of 2,320 compounds, benserazide and levodopa, two approved drugs for Parkinson's disease, were identified and confirmed biochemically to be PilB inhibitors. We demonstrate that both compounds inhibited the T4P-dependent motility of the bacteria Myxoccocus xanthus and Acinetobacter nosocomialis. Additionally, benserazide and levodopa were shown to inhibit A. nosocomialis biofilm formation, a T4P-dependent process. Using M. xanthus as a model, we showed that both compounds inhibited T4P assembly in a dose-dependent manner. These results suggest that these two compounds are effective against the PilB protein in vivo. The potency of benserazide and levodopa as PilB inhibitors both in vitro and in vivo demonstrate potentials of the HTS and its two hits here for the development of anti-T4P chemotherapeutics. IMPORTANCE Many bacterial pathogens use their type IV pilus (T4P) to facilitate and maintain an infection in a human host. Small-molecule inhibitors of the production or assembly of the T4P are promising for the treatment and prevention of infections by these bacteria, especially in our fight against antibiotic-resistant pathogens. Here, we report the development and implementation of a method to identify anti-T4P chemicals from compound libraries by high-throughput screen. This led to the identification and validation of two T4P inhibitors both in the test tubes and in bacteria. The discovery and validation pipeline reported here as well as the confirmation of two anti-T4P inhibitors provide new venues and leads for the development of chemotherapeutics against antibiotic-resistant infections.
Collapse
|
2
|
Wang Y, Li T, Xue W, Zheng Y, Wang Y, Zhang N, Zhao Y, Wang J, Li Y, Wang C, Hu W. Physicochemical and Biological Insights Into the Molecular Interactions Between Extracellular DNA and Exopolysaccharides in Myxococcus xanthus Biofilms. Front Microbiol 2022; 13:861865. [PMID: 35531272 PMCID: PMC9073016 DOI: 10.3389/fmicb.2022.861865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular DNA (eDNA) is a critical component in the extracellular matrix (ECM) of bacterial biofilms, while little is known about the mechanisms underlying how eDNA integrates into the ECM through potential macromolecular interactions. Myxococcus xanthus biofilm was employed as a suitable model for the investigation due to the co-distribution of eDNA and exopolysaccharides (EPS) owing to their direct interactions in the ECM. DNA is able to combine with M. xanthus EPS to form a macromolecular conjugate, which is dominated by the electrostatic forces participating in the polymer-polymer interactions. Without intercalation binding, DNA-EPS interactions exhibit a certain degree of reversibility. Acting as a strong extracellular framework during biofilm formation process, the eDNA-EPS complex not only facilitates the initial cell adhesion and subsequent establishment of ECM architecture, but also renders cells within biofilms stress resistances that are relevant to the survival of M. xanthus in some hostile environments. Furthermore, the EPS protects the conjugated DNA from the degradation by nucleic acid hydrolases, which leads to the continuous and stable existence of eDNA in the native ECM of M. xanthus biofilms. These results will shed light on developing prevention and treatment strategies against biofilm-related risks.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Tingyi Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Weiwei Xue
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yue Zheng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yipeng Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ning Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yue Zhao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
- *Correspondence: Chuandong Wang,
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
- Wei Hu,
| |
Collapse
|
3
|
A Dual-Functional Orphan Response Regulator Negatively Controls the Differential Transcription of Duplicate groELs and Plays a Global Regulatory Role in Myxococcus. mSystems 2022; 7:e0105621. [PMID: 35353010 PMCID: PMC9040617 DOI: 10.1128/msystems.01056-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Differential transcription of functionally divergent duplicate genes is critical for bacterial cells to properly and competitively function in the environment, but the transcriptional regulation mechanisms remain in mystery. Myxococcus xanthus DK1622 possesses two duplicate groELs with divergent functions. Here, we report that MXAN_4468, an orphan gene located upstream of groEL2, encodes a response regulator (RR) and is responsible for the differential expression regulation of duplicate groELs. This RR protein realizes its negative regulatory role via a novel dual-mode functioning manner: binding to the transcription repressor HrcA to enhance its transcriptional inhibition of duplicate groELs and binding to the 3′ end of the MXAN_4468 sequence to specifically decrease the transcription of the following groEL2. Phosphorylation at the conserved 61st aspartic acid is required to trigger the regulatory functions of MXAN_4468. Pull-down experiment and mutation demonstrated that two noncognate CheA proteins, respectively belonging to the Che8 and Che7 chemosensory pathways, are involved in the protein phosphorylation. A transcriptome analysis, as well as the pull-down experiment, suggested that MXAN_4468 plays a global negative regulatory role in M. xanthus. This study elucidates, for the first time, the regulatory mechanism of differential transcription of bacterial duplicate groELs and suggests a global regulatory role of a dual-functional orphan RR. IMPORTANCE Multiply copied groELs require precise regulation of transcriptions for their divergent cellular functions. Here, we reported that an orphan response regulator (RR) tunes the transcriptional discrepancy of the duplicate groELs in Myxococcus xanthus DK1622 in a dual-functional mode. This RR protein has a conserved phosphorylation site, and the phosphorylation is required for the regulatory functions. Transcriptomic analysis, as well as a pull-down experiment, suggests that the RR plays a global regulatory role in M. xanthus. This study highlights that the dual-functional orphan RR might be involved in conducting the transcriptional symphony to stabilize the complex biological functions in cells.
Collapse
|
4
|
Saïdi F, Jolivet NY, Lemon DJ, Nakamura A, Belgrave AM, Garza AG, Veyrier FJ, Islam ST. Bacterial glycocalyx integrity drives multicellular swarm biofilm dynamism. Mol Microbiol 2021; 116:1151-1172. [PMID: 34455651 DOI: 10.1111/mmi.14803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Exopolysaccharide (EPS) layers on the bacterial cell surface are key determinants of biofilm establishment and maintenance, leading to the formation of higher-order 3D structures that confer numerous survival benefits to a cell community. In addition to a specific cell-associated EPS glycocalyx, we recently revealed that the social δ-proteobacterium Myxococcus xanthus secretes a novel biosurfactant polysaccharide (BPS) to the extracellular milieu. Together, secretion of the two polymers (EPS and BPS) is required for type IV pilus (T4P)-dependent swarm expansion via spatio-specific biofilm expression profiles. Thus the synergy between EPS and BPS secretion somehow modulates the multicellular lifecycle of M. xanthus. Herein, we demonstrate that BPS secretion functionally alters the EPS glycocalyx via destabilization of the latter, fundamentally changing the characteristics of the cell surface. This impacts motility behaviors at the single-cell level and the aggregative capacity of cells in groups via cell-surface EPS fibril formation as well as T4P production, stability, and positioning. These changes modulate the structure of swarm biofilms via cell layering, likely contributing to the formation of internal swarm polysaccharide architecture. Together, these data reveal the manner by which the combined secretion of two distinct polymers induces single-cell changes that modulate swarm biofilm communities.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Nicolas Y Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - David J Lemon
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Arnaldo Nakamura
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Akeisha M Belgrave
- Integrated Sciences Program, Harrisburg University of Science & Technology, Harrisburg, Pennsylvania, USA
| | - Anthony G Garza
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Frédéric J Veyrier
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Salim T Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
5
|
Pérez-Burgos M, Søgaard-Andersen L. Biosynthesis and function of cell-surface polysaccharides in the social bacterium Myxococcus xanthus. Biol Chem 2021; 401:1375-1387. [PMID: 32769218 DOI: 10.1515/hsz-2020-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| |
Collapse
|
6
|
Characterization of the Exopolysaccharide Biosynthesis Pathway in Myxococcus xanthus. J Bacteriol 2020; 202:JB.00335-20. [PMID: 32778557 PMCID: PMC7484181 DOI: 10.1128/jb.00335-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
The secreted polysaccharide referred to as exopolysaccharide (EPS) has important functions in the social life cycle of M. xanthus; however, little is known about how EPS is synthesized. Here, we characterized the EPS biosynthetic machinery and showed that it makes up a Wzx/Wzy-dependent pathway for polysaccharide biosynthesis. Mutants lacking a component of this pathway had reduced type IV pilus-dependent motility and a conditional defect in development. These analyses also suggest that EPS and/or the EPS biosynthetic machinery is important for type IV pilus formation. Myxococcus xanthus arranges into two morphologically distinct biofilms depending on its nutritional status, i.e., coordinately spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. A secreted polysaccharide, referred to as exopolysaccharide (EPS), is a structural component of both biofilms and is also important for type IV pilus-dependent motility and fruiting body formation. Here, we characterize the biosynthetic machinery responsible for EPS biosynthesis using bioinformatics, genetics, heterologous expression, and biochemical experiments. We show that this machinery constitutes a Wzx/Wzy-dependent pathway dedicated to EPS biosynthesis. Our data support that EpsZ (MXAN_7415) is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for the initiation of the repeat unit synthesis. Heterologous expression experiments support that EpsZ has galactose-1-P transferase activity. Moreover, MXAN_7416, renamed WzxEPS, and MXAN_7442, renamed WzyEPS, are the Wzx flippase and Wzy polymerase responsible for translocation and polymerization of the EPS repeat unit, respectively. In this pathway, EpsV (MXAN_7421) also is the polysaccharide copolymerase and EpsY (MXAN_7417) the outer membrane polysaccharide export (OPX) protein. Mutants with single in-frame deletions in the five corresponding genes had defects in type IV pilus-dependent motility and a conditional defect in fruiting body formation. Furthermore, all five mutants were deficient in type IV pilus formation, and genetic analyses suggest that EPS and/or the EPS biosynthetic machinery stimulates type IV pilus extension. Additionally, we identify a polysaccharide biosynthesis gene cluster, which together with an orphan gene encoding an OPX protein make up a complete Wzx/Wzy-dependent pathway for synthesis of an unknown polysaccharide. IMPORTANCE The secreted polysaccharide referred to as exopolysaccharide (EPS) has important functions in the social life cycle of M. xanthus; however, little is known about how EPS is synthesized. Here, we characterized the EPS biosynthetic machinery and showed that it makes up a Wzx/Wzy-dependent pathway for polysaccharide biosynthesis. Mutants lacking a component of this pathway had reduced type IV pilus-dependent motility and a conditional defect in development. These analyses also suggest that EPS and/or the EPS biosynthetic machinery is important for type IV pilus formation.
Collapse
|
7
|
Pérez-Burgos M, García-Romero I, Valvano MA, Søgaard Andersen L. Identification of the Wzx flippase, Wzy polymerase and sugar-modifying enzymes for spore coat polysaccharide biosynthesis in Myxococcus xanthus. Mol Microbiol 2020; 113:1189-1208. [PMID: 32064693 DOI: 10.1111/mmi.14486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Indexed: 12/28/2022]
Abstract
The rod-shaped cells of Myxococcus xanthus, a Gram-negative deltaproteobacterium, differentiate to environmentally resistant spores upon starvation or chemical stress. The environmental resistance depends on a spore coat polysaccharide that is synthesised by the ExoA-I proteins, some of which are part of a Wzx/Wzy-dependent pathway for polysaccharide synthesis and export; however, key components of this pathway have remained unidentified. Here, we identify and characterise two additional loci encoding proteins with homology to enzymes involved in polysaccharide synthesis and export, as well as sugar modification and show that six of the proteins encoded by these loci are essential for the formation of environmentally resistant spores. Our data support that MXAN_3260, renamed ExoM and MXAN_3026, renamed ExoJ, are the Wzx flippase and Wzy polymerase, respectively, responsible for translocation and polymerisation of the repeat unit of the spore coat polysaccharide. Moreover, we provide evidence that three glycosyltransferases (MXAN_3027/ExoK, MXAN_3262/ExoO and MXAN_3263/ExoP) and a polysaccharide deacetylase (MXAN_3259/ExoL) are important for formation of the intact spore coat, while ExoE is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for initiating repeat unit synthesis, likely by transferring N-acetylgalactosamine-1-P to undecaprenyl-phosphate. Together, our data generate a more complete model of the Exo pathway for spore coat polysaccharide biosynthesis and export.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Lotte Søgaard Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
8
|
Troselj V, Pathak DT, Wall D. Conditional requirement of SglT for type IV pili function and S-motility in Myxococcus xanthus. MICROBIOLOGY-SGM 2020; 166:349-358. [PMID: 32039748 DOI: 10.1099/mic.0.000893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myxobacteria exhibit complex social behaviors such as predation, outer membrane exchange and fruiting body formation. These behaviors depend on coordinated movements of cells on solid surfaces that involve social (S) motility. S-motility is powered by extension-retraction cycles of type 4 pili (Tfp) and exopolysaccharides (EPS) that provide a matrix for group cellular movement. Here, we characterized a new class of S-motility mutants in Myxococcus xanthus. These mutants have a distinctive phenotype: they lack S-motility even though they produce pili and EPS and the phenotype is temperature-sensitive. The point mutations were mapped to a single locus, MXAN_3284, named sglT. Similar to pilT mutants, sglT mutants are hyperpiliated and, strikingly, the temperature-sensitive phenotype is caused by null mutations. Our results indicate that SglT plays a critical role in Tfp function associated with pilus retraction and that the block in pili retraction is caused by a Tfp assembly defect in the absence of SglT at high-temperature growth.
Collapse
Affiliation(s)
- Vera Troselj
- Present address: The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720, Berkeley, USA
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Darshankumar T Pathak
- Present address: Crop Science Division, Microbiology & Biologics, Bayer, 890 Embarcadero Drive, Sacramento, CA 95605, USA
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| |
Collapse
|
9
|
Wielgoss S, Wolfensberger R, Sun L, Fiegna F, Velicer GJ. Social genes are selection hotspots in kin groups of a soil microbe. Science 2019; 363:1342-1345. [PMID: 30898932 DOI: 10.1126/science.aar4416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
The composition of cooperative systems, including animal societies, organismal bodies, and microbial groups, reflects their past and shapes their future evolution. However, genomic diversity within many multiunit systems remains uncharacterized, limiting our ability to understand and compare their evolutionary character. We have analyzed genomic and social-phenotype variation among 120 natural isolates of the cooperative bacterium Myxococcus xanthus derived from six multicellular fruiting bodies. Each fruiting body was composed of multiple lineages radiating from a unique recent ancestor. Genomic evolution was concentrated in selection hotspots associated with evolutionary change in social phenotypes. Synonymous mutations indicated that kin lineages within the same fruiting body often first diverged from a common ancestor more than 100 generations ago. Thus, selection appears to promote endemic diversification of kin lineages that remain together over long histories of local interaction, thereby potentiating social coevolution.
Collapse
Affiliation(s)
- Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Rebekka Wolfensberger
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Lei Sun
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Francesca Fiegna
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Gregory J Velicer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation. J Bacteriol 2019; 201:JB.00071-19. [PMID: 31109992 DOI: 10.1128/jb.00071-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
The holdfast polysaccharide adhesin is crucial for irreversible cell adhesion and biofilm formation in Caulobacter crescentus Holdfast production is tightly controlled via developmental regulators, as well as via environmental and physical signals. Here, we identify a novel mode of regulation of holdfast synthesis that involves chemotaxis proteins. We characterized the two identified chemotaxis clusters of C. crescentus and showed that only the previously characterized major cluster is involved in the chemotactic response toward different carbon sources. However, both chemotaxis clusters encoded in the C. crescentus genome play a role in biofilm formation and holdfast production by regulating the expression of hfiA, the gene encoding the holdfast inhibitor HfiA. We show that CheA and CheB proteins act in an antagonistic manner, as follows: while the two CheA proteins negatively regulate hfiA expression, the CheB proteins are positive regulators, thus providing a modulation of holdfast synthesis and surface attachment.IMPORTANCE Chemosensory systems constitute major signal transduction pathways in bacteria. These systems are involved in chemotaxis and other cell responses to environment conditions, such as the production of adhesins to enable irreversible adhesion to a surface and surface colonization. The C. crescentus genome encodes two complete chemotaxis clusters. Here, we characterized the second novel chemotaxis-like cluster. While only the major chemotaxis cluster is involved in chemotaxis, both chemotaxis systems modulate C. crescentus adhesion by controlling expression of the holdfast synthesis inhibitor HfiA. Here, we identify a new level in holdfast regulation, providing new insights into the control of adhesin production that leads to the formation of biofilms in response to the environment.
Collapse
|
11
|
Pérez-Burgos M, García-Romero I, Jung J, Valvano MA, Søgaard-Andersen L. Identification of the lipopolysaccharide O-antigen biosynthesis priming enzyme and the O-antigen ligase in Myxococcus xanthus: critical role of LPS O-antigen in motility and development. Mol Microbiol 2019; 112:1178-1198. [PMID: 31332863 DOI: 10.1111/mmi.14354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/03/2023]
Abstract
Myxococcus xanthus is a model bacterium to study social behavior. At the cellular level, the different social behaviors of M. xanthus involve extensive cell-cell contacts. Here, we used bioinformatics, genetics, heterologous expression and biochemical experiments to identify and characterize the key enzymes in M. xanthus implicated in O-antigen and lipopolysaccharide (LPS) biosynthesis and examined the role of LPS O-antigen in M. xanthus social behaviors. We identified WbaPMx (MXAN_2922) as the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for priming O-antigen synthesis. In heterologous expression experiments, WbaPMx complemented a Salmonella enterica mutant lacking the endogenous WbaP that primes O-antigen synthesis, indicating that WbaPMx transfers galactose-1-P to undecaprenyl-phosphate. We also identified WaaLMx (MXAN_2919), as the O-antigen ligase that joins O-antigen to lipid A-core. Our data also support the previous suggestion that WzmMx (MXAN_4622) and WztMx (MXAN_4623) form the Wzm/Wzt ABC transporter. We show that mutations that block different steps in LPS O-antigen synthesis can cause pleiotropic phenotypes. Also, using a wbaPMx deletion mutant, we revisited the role of LPS O-antigen and demonstrate that it is important for gliding motility, conditionally important for type IV pili-dependent motility and required to complete the developmental program leading to the formation of spore-filled fruiting bodies.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jana Jung
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
12
|
The type IV pilus assembly ATPase PilB functions as a signaling protein to regulate exopolysaccharide production in Myxococcus xanthus. Sci Rep 2017; 7:7263. [PMID: 28779124 PMCID: PMC5544727 DOI: 10.1038/s41598-017-07594-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Myxococcus xanthus possesses a form of surface motility powered by the retraction of the type IV pilus (T4P). Additionally, exopolysaccharide (EPS), the major constituent of bacterial biofilms, is required for this T4P-mediated motility in M. xanthus as the putative trigger of T4P retraction. The results here demonstrate that the T4P assembly ATPase PilB functions as an intermediary in the EPS regulatory pathway composed of the T4P upstream of the Dif signaling proteins in M. xanthus. A suppressor screen isolated a pilB mutation that restored EPS production to a T4P− mutant. An additional PilB mutant variant, which is deficient in ATP hydrolysis and T4P assembly, supports EPS production without the T4P, indicating PilB can regulate EPS production independently of its function in T4P assembly. Further analysis confirms that PilB functions downstream of the T4P filament but upstream of the Dif proteins. In vitro studies suggest that the nucleotide-free form of PilB assumes the active signaling conformation in EPS regulation. Since M. xanthus PilB possesses conserved motifs with high affinity for c-di-GMP binding, the findings here suggest that c-di-GMP can regulate both motility and biofilm formation through a single effector in this surface-motile bacterium.
Collapse
|
13
|
Abstract
Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; ,
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125; , .,Howard Hughes Medical Institute, Pasadena, California 91125
| |
Collapse
|
14
|
Identification of Functions Affecting Predator-Prey Interactions between Myxococcus xanthus and Bacillus subtilis. J Bacteriol 2016; 198:3335-3344. [PMID: 27698086 DOI: 10.1128/jb.00575-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
Soil bacteria engage each other in competitive and cooperative ways to determine their microenvironments. In this study, we report the identification of a large number of genes required for Myxococcus xanthus to engage Bacillus subtilis in a predator-prey relationship. We generated and tested over 6,000 individual transposon insertion mutants of M. xanthus and found many new factors required to promote efficient predation, including the specialized metabolite myxoprincomide, an ATP-binding cassette (ABC) transporter permease, and a clustered regularly interspaced short palindromic repeat (CRISPR) locus encoding bacterial immunity. We also identified genes known to be involved in predation, including those required for the production of exopolysaccharides and type IV pilus (T4P)-dependent motility, as well as chemosensory and two-component systems. Furthermore, deletion of these genes confirmed their role during predation. Overall, M. xanthus predation appears to be a multifactorial process, with multiple determinants enhancing predation capacity. IMPORTANCE Soil bacteria engage each other in complex environments and utilize multiple traits to ensure survival. Here, we report the identification of multiple traits that enable a common soil organism, Myxococcus xanthus, to prey upon and utilize nutrients from another common soil organism, Bacillus subtilis We mutagenized the predator and carried out a screen to identify genes that were required to either enhance or diminish capacity to consume prey. We identified dozens of genes encoding factors that contribute to the overall repertoire for the predator to successfully engage its prey in the natural environment.
Collapse
|
15
|
Skotnicka D, Smaldone GT, Petters T, Trampari E, Liang J, Kaever V, Malone JG, Singer M, Søgaard-Andersen L. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus. PLoS Genet 2016; 12:e1006080. [PMID: 27214040 PMCID: PMC4877007 DOI: 10.1371/journal.pgen.1006080] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
Generally, the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-di-GMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be-at least partially-functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus.
Collapse
Affiliation(s)
- Dorota Skotnicka
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gregory T. Smaldone
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
| | - Tobias Petters
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eleftheria Trampari
- Molecular Microbiology Department, John Innes Centre, Norwich, United Kingdom
| | - Jennifer Liang
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jacob G. Malone
- Molecular Microbiology Department, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California - Davis, Davis, California, United States of America
- * E-mail: (MS); (LSA)
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail: (MS); (LSA)
| |
Collapse
|
16
|
Interplay between type IV pili activity and exopolysaccharides secretion controls motility patterns in single cells of Myxococcus xanthus. Sci Rep 2016; 6:17790. [PMID: 26821939 PMCID: PMC4731782 DOI: 10.1038/srep17790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/02/2015] [Indexed: 12/01/2022] Open
Abstract
Myxococcus xanthus performs coordinated social motility of cell groups through the extension and retraction of type IV pili (TFP) on solid surfaces, which requires both TFP and exopolysaccharides (EPS). By submerging cells in a liquid medium containing 1% methylcellulose, M. xanthus TFP-driven motility was induced in isolated cells and independently of EPS. We measured and analyzed the movements of cells using community tracking algorithms, which combine single-cell resolution with statistics from large sample populations. Cells without significant multi-cellular social interactions have surprisingly complex behaviors: EPS− cells exhibited a pronounced increase in the tendency to stand vertically and moved with qualitatively different characteristics than other cells. A decrease in the EPS secretion of cells correlates with a higher instantaneous velocity, but with lower directional persistence in trajectories. Moreover, EPS− cells do not adhere to the surface as strongly as wild-type and EPS overproducing cells, and display a greater tendency to have large deviations between the direction of movement and the cell axis, with cell velocity showing only minimal dependence on the direction of movement. The emerging picture is that EPS does not simply provide rheological resistance to a single mechanism but rather that the availability of EPS impacts motility pattern.
Collapse
|
17
|
Black WP, Wang L, Davis MY, Yang Z. The orphan response regulator EpsW is a substrate of the DifE kinase and it regulates exopolysaccharide in Myxococcus xanthus. Sci Rep 2015; 5:17831. [PMID: 26639551 PMCID: PMC4671073 DOI: 10.1038/srep17831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/06/2015] [Indexed: 11/17/2022] Open
Abstract
Here we attempted to identify the downstream target of the DifE histidine kinase in the regulation of exopolysaccharide (EPS) production in the Gram-negative bacterium Myxococcus xanthus. This bacterium is an important model system for the studies of Type IV pilus (T4P) because it is motile by social (S) motility which is powered by T4P retraction. EPS is critical for S motility because it is the preferred anchor for T4P retraction in this bacterium. Previous studies identified the Dif chemosensory pathway as crucial for the regulation of EPS production. However, the downstream target of the DifE kinase in this pathway was unknown. In this study, EpsW, an orphan and single-domain response regulator (RR), was identified as a potential DifE target first by bioinformatics. Subsequent experiments demonstrated that epsW is essential for EPS biosynthesis in vivo and that EpsW is directly phosphorylated by DifE in vitro. Targted mutagenesis of epsW suggests that EpsW is unlikely the terminal RR of the Dif pathway. We propose instead that EpsW is an intermediary in a multistep phosphorelay that regulates EPS in M. xanthus.
Collapse
Affiliation(s)
- Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lingling Wang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.,College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Manli Y Davis
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Zhu LP, Yue XJ, Han K, Li ZF, Zheng LS, Yi XN, Wang HL, Zhang YM, Li YZ. Allopatric integrations selectively change host transcriptomes, leading to varied expression efficiencies of exotic genes in Myxococcus xanthus. Microb Cell Fact 2015; 14:105. [PMID: 26194479 PMCID: PMC4509775 DOI: 10.1186/s12934-015-0294-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/07/2015] [Indexed: 01/29/2023] Open
Abstract
Background Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. Results We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. Conclusions With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0294-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ping Zhu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Kui Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Zhi-Feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Lian-Shuai Zheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Xiu-Nan Yi
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Hai-Long Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - You-Ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
19
|
Cyclic Di-GMP Regulates Type IV Pilus-Dependent Motility in Myxococcus xanthus. J Bacteriol 2015; 198:77-90. [PMID: 26124238 PMCID: PMC4686200 DOI: 10.1128/jb.00281-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
The nucleotide-based second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) is involved in regulating a plethora of processes in bacteria that are typically associated with lifestyle changes. Myxococcus xanthus undergoes major lifestyle changes in response to nutrient availability, with the formation of spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. Here, we investigated the function of c-di-GMP in M. xanthus and show that this bacterium synthesizes c-di-GMP during growth. Manipulation of the c-di-GMP level by expression of either an active, heterologous diguanylate cyclase or an active, heterologous phosphodiesterase correlated with defects in type IV pilus (T4P)-dependent motility, whereas gliding motility was unaffected. An increased level of c-di-GMP correlated with reduced transcription of the pilA gene (which encodes the major pilin of T4P), reduced the assembly of T4P, and altered cell agglutination, whereas a decreased c-di-GMP level correlated with altered cell agglutination. The systematic inactivation of the 24 genes in M. xanthus encoding proteins containing GGDEF, EAL, or HD-GYP domains, which are associated with c-di-GMP synthesis, degradation, or binding, identified three genes encoding proteins important for T4P-dependent motility, whereas all mutants had normal gliding motility. Purified DmxA had diguanylate cyclase activity, whereas the hybrid histidine protein kinases TmoK and SgmT, each of which contains a GGDEF domain, did not have diguanylate cyclase activity. These results demonstrate that c-di-GMP is important for T4P-dependent motility in M. xanthus. IMPORTANCE We provide the first direct evidence that M. xanthus synthesizes c-di-GMP and demonstrate that c-di-GMP is important for T4P-dependent motility, whereas we did not obtain evidence that c-di-GMP regulates gliding motility. The data presented uncovered a novel mechanism for regulation of T4P-dependent motility, in which increased levels of c-di-GMP inhibit transcription of the pilA gene (which encodes the major pilin of T4P), ultimately resulting in the reduced assembly of T4P. Moreover, we identified an enzymatically active diguanylate cyclase that is important for T4P-dependent motility.
Collapse
|
20
|
Moak PL, Black WP, Wallace RA, Li Z, Yang Z. The Hsp70-like StkA functions between T4P and Dif signaling proteins as a negative regulator of exopolysaccharide in Myxococcus xanthus. PeerJ 2015; 3:e747. [PMID: 25674362 PMCID: PMC4319316 DOI: 10.7717/peerj.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/13/2015] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus displays a form of surface motility known as social (S) gliding. It is mediated by the type IV pilus (T4P) and requires the exopolysaccharide (EPS) to function. It is clear that T4P retraction powers S motility. EPS on a neighboring cell or deposited on a gliding surface is proposed to anchor the distal end of a pilus and trigger T4P retraction at its proximal end. Inversely, T4P has been shown to regulate EPS production upstream of the Dif signaling pathway. Here we describe the isolation of two Tn insertions at the stk locus which had been known to play roles in cellular cohesion and formation of cell groups. An insertion in stkA (MXAN_3474) was identified based on its ability to restore EPS to a pilA deletion mutant. The stkA encodes a DnaK or Hsp70 homolog and it is upstream of stkB (MXAN_3475) and stkC (MXAN_3476). A stkB insertion was identified in a separate genetic screen because it eliminated EPS production of an EPS(+) parental strain. Our results with in-frame deletions of these three stk genes indicated that the stkA mutant produced increased level of EPS while stkB and stkC mutants produced less EPS relative to the wild type. S motility and developmental aggregation were affected by deletions of stkA and stkB but only minimally by the deletion of stkC. Genetic epistasis indicated that StkA functions downstream of T4P but upstream of the Dif proteins as a negative regulator of EPS production in M. xanthus.
Collapse
Affiliation(s)
- Pamela L. Moak
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Wesley P. Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Regina A. Wallace
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Zhuo Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
21
|
Chemosensory regulation of a HEAT-repeat protein couples aggregation and sporulation in Myxococcus xanthus. J Bacteriol 2014; 196:3160-8. [PMID: 24957622 DOI: 10.1128/jb.01866-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chemosensory systems are complex, highly modified two-component systems (TCS) used by bacteria to control various biological functions ranging from motility to sporulation. Chemosensory systems and TCS both modulate phosphorelays comprised of histidine kinases and response regulators, some of which are single-domain response regulators (SD-RRs) such as CheY. In this study, we have identified and characterized the Che7 chemosensory system of Myxococcus xanthus, a common soil bacterium which displays multicellular development in response to stress. Both genetic and biochemical analyses indicate that the Che7 system regulates development via a direct interaction between the SD-RR CheY7 and a HEAT repeat domain-containing protein, Cpc7. Phosphorylation of the SD-RR affects the interaction with its target, and residues within the α4-β5-α5 fold of the REC domain govern this interaction. The identification of the Cpc7 interaction with CheY7 extends the diversity of known targets for SD-RRs in biological systems.
Collapse
|
22
|
He K, Bauer CE. Chemosensory signaling systems that control bacterial survival. Trends Microbiol 2014; 22:389-98. [PMID: 24794732 DOI: 10.1016/j.tim.2014.04.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
Abstract
Recent studies have revealed that several Gram-negative species utilize variations of the well-known chemotaxis signaling cascade to switch lifestyles in order to survive environmental stress. The two survival strategies covered in this review are the development of dormant cyst cells and biofilm formation. Each of these structures involves exopolysaccharide-mediated cell-cell interactions, which result in multicellular communities that confer resistance to stress conditions such as desiccation and antibiotics. This review is centered on recent advances in the understanding of phosphate flow and novel output signals in chemosensory signaling pathways that are involved in cyst formation and biofilms.
Collapse
Affiliation(s)
- Kuang He
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carl E Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
23
|
Risser DD, Chew WG, Meeks JC. Genetic characterization of thehmplocus, a chemotaxis-like gene cluster that regulates hormogonium development and motility inNostoc punctiforme. Mol Microbiol 2014; 92:222-33. [DOI: 10.1111/mmi.12552] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Douglas D. Risser
- Department of Biology; University of the Pacific; Stockton CA 95211 USA
| | - William G. Chew
- Department of Microbiology and Molecular Genetics; University of California; Davis CA 95616 USA
| | - John C. Meeks
- Department of Microbiology and Molecular Genetics; University of California; Davis CA 95616 USA
| |
Collapse
|
24
|
Functional organization of a multimodular bacterial chemosensory apparatus. PLoS Genet 2014; 10:e1004164. [PMID: 24603697 PMCID: PMC3945109 DOI: 10.1371/journal.pgen.1004164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/23/2013] [Indexed: 12/17/2022] Open
Abstract
Chemosensory systems (CSS) are complex regulatory pathways capable of perceiving external signals and translating them into different cellular behaviors such as motility and development. In the δ-proteobacterium Myxococcus xanthus, chemosensing allows groups of cells to orient themselves and aggregate into specialized multicellular biofilms termed fruiting bodies. M. xanthus contains eight predicted CSS and 21 chemoreceptors. In this work, we systematically deleted genes encoding components of each CSS and chemoreceptors and determined their effects on M. xanthus social behaviors. Then, to understand how the 21 chemoreceptors are distributed among the eight CSS, we examined their phylogenetic distribution, genomic organization and subcellular localization. We found that, in vivo, receptors belonging to the same phylogenetic group colocalize and interact with CSS components of the respective phylogenetic group. Finally, we identified a large chemosensory module formed by three interconnected CSS and multiple chemoreceptors and showed that complex behaviors such as cell group motility and biofilm formation require regulatory apparatus composed of multiple interconnected Che-like systems. Myxococcus xanthus is a social bacterium that exhibits a complex life cycle including biofilm formation, microbial predation and the formation of multicellular fruiting bodies. Genomic analyses indicate that M. xanthus produces an unusual number of chemosensory proteins: eight chemosensory systems (CSS) and 21 chemoreceptors, 13 of which are orphans located outside operons. In this paper we used genetic, phylogenetic and cell biology techniques to analyze the organization of the chemoreceptors and their functions in the regulation of M. xanthus social behaviors. Results indicate the existence of one large and three small chemosensory modules that occupy different positions within cells. This organization is consistent with in vivo protein interaction assays. Our analyses revealed the presence of a complex network of regulators that might integrate different stimuli to modulate bacterial social behaviors. Such networks might be conserved in other bacterial species with a life cycle of similar complexity and whose genome carries multiple CSS encoding operons.
Collapse
|
25
|
Ray J, Keller KL, Catena M, Juba TR, Zemla M, Rajeev L, Knierim B, Zane GM, Robertson JJ, Auer M, Wall JD, Mukhopadhyay A. Exploring the role of CheA3 in Desulfovibrio vulgaris Hildenborough motility. Front Microbiol 2014; 5:77. [PMID: 24639670 PMCID: PMC3944678 DOI: 10.3389/fmicb.2014.00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/12/2014] [Indexed: 01/07/2023] Open
Abstract
Sulfate-reducing bacteria such as Desulfovibrio vulgaris Hildenborough are often found in environments with limiting growth nutrients. Using lactate as the electron donor and carbon source, and sulfate as the electron acceptor, wild type D. vulgaris shows motility on soft agar plates. We evaluated this phenotype with mutants resulting from insertional inactivation of genes potentially related to motility. Our study revealed that the cheA3 (DVU2072) kinase mutant was impaired in the ability to form motility halos. Insertions in two other cheA loci did not exhibit a loss in this phenotype. The cheA3 mutant was also non-motile in capillary assays. Complementation with a plasmid-borne copy of cheA3 restores wild type phenotypes. The cheA3 mutant displayed a flagellum as observed by electron microscopy, grew normally in liquid medium, and was motile in wet mounts. In the growth conditions used, the D. vulgaris ΔfliA mutant (DVU3229) for FliA, predicted to regulate flagella-related genes including cheA3, was defective both in flagellum formation and in forming the motility halos. In contrast, a deletion of the flp gene (DVU2116) encoding a pilin-related protein was similar to wild type. We conclude that wild type D. vulgaris forms motility halos on solid media that are mediated by flagella-related mechanisms via the CheA3 kinase. The conditions under which the CheA1 (DVU1594) and CheA2 (DVU1960) kinase function remain to be explored.
Collapse
Affiliation(s)
- Jayashree Ray
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | | | - Michela Catena
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Thomas R Juba
- Biochemistry Division, University of Missouri Columbia, MO, USA
| | - Marcin Zemla
- Life Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Lara Rajeev
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Bernhard Knierim
- Life Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Grant M Zane
- Biochemistry Division, University of Missouri Columbia, MO, USA
| | | | - Manfred Auer
- Life Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Judy D Wall
- Biochemistry Division, University of Missouri Columbia, MO, USA
| | - Aindrila Mukhopadhyay
- Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| |
Collapse
|
26
|
Pan H, He X, Lux R, Luan J, Shi W. Killing of Escherichia coli by Myxococcus xanthus in aqueous environments requires exopolysaccharide-dependent physical contact. MICROBIAL ECOLOGY 2013; 66:630-8. [PMID: 23828520 PMCID: PMC3931608 DOI: 10.1007/s00248-013-0252-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/30/2013] [Indexed: 05/07/2023]
Abstract
Nutrient or niche-based competition among bacteria is a widespread phenomenon in the natural environment. Such interspecies interactions are often mediated by secreted soluble factors and/or direct cell-cell contact. As ubiquitous soil bacteria, Myxococcus species are able to produce a variety of bioactive secondary metabolites to inhibit the growth of other competing bacterial species. Meanwhile, Myxococcus spp. also exhibit sophisticated predatory behavior, an extreme form of competition that is often stimulated by close contact with prey cells and largely depends on the availability of solid surfaces. Myxococcus spp. can also be isolated from aquatic environments. However, studies focusing on the interaction between Myxococcus and other bacteria in such environments are still limited. In this study, using the well-studied Myxococcus xanthus DK1622 and Escherichia coli as model interspecies interaction pair, we demonstrated that in an aqueous environment, M. xanthus was able to kill E. coli in a cell contact-dependent manner and that the observed contact-dependent killing required the formation of co-aggregates between M. xanthus and E. coli cells. Further analysis revealed that exopolysaccharide (EPS), type IV pilus, and lipopolysaccharide mutants of M. xanthus displayed various degrees of attenuation in E. coli killing, and it correlated well with the mutants' reduction in EPS production. In addition, M. xanthus showed differential binding ability to different bacteria, and bacterial strains unable to co-aggregate with M. xanthus can escape the killing, suggesting the specific nature of co-aggregation and the targeted killing of interacting bacteria. In conclusion, our results demonstrated EPS-mediated, contact-dependent killing of E. coli by M. xanthus, a strategy that might facilitate the survival of this ubiquitous bacterium in aquatic environments.
Collapse
Affiliation(s)
- Hongwei Pan
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Xuesong He
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Renate Lux
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Jia Luan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- To whom correspondence should be addressed at: UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA. Tel. (+1) 310 825 8356; Fax (+1) 310 794 7109:
| |
Collapse
|
27
|
Tan Z, Li H, Pan H, Zhou X, Liu X, Luo N, Hu W, Li Y. Characterization of four type IV pilin homologues in Stigmatella aurantiaca DSM17044 by heterologous expression in Myxococcus xanthus. PLoS One 2013; 8:e75105. [PMID: 24058653 PMCID: PMC3776727 DOI: 10.1371/journal.pone.0075105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
As prokaryotic models for multicellular development, Stigmatella aurantiaca and Myxococcus xanthus share many similarities in terms of social behaviors, such as gliding motility. Our current understanding of myxobacterial grouped-cell motilities comes mainly from the research on M. xanthus, which shows that filamentous type IV pili (TFP), composed of type IV pilin (also called PilA protein) subunits, are the key apparatus for social motility (S-motility). However, little is known about the pilin protein in S. aurantiaca. We cloned and sequenced four genes (pilA(Sa1~4)) from S. aurantiaca DSM17044 that are homologous to pilA(Mx) (pilA gene in M. xanthus DK1622). The homology and similarities among pilA(Sa) proteins and other myxobacterial homologues were systematically analyzed. To determine their potential biological functions, the four pilA(Sa) genes were expressed in M. xanthus DK10410 (ΔpilA(Mx)), which did not restore S-motility on soft agar or EPS production to host cells. After further analysis of the motile behaviors in a methylcellulose solution, the M. xanthus strains were categorized into three types. YL6101, carrying pilA(Sa1), and YL6104, carrying pilA(Sa4), produced stable but unretractable surface pili; YL6102, carrying pilA(Sa2), produced stable surface pili and exhibited reduced TFP-dependent motility in methylcellulose; YL6103, carrying pilA(Sa3), produced unstable surface pili. Based on these findings, we propose that pilA(Sa2) might be responsible for the type IV pilin production involved in group motility in S. aurantiaca DSM17044. After examining the developmental processes, it was suggested that the expression of PilA(Sa4) protein might have positive effects on the fruiting body formation of M. xanthus DK10410 cells. Moreover, the formation of fruiting body in M. xanthus cells with stable exogenous TFPSa were compensated by mixing them with S. aurantiaca DSM17044 cells. Our results shed some light on the features and functions of type IV pilin homologues in S. aurantiaca.
Collapse
Affiliation(s)
- Zaigao Tan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Haoming Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Hongwei Pan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xiuwen Zhou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xin Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Ningning Luo
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail:
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
28
|
MasABK proteins interact with proteins of the type IV pilin system to affect social motility of Myxococcus xanthus. PLoS One 2013; 8:e54557. [PMID: 23342171 PMCID: PMC3546991 DOI: 10.1371/journal.pone.0054557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Gliding motility is critical for normal development of spore-filled fruiting bodies in the soil bacterium Myxococcus xanthus. Mutations in mgl block motility and development but one mgl allele can be suppressed by a mutation in masK, the last gene in an operon adjacent to the mgl operon. Deletion of the entire 5.5 kb masABK operon crippled gliding and fruiting body development and decreased sporulation. Expression of pilAGHI, which encodes type IV pili (TFP) components essential for social (S) gliding, several cryptic pil genes, and a LuxR family protein were reduced significantly in the Δmas mutant while expression of the myxalamide operon was increased significantly. Localization and two-hybrid analysis suggest that the three Mas proteins form a membrane complex. MasA-PhoA fusions confirmed that MasA is an integral cytoplasmic membrane protein with a ≈100 amino acid periplasmic domain. Results from yeast two-hybrid assays showed that MasA interacts with the lipoprotein MasB and MasK, a protein kinase and that MasB and MasK interact with one another. Additionally, yeast two-hybrid analysis revealed a physical interaction between two gene products of the mas operon, MasA and MasB, and PilA. Deletion of mas may be accompanied by compensatory mutations since complementation of the Δmas social gliding and developmental defects required addition of both pilA and masABK.
Collapse
|
29
|
Hu W, Li L, Sharma S, Wang J, McHardy I, Lux R, Yang Z, He X, Gimzewski JK, Li Y, Shi W. DNA builds and strengthens the extracellular matrix in Myxococcus xanthus biofilms by interacting with exopolysaccharides. PLoS One 2012; 7:e51905. [PMID: 23300576 PMCID: PMC3530553 DOI: 10.1371/journal.pone.0051905] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/07/2012] [Indexed: 11/19/2022] Open
Abstract
One intriguing discovery in modern microbiology is the extensive presence of extracellular DNA (eDNA) within biofilms of various bacterial species. Although several biological functions have been suggested for eDNA, including involvement in biofilm formation, the detailed mechanism of eDNA integration into biofilm architecture is still poorly understood. In the biofilms formed by Myxococcus xanthus, a Gram-negative soil bacterium with complex morphogenesis and social behaviors, DNA was found within both extracted and native extracellular matrices (ECM). Further examination revealed that these eDNA molecules formed well organized structures that were similar in appearance to the organization of exopolysaccharides (EPS) in ECM. Biochemical and image analyses confirmed that eDNA bound to and colocalized with EPS within the ECM of starvation biofilms and fruiting bodies. In addition, ECM containing eDNA exhibited greater physical strength and biological stress resistance compared to DNase I treated ECM. Taken together, these findings demonstrate that DNA interacts with EPS and strengthens biofilm structures in M. xanthus.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
- School of Dentistry and Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Lina Li
- School of Dentistry and Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Shivani Sharma
- Department of Chemistry and Biochemistry and California NanoSystems Institute (CNSI), UCLA, Los Angeles, California, United States of America
| | - Jing Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
- School of Dentistry and Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Ian McHardy
- School of Dentistry and Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Renate Lux
- School of Dentistry and Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Zhe Yang
- School of Dentistry and Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Xuesong He
- School of Dentistry and Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry and California NanoSystems Institute (CNSI), UCLA, Los Angeles, California, United States of America
- International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Wenyuan Shi
- School of Dentistry and Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Pathak DT, Wei X, Wall D. Myxobacterial tools for social interactions. Res Microbiol 2012; 163:579-91. [PMID: 23123306 DOI: 10.1016/j.resmic.2012.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Myxobacteria exhibit complex social traits during which large populations of cells coordinate their behaviors. An iconic example is their response to starvation: thousands of cells move by gliding motility to build a fruiting body in which vegetative cells differentiate into spores. Here we review mechanisms that the model species Myxococcus xanthus uses for cell-cell interactions, with a focus on developmental signaling and social gliding motility. We also discuss a newly discovered cell-cell interaction whereby myxobacteria exchange their outer membrane (OM) proteins and lipids. The mechanism of OM transfer requires physical contact between aligned cells on a hard surface and is apparently mediated by OM fusion. The TraA and TraB proteins are required in both donor and recipient cells for transfer, suggesting bidirectional exchange, and TraA is thought to serve as a cell surface adhesin. OM exchange results in phenotypic changes that can alter gliding motility and development and is proposed to represent a novel microbial interacting platform to coordinate multicellular activities.
Collapse
Affiliation(s)
- Darshankumar T Pathak
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA.
| | | | | |
Collapse
|
31
|
Effects of exopolysaccharide production on liquid vegetative growth, stress survival, and stationary phase recovery in Myxococcus xanthus. J Microbiol 2012; 50:241-8. [PMID: 22538652 DOI: 10.1007/s12275-012-1349-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/27/2011] [Indexed: 10/28/2022]
Abstract
Exopolysaccharide (EPS) of Myxococcus xanthus is a well-regulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed that M. xanthus clumps formed in liquid were correlated with EPS levels and demonstrated that the EPS encased cell clumps exhibited biofilm-like structures. The clumps protected the cells at physiologically relevant EPS concentrations, while cells lacking EPS exhibited significant reduction in long-term viability and resistance to stressful conditions. However, excess EPS production was counterproductive to vegetative growth and viable cell recovery declined in extended late stationary phase as cells became trapped in the matrix of clumps. Therefore, optimal EPS production by M. xanthus is important for normal physiological functions in liquid.
Collapse
|
32
|
Petters T, Zhang X, Nesper J, Treuner-Lange A, Gomez-Santos N, Hoppert M, Jenal U, Søgaard-Andersen L. The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Mol Microbiol 2012; 84:147-65. [PMID: 22394314 PMCID: PMC3509222 DOI: 10.1111/j.1365-2958.2012.08015.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Myxococcus xanthus the extracellular matrix is essential for type IV pili-dependent motility and starvation-induced fruiting body formation. Proteins of two-component systems including the orphan DNA binding response regulator DigR are essential in regulating the composition of the extracellular matrix. We identify the orphan hybrid histidine kinase SgmT as the partner kinase of DigR. In addition to kinase and receiver domains, SgmT consists of an N-terminal GAF domain and a C-terminal GGDEF domain. The GAF domain is the primary sensor domain. The GGDEF domain binds the second messenger bis-(3′-5′)-cyclic-dimeric-GMP (c-di-GMP) and functions as a c-di-GMP receptor to spatially sequester SgmT. We identify the DigR binding site in the promoter of the fibA gene, which encodes an abundant extracellular matrix metalloprotease. Whole-genome expression profiling experiments in combination with the identified DigR binding site allowed the identification of the DigR regulon and suggests that SgmT/DigR regulates the expression of genes for secreted proteins and enzymes involved in secondary metabolite synthesis. We suggest that SgmT/DigR regulates extracellular matrix composition and that SgmT activity is regulated by two sensor domains with ligand binding to the GAF domain resulting in SgmT activation and c-di-GMP binding to the GGDEF domain resulting in spatial sequestration of SgmT.
Collapse
Affiliation(s)
- Tobias Petters
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu W, Yang Z, Lux R, Zhao M, Wang J, He X, Shi W. Direct visualization of the interaction between pilin and exopolysaccharides of Myxococcus xanthus with eGFP-fused PilA protein. FEMS Microbiol Lett 2011; 326:23-30. [PMID: 22092602 DOI: 10.1111/j.1574-6968.2011.02430.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/13/2011] [Accepted: 09/27/2011] [Indexed: 10/17/2022] Open
Abstract
Type IV pili (TFP) and exopolysaccharides (EPS) are important components for social behaviors in Myxococcus xanthus, including gliding motility and fruiting body formation. Although specific interactions between TFP and EPS have been proposed, there have as yet been no direct observations of these interactions under native conditions. In this study, we found that a truncated PilA protein (PilACt) containing only the C-terminal domain (amino acids 32-208) is sufficient for EPS binding in vitro. Furthermore, an enhanced green fluorescent protein (eGFP) and PilACt fusion protein were constructed and used to label the native EPS in M. xanthus. Under confocal laser scanning microscope, the eGFP-PilACt-bound fruiting bodies, trail structures and biofilms exhibited similar patterns as the wheat germ agglutinin lectin-labeled EPS structures. This study showed that eGFP-PilACt fusion protein was able efficiently to label the EPS of M. xanthus, providing evidence for the first time of the direct interaction between the PilA protein and EPS under native conditions.
Collapse
Affiliation(s)
- Wei Hu
- School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Berleman JE, Vicente JJ, Davis AE, Jiang SY, Seo YE, Zusman DR. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS One 2011; 6:e23920. [PMID: 21886839 PMCID: PMC3158785 DOI: 10.1371/journal.pone.0023920] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/27/2011] [Indexed: 02/02/2023] Open
Abstract
Myxococcus xanthus Social (S) motility occurs at high cell densities and is powered by the extension and retraction of Type IV pili which bind ligands normally found in matrix exopolysaccharides (EPS). Previous studies showed that FrzS, a protein required for S-motility, is organized in polar clusters that show pole-to-pole translocation as cells reverse their direction of movement. Since the leading cell pole is the site of both the major FrzS cluster and type IV pilus extension/retraction, it was suggested that FrzS might regulate S-motility by activating pili at the leading cell pole. Here, we show that FrzS regulates EPS production, rather than type IV pilus function. We found that the frzS phenotype is distinct from that of Type IV pilus mutants such as pilA and pilT, but indistinguishable from EPS mutants, such as epsZ. Indeed, frzS mutants can be rescued by the addition of purified EPS, 1% methylcellulose, or co-culturing with wildtype cells. Our data also indicate that the cell density requirement in S-motility is likely a function of the ability of cells to construct functional multicellular clusters surrounding an EPS core.
Collapse
Affiliation(s)
- James E. Berleman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Juan J. Vicente
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Annie E. Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Sharon Y. Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Young-Eun Seo
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - David R. Zusman
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Rapid probing of biological surfaces with a sparse-matrix peptide library. PLoS One 2011; 6:e23551. [PMID: 21858167 PMCID: PMC3156232 DOI: 10.1371/journal.pone.0023551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/20/2011] [Indexed: 02/02/2023] Open
Abstract
Finding unique peptides to target specific biological surfaces is crucial to basic research and technology development, though methods based on biological arrays or large libraries limit the speed and ease with which these necessary compounds can be found. We reasoned that because biological surfaces, such as cell surfaces, mineralized tissues, and various extracellular matrices have unique molecular compositions, they present unique physicochemical signatures to the surrounding medium which could be probed by peptides with appropriately corresponding physicochemical properties. To test this hypothesis, a naïve pilot library of 36 peptides, varying in their hydrophobicity and charge, was arranged in a two-dimensional matrix and screened against various biological surfaces. While the number of peptides in the matrix library was very small, we obtained “hits” against all biological surfaces probed. Sequence refinement of the “hits” led to peptides with markedly higher specificity and binding activity against screened biological surfaces. Genetic studies revealed that peptide binding to bacteria was mediated, at least in some cases, by specific cell-surface molecules, while examination of human tooth sections showed that this method can be used to derive peptides with highly specific binding to human tissue.
Collapse
|
36
|
A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores. J Bacteriol 2011; 193:5853-7. [PMID: 21840977 DOI: 10.1128/jb.05750-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Myxococcus xanthus cytoplasmic bacterial tyrosine kinase, BtkA, showed phosphorylation activity in the presence of Exo. Phosphorylated BtkA was expressed late after starvation induction and early after glycerol induction. The btkA mutant was unable to complete maturation to heat- and sonication-resistant spores under both starvation- and glycerol-induced developmental conditions.
Collapse
|
37
|
Hendrata M, Yang Z, Lux R, Shi W. Experimentally guided computational model discovers important elements for social behavior in myxobacteria. PLoS One 2011; 6:e22169. [PMID: 21811570 PMCID: PMC3139613 DOI: 10.1371/journal.pone.0022169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/16/2011] [Indexed: 12/29/2022] Open
Abstract
Identifying essential factors in cellular interactions and organized movement of cells is important in predicting behavioral phenotypes exhibited by many bacterial cells. We chose to study Myxococcus xanthus, a soil bacterium whose individual cell behavior changes while in groups, leading to spontaneous formation of aggregation center during the early stage of fruiting body development. In this paper, we develop a cell-based computational model that solely relies on experimentally determined parameters to investigate minimal elements required to produce the observed social behaviors in M. xanthus. The model verifies previously known essential parameters and identifies one novel parameter, the active turning, which we define as the ability and tendency of a cell to turn to a certain angle without the presence of any obvious external factors. The simulation is able to produce both gliding pattern and spontaneous aggregation center formation as observed in experiments. The model is tested against several known M. xanthus mutants and our modification of parameter values relevant for the individual mutants produces good phenotypic agreements. This outcome indicates the strong predictive potential of our model for the social behaviors of uncharacterized mutants and their expected phenotypes during development.
Collapse
Affiliation(s)
- Melisa Hendrata
- Department of Mathematics, California State University Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|
38
|
Yang Z, Hu W, Chen K, Wang J, Lux R, Zhou ZH, Shi W. Alanine 32 in PilA is important for PilA stability and type IV pili function in Myxococcus xanthus. MICROBIOLOGY-SGM 2011; 157:1920-1928. [PMID: 21493683 DOI: 10.1099/mic.0.049684-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type IV pili (TFP) are membrane-anchored filaments with a number of important biological functions. In the model organism Myxococcus xanthus, TFP act as molecular engines that power social (S) motility through cycles of extension and retraction. TFP filaments consist of several thousand copies of a protein called PilA or pilin. PilA contains an N-terminal α-helix essential for TFP assembly and a C-terminal globular domain important for its activity. The role of the PilA sequence and its structure-function relationship in TFP-dependent S motility remain active areas of research. In this study, we identified an M. xanthus PilA mutant carrying an alanine to valine substitution at position 32 in the α-helix, which produced structurally intact but retraction-defective TFP. Characterization of this mutant and additional single-residue variants at this position in PilA demonstrated the critical role of alanine 32 in PilA stability, TFP assembly and retraction.
Collapse
Affiliation(s)
- Zhe Yang
- Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, Shandong, PR China.,School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Kevin Chen
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095-7364, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Jing Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, Shandong, PR China.,School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Renate Lux
- School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095-7364, USA.,California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Wenyuan Shi
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095-7364, USA.,School of Dentistry, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
39
|
Enzymatic and functional analysis of a protein phosphatase, Pph3, from Myxococcus xanthus. J Bacteriol 2011; 193:2657-61. [PMID: 21398555 DOI: 10.1128/jb.01357-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A protein phosphatase, designated Pph3, from Myxococcus xanthus showed the enzymatic characteristics of PP2C-type serine/threonine protein phosphatases, which are metal ion-dependent, okadaic acid-insensitive protein phosphatases. The pph3 mutant under starvation conditions formed immature fruiting bodies and reduced sporulation.
Collapse
|
40
|
Abstract
Myxococcus xanthus belongs to the delta class of the proteobacteria and is notable for its complex life-style with social behaviors and relatively large genome. Although previous observations have suggested the existence of horizontal gene transfer in M. xanthus, its ability to take up exogenous DNA via natural transformation has not been experimentally demonstrated. In this study, we achieved natural transformation in M. xanthus using the autonomously replicating myxobacterial plasmid pZJY41 as donor DNA. M. xanthus exopolysaccharide (EPS) was shown to be an extracellular barrier for transformation. Cells deficient in EPS production, e.g., mutant strains carrying ΔdifA or ΔepsA, became naturally transformable. Among the inner barriers to transformation were restriction-modification systems in M. xanthus, which could be partially overcome by methylating DNA in vitro using cell extracts of M. xanthus prior to transformation. In addition, the incubation time of DNA with cells and the presence of divalent magnesium ion affected transformation frequency of M. xanthus. Furthermore, we also observed a potential involvement of the type IV pilus system in the DNA uptake machinery of M. xanthus. The natural transformation was totally eliminated in the ΔpilQ/epsA and Δtgl/epsA mutants, and null mutation of pilB or pilC in an ΔepsA background diminished the transformation rate. Our study, to the best of our knowledge, provides the first example of a naturally transformable species among deltaproteobacteria.
Collapse
|
41
|
Hu W, Hossain M, Lux R, Wang J, Yang Z, Li Y, Shi W. Exopolysaccharide-independent social motility of Myxococcus xanthus. PLoS One 2011; 6:e16102. [PMID: 21245931 PMCID: PMC3016331 DOI: 10.1371/journal.pone.0016102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022] Open
Abstract
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that "S motility" is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS(-) cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces.
Collapse
Affiliation(s)
- Wei Hu
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Muhaiminu Hossain
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Renate Lux
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Jing Wang
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Zhe Yang
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| | - Yuezhong Li
- State Key Laboratory of Microbial
Technology, School of Life Science, Shandong University, Jinan, China
| | - Wenyuan Shi
- School of Dentistry, University
of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University
of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
42
|
DifA, a methyl-accepting chemoreceptor protein-like sensory protein, uses a novel signaling mechanism to regulate exopolysaccharide production in Myxococcus xanthus. J Bacteriol 2010; 193:759-67. [PMID: 21131490 DOI: 10.1128/jb.00944-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DifA is a methyl-accepting chemotaxis protein (MCP)-like sensory transducer that regulates exopolysaccharide (EPS) production in Myxococcus xanthus. Here mutational analysis and molecular biology were used to probe the signaling mechanisms of DifA in EPS regulation. We first identified the start codon of DifA experimentally; this identification extended the N terminus of DifA for 45 amino acids (aa) from the previous bioinformatics prediction. This extension helped to address the outstanding question of how DifA receives input signals from type 4 pili without a prominent periplasmic domain. The results suggest that DifA uses its N-terminus extension to sense an upstream signal in EPS regulation. We suggest that the perception of the input signal by DifA is mediated by protein-protein interactions with upstream components. Subsequent signal transmission likely involves transmembrane signaling instead of direct intramolecular interactions between the input and the output modules in the cytoplasm. The basic functional unit of DifA for signal transduction is likely dimeric as mutational alteration of the predicted dimeric interface of DifA significantly affected EPS production. Deletions of 14-aa segments in the C terminus suggest that the newly defined flexible bundle subdomain in MCPs is likely critical for DifA function because shortening of this bundle can lead to constitutively active mutations.
Collapse
|
43
|
Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH, García-Fontana C, Ramos JL. Diversity at its best: bacterial taxis. Environ Microbiol 2010; 13:1115-24. [PMID: 21087385 DOI: 10.1111/j.1462-2920.2010.02383.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial taxis is one of the most investigated signal transduction mechanisms. Studies of taxis have primarily used Escherichia coli and Salmonella as model organism. However, more recent studies of other bacterial species revealed a significant diversity in the chemotaxis mechanisms which are reviewed here. Differences include the genomic abundance, size and topology of chemoreceptors, the mode of signal binding, the presence of additional cytoplasmic signal transduction proteins or the motor mechanism. This diversity of chemotactic mechanisms is partly due to the diverse nature of input signals. However, the physiological reasons for the majority of differences in the taxis systems are poorly understood and its elucidation represents a major research need.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
44
|
Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol Rev 2010; 74:229-49. [PMID: 20508248 DOI: 10.1128/mmbr.00043-09] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, motility is important for a wide variety of biological functions such as virulence, fruiting body formation, and biofilm formation. While most bacteria move by using specialized appendages, usually external or periplasmic flagella, some bacteria use other mechanisms for their movements that are less well characterized. These mechanisms do not always exhibit obvious motility structures. Myxococcus xanthus is a motile bacterium that does not produce flagella but glides slowly over solid surfaces. How M. xanthus moves has remained a puzzle that has challenged microbiologists for over 50 years. Fortunately, recent advances in the analysis of motility mutants, bioinformatics, and protein localization have revealed likely mechanisms for the two M. xanthus motility systems. These results are summarized in this review.
Collapse
|
45
|
|
46
|
Wuichet K, Zhulin IB. Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 2010; 3:ra50. [PMID: 20587806 DOI: 10.1126/scisignal.2000724] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular machinery that controls chemotaxis in bacteria is substantially more complex than any other signal transduction system in prokaryotes, and its origins and variability among living species are unknown. We found that this multiprotein "chemotaxis system" is present in most prokaryotic species and evolved from simpler two-component regulatory systems that control prokaryotic transcription. We discovered, through genomic analysis, signaling systems intermediate between two-component systems and chemotaxis systems. Evolutionary genomics established central and auxiliary components of the chemotaxis system. While tracing its evolutionary history, we also developed a classification scheme that revealed more than a dozen distinct classes of chemotaxis systems, enabling future predictive modeling of chemotactic behavior in unstudied species.
Collapse
Affiliation(s)
- Kristin Wuichet
- BioEnergy Science Center and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
47
|
Phosphorylation and dephosphorylation among Dif chemosensory proteins essential for exopolysaccharide regulation in Myxococcus xanthus. J Bacteriol 2010; 192:4267-74. [PMID: 20543066 DOI: 10.1128/jb.00403-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myxococcus xanthus social gliding motility, which is powered by type IV pili, requires the presence of exopolysaccharides (EPS) on the cell surface. The Dif chemosensory system is essential for the regulation of EPS production. It was demonstrated previously that DifA (methyl-accepting chemotaxis protein [MCP]-like), DifC (CheW-like), and DifE (CheA-like) stimulate whereas DifD (CheY-like) and DifG (CheC-like) inhibit EPS production. DifD was found not to function downstream of DifE in EPS regulation, as a difD difE double mutant phenocopied the difE single mutant. It has been proposed that DifA, DifC, and DifE form a ternary signaling complex that positively regulates EPS production through the kinase activity of DifE. DifD was proposed as a phosphate sink of phosphorylated DifE (DifE approximately P), while DifG would augment the function of DifD as a phosphatase of phosphorylated DifD (DifD approximately P). Here we report in vitro phosphorylation studies with all the Dif chemosensory proteins that were expressed and purified from Escherichia coli. DifE was demonstrated to be an autokinase. Consistent with the formation of a DifA-DifC-DifE complex, DifA and DifC together, but not individually, were found to influence DifE autophosphorylation. DifD, which did not inhibit DifE autophosphorylation directly, was found to accept phosphate from autophosphorylated DifE. While DifD approximately P has an unusually long half-life for dephosphorylation in vitro, DifG efficiently dephosphorylated DifD approximately P as a phosphatase. These results support a model where DifE complexes with DifA and DifC to regulate EPS production through phosphorylation of a downstream target, while DifD and DifG function synergistically to divert phosphates away from DifE approximately P.
Collapse
|
48
|
Konovalova A, Petters T, Søgaard-Andersen L. Extracellular biology ofMyxococcus xanthus. FEMS Microbiol Rev 2010; 34:89-106. [DOI: 10.1111/j.1574-6976.2009.00194.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
49
|
Affiliation(s)
- John R. Kirby
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242;
| |
Collapse
|
50
|
Black WP, Xu Q, Cadieux CL, Suh SJ, Shi W, Yang Z. Isolation and characterization of a suppressor mutation that restores Myxococcus xanthus exopolysaccharide production. MICROBIOLOGY-SGM 2009; 155:3599-3610. [PMID: 19684067 DOI: 10.1099/mic.0.031070-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myxococcus xanthus, a Gram-negative soil bacterium, undergoes multicellular development when nutrients become limiting. Aggregation, which is part of the developmental process, requires the surface motility of this organism. One component of M. xanthus motility, the social (S) gliding motility, enables the movement of cells in close physical proximity. Previous studies demonstrated that the cell surface-associated exopolysaccharide (EPS) is essential for S motility and that the Dif proteins form a chemotaxis-like pathway that regulates EPS production in M. xanthus. DifA, a homologue of methyl-accepting chemotaxis proteins (MCPs) in the Dif system, is required for EPS production, S motility and development. In this study, a spontaneous extragenic suppressor of a difA deletion was isolated in order to identify additional regulators of EPS production. The suppressor mutation was found to be a single base pair insertion in cheW7 at the che7 chemotaxis gene cluster. Further examination indicated that mutations in cheW7 may lead to the interaction of Mcp7 with DifC (CheW-like) and DifE (CheA-like) to reconstruct a functional pathway to regulate EPS production in the absence of DifA. In addition, the cheW7 mutation was found to partially suppress a pilA mutation in EPS production in a difA(+) background. Further deletion of difA from the pilA cheW7 double mutant resulted in a triple mutant that produced wild-type levels of EPS, implying that DifA (MCP-like) and Mcp7 compete for interactions with DifC and DifE in the modulation of EPS production.
Collapse
Affiliation(s)
- Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Qian Xu
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Christena Linn Cadieux
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wenyuan Shi
- Molecular Biology Institute and School of Dentistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|