1
|
High-Resolution X-Ray Structures of Two Functionally Distinct Members of the Cyclic Amide Hydrolase Family of Toblerone Fold Enzymes. Appl Environ Microbiol 2017; 83:AEM.03365-16. [PMID: 28235873 DOI: 10.1128/aem.03365-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/15/2017] [Indexed: 01/28/2023] Open
Abstract
The Toblerone fold was discovered recently when the first structure of the cyclic amide hydrolase, AtzD (a cyanuric acid hydrolase), was elucidated. We surveyed the cyclic amide hydrolase family, finding a strong correlation between phylogenetic distribution and specificity for either cyanuric acid or barbituric acid. One of six classes (IV) could not be tested due to a lack of expression of the proteins from it, and another class (V) had neither cyanuric acid nor barbituric acid hydrolase activity. High-resolution X-ray structures were obtained for a class VI barbituric acid hydrolase (1.7 Å) from a Rhodococcus species and a class V cyclic amide hydrolase (2.4 Å) from a Frankia species for which we were unable to identify a substrate. Both structures were homologous with the tetrameric Toblerone fold enzyme AtzD, demonstrating a high degree of structural conservation within the cyclic amide hydrolase family. The barbituric acid hydrolase structure did not contain zinc, in contrast with early reports of zinc-dependent activity for this enzyme. Instead, each barbituric acid hydrolase monomer contained either Na+ or Mg2+, analogous to the structural metal found in cyanuric acid hydrolase. The Frankia cyclic amide hydrolase contained no metal but instead formed unusual, reversible, intermolecular vicinal disulfide bonds that contributed to the thermal stability of the protein. The active sites were largely conserved between the three enzymes, differing at six positions, which likely determine substrate specificity.IMPORTANCE The Toblerone fold enzymes catalyze an unusual ring-opening hydrolysis with cyclic amide substrates. A survey of these enzymes shows that there is a good correlation between physiological function and phylogenetic distribution within this family of enzymes and provide insights into the evolutionary relationships between the cyanuric acid and barbituric acid hydrolases. This family of enzymes is structurally and mechanistically distinct from other enzyme families; however, to date the structure of just two, physiologically identical, enzymes from this family has been described. We present two new structures: a barbituric acid hydrolase and an enzyme of unknown function. These structures confirm that members of the CyAH family have the unusual Toblerone fold, albeit with some significant differences.
Collapse
|
2
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
3
|
FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System. Pathogens 2016; 5:pathogens5030051. [PMID: 27455333 PMCID: PMC5039431 DOI: 10.3390/pathogens5030051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022] Open
Abstract
Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system.
Collapse
|
4
|
Roussel C, Cesselin B, Cachon R, Gaudu P. Characterization of two Lactococcus lactis zinc membrane proteins, Llmg_0524 and Llmg_0526, and role of Llmg_0524 in cell wall integrity. BMC Microbiol 2015; 15:246. [PMID: 26519082 PMCID: PMC4628341 DOI: 10.1186/s12866-015-0587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to its extraordinary chemical properties, the cysteine amino acid residue is often involved in protein folding, electron driving, sensing stress, and binding metals such as iron or zinc. Lactococcus lactis, a Gram-positive bacterium, houses around one hundred cysteine-rich proteins (with the CX2C motif) in the cytoplasm, but only a few in the membrane. RESULTS In order to understand the role played by this motif we focused our work on two membrane proteins of unknown function: Llmg_0524 and Llmg_0526. Each of these proteins has two CX2C motifs separated by ten amino-acid residues (CX2CX10CX2C). Together with a short intervening gene (llmg_0525), the genes of these two proteins form an operon, which is induced only during the early log growth phase. In both proteins, we found that the CX2CX10CX2C motif chelated a zinc ion via its cysteine residues, but the sphere of coordination was remarkably different in each case. In the case of Llmg_0524, two of the four cysteines were ligands of a zinc ion whereas in Llmg_0526, all four residues were involved in binding zinc. In both proteins, the cysteine-zinc complex was very stable at 37 °C or in the presence of oxidative agents, suggesting a probable role in protein stability. We found that the complete deletion of llmg_0524 increased the sensitivity of the mutant to cumene hydroperoxide whereas the deletion of the cysteine motif in Llmg_0524 resulted in a growth defect. The latter mutant was much more resistant to lysozyme than other strains. CONCLUSIONS Our data suggest that the CX2CX10CX2C motif is used to chelate a zinc ion but we cannot predict the number of cysteine residue involved as ligand of metal. Although no other motif is present in sequence to identify roles played by these proteins, our results indicate that Llmg_0524 contributes to the cell wall integrity.
Collapse
Affiliation(s)
- Célia Roussel
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Bénédicte Cesselin
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Rémy Cachon
- UMR A 02.102 Unité Procédés Alimentaires et Microbiologiques, AgroSup Dijon-Université de Bourgogne, 1-esplanade Erasme, F-21000, Dijon, France.
| | - Philippe Gaudu
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France. .,Institut Micalis UMR1319 et AgroParisTech, Domaine de Vilvert, 78352 Jouy-en-Josas, Cedex, France.
| |
Collapse
|
5
|
Matsui M, Tomita M, Kanai A. Comprehensive computational analysis of bacterial CRP/FNR superfamily and its target motifs reveals stepwise evolution of transcriptional networks. Genome Biol Evol 2013; 5:267-82. [PMID: 23315382 PMCID: PMC3590769 DOI: 10.1093/gbe/evt004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cAMP receptor protein (CRP)/fumarate and nitrate reduction regulatory protein (FNR)-type transcription factors (TFs) are members of a well-characterized global TF family in bacteria and have two conserved domains: the N-terminal ligand-binding domain for small molecules (e.g., cAMP, NO, or O2) and the C-terminal DNA-binding domain. Although the CRP/FNR-type TFs recognize very similar consensus DNA target sequences, they can regulate different sets of genes in response to environmental signals. To clarify the evolution of the CRP/FNR-type TFs throughout the bacterial kingdom, we undertook a comprehensive computational analysis of a large number of annotated CRP/FNR-type TFs and the corresponding bacterial genomes. Based on the amino acid sequence similarities among 1,455 annotated CRP/FNR-type TFs, spectral clustering classified the TFs into 12 representative groups, and stepwise clustering allowed us to propose a possible process of protein evolution. Although each cluster mainly consists of functionally distinct members (e.g., CRP, NTC, FNR-like protein, and FixK), FNR-related TFs are found in several groups and are distributed in a wide range of bacterial phyla in the sequence similarity network. This result suggests that the CRP/FNR-type TFs originated from an ancestral FNR protein, involved in nitrogen fixation. Furthermore, a phylogenetic profiling analysis showed that combinations of TFs and their target genes have fluctuated dynamically during bacterial evolution. A genome-wide analysis of TF-binding sites also suggested that the diversity of the transcriptional regulatory system was derived by the stepwise adaptation of TF-binding sites to the evolution of TFs.
Collapse
Affiliation(s)
- Motomu Matsui
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | | | | |
Collapse
|
6
|
Akyol I. Proteomics analysis of the Flp regulon in Lactococcus lactis subsp. cremoris. Electrophoresis 2013; 34:2218-28. [PMID: 23712609 DOI: 10.1002/elps.201300002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/30/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022]
Abstract
Lactococcus lactis subsp. cremoris MG1363 genome sequence was completed and encodes two flp genes flpA and flpB. Research carried out has suggested that the flpB proteins are transcriptional regulators that respond to the environmental oxygen level. A variety of flp deletion mutant strains with single and double mutation were created. Wild-type (MG1363) and its flp(-) derivatives were compared by 2DE to identify changes in protein intensity under different aerobic/anaerobic growth conditions. In total, 416 ± 20 and 444 ± 32 protein spots were quantified from anaerobic and aerobic cells, respectively, on pH 4-7 gels. Forty-five protein spots that changed were excised from 2DE gel, digested with trypsin and identified from their MALDI-TOF MS Peptide Mass Fingerprint. A variety of proteins were affected by the flp mutations and oxygen level. Some proteins were controlled by FlpA and FlpB independently and some required both FlpA and B for regulation. The identified proteins that are regulated by the Flp proteins can be grouped by biochemical function. These groups are oxidative stress, electron transfer, sugars, cell wall, ABC transporters, arginine metabolism, and pyrimidine biosynthesis pathway.
Collapse
Affiliation(s)
- Ismail Akyol
- Department of Agricultural Biotechnology, Faculty of Agriculture, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
| |
Collapse
|
7
|
HcpR of Porphyromonas gingivalis is required for growth under nitrosative stress and survival within host cells. Infect Immun 2012; 80:3319-31. [PMID: 22778102 DOI: 10.1128/iai.00561-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the Gram-negative, anaerobic periodontopathogen Porphyromonas gingivalis must withstand nitrosative stress, which is particularly high in the oral cavity, the mechanisms allowing for protection against such stress are not known in this organism. In this study, microarray analysis of P. gingivalis transcriptional response to nitrite and nitric oxide showed drastic upregulation of the PG0893 gene coding for hybrid cluster protein (Hcp), which is a putative hydroxylamine reductase. Although regulation of hcp has been shown to be OxyR dependent in Escherichia coli, here we show that in P. gingivalis its expression is dependent on the Fnr-like regulator designated HcpR. Growth of the isogenic mutant V2807, containing an ermF-ermAM insertion within the hcpR (PG1053) gene, was significantly reduced in the presence of nitrite (P < 0.002) and nitric oxide-generating nitrosoglutathione (GSNO) (P < 0.001), compared to that of the wild-type W83 strain. Furthermore, the upregulation of PG0893 (hcp) was abrogated in V2807 exposed to nitrosative stress. In addition, recombinant HcpR bound DNA containing the hcp promoter sequence, and the binding was hemin dependent. Finally, V2807 was not able to survive with host cells, demonstrating that HcpR plays an important role in P. gingivalis virulence. This work gives insight into the molecular mechanisms of protection against nitrosative stress in P. gingivalis and shows that the regulatory mechanisms differ from those in E. coli.
Collapse
|
8
|
Rochat T, Boudebbouze S, Gratadoux JJ, Blugeon S, Gaudu P, Langella P, Maguin E. Proteomic analysis of spontaneous mutants of Lactococcus lactis
: Involvement of GAPDH and arginine deiminase pathway in H2
O2
resistance. Proteomics 2012; 12:1792-805. [DOI: 10.1002/pmic.201100465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tatiana Rochat
- INRA; UMR1319 Micalis; Jouy-en-Josas; France
- AgroParisTech; UMR Micalis; Jouy-en-Josas; France
| | - Samira Boudebbouze
- INRA; UMR1319 Micalis; Jouy-en-Josas; France
- AgroParisTech; UMR Micalis; Jouy-en-Josas; France
| | - Jean-Jacques Gratadoux
- INRA; UMR1319 Micalis; Jouy-en-Josas; France
- AgroParisTech; UMR Micalis; Jouy-en-Josas; France
| | - Sébastien Blugeon
- INRA; UMR1319 Micalis; Jouy-en-Josas; France
- AgroParisTech; UMR Micalis; Jouy-en-Josas; France
| | - Philippe Gaudu
- INRA; UMR1319 Micalis; Jouy-en-Josas; France
- AgroParisTech; UMR Micalis; Jouy-en-Josas; France
| | - Philippe Langella
- INRA; UMR1319 Micalis; Jouy-en-Josas; France
- AgroParisTech; UMR Micalis; Jouy-en-Josas; France
| | - Emmanuelle Maguin
- INRA; UMR1319 Micalis; Jouy-en-Josas; France
- AgroParisTech; UMR Micalis; Jouy-en-Josas; France
| |
Collapse
|
9
|
Michelon D, Abraham S, Ebel B, De Coninck J, Husson F, Feron G, Gervais P, Cachon R. Contribution of exofacial thiol groups in the reducing activity of Lactococcus lactis. FEBS J 2010; 277:2282-90. [PMID: 20423456 DOI: 10.1111/j.1742-4658.2010.07644.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lactococcus lactis can decrease the redox potential at pH 7 (E(h7)) from 200 to -200 mV in oxygen free Man-Rogosa-Sharpe media. Neither the consumption of oxidizing compounds or the release of reducing compounds during lactic acid fermentation were involved in the decrease in E(h7) by the bacteria. Thiol groups located on the bacterial cell surface appear to be the main components that are able to establish a greater exchange current between the Pt electrode and the bacteria. After the final E(h7) (-200 mV) was reached, only thiol-reactive reagents could restore the initial E(h7) value. Inhibition of the proton motive force showed no effect on maintaining the final E(h7) value. These results suggest that maintaining the exofacial thiol (-SH) groups in a reduced state does not depend on an active mechanism. Thiol groups appear to be displayed by membrane proteins or cell wall-bound proteins and may participate in protecting cells against oxidative stress.
Collapse
Affiliation(s)
- D Michelon
- Laboratoire de Génie des Procédés Microbiologiques et Alimentaires, AgroSup Dijon, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cesselin B, Derré-Bobillot A, Fernandez A, Lamberet G, Lechardeur D, Yamamoto Y, Pedersen MB, Garrigues C, Gaudu P. Respiration, a strategy to avoid oxidative stress in Lactococcus lactis, is regulated by the heme status. ACTA ACUST UNITED AC 2010. [DOI: 10.4109/jslab.21.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Sharma O, Datsenko KA, Ess SC, Zhalnina MV, Wanner BL, Cramer WA. Genome-wide screens: novel mechanisms in colicin import and cytotoxicity. Mol Microbiol 2009; 73:571-85. [PMID: 19650773 DOI: 10.1111/j.1365-2958.2009.06788.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Only two new genes (fkpA and lepB) have been identified to be required for colicin cytotoxicity in the last 25 years. Genome-wide screening using the 'Keio collection' to test sensitivity to colicins (col) A, B, D, E1, E2, E3, E7 and N from groups A and B, allowed identification of novel genes affecting cytotoxicity and provided new information on mechanisms of action. The requirement of lipopolysaccharide for colN cytotoxicity resides specifically in the lipopolysaccharide inner-core and first glucose. ColA cytotoxicity is dependent on gmhB and rffT genes, which function in the biosynthesis of lipopolysaccharide and enterobacterial common antigen. Of the tol genes that function in the cytoplasmic membrane translocon, colE1 requires tolA and tolR but not tolQ for activity. Peptidoglycan-associated lipoprotein, which interacts with the Tol network, is not required for cytotoxicity of group A colicins. Except for TolQRA, no cytoplasmic membrane protein is essential for cytotoxicity of group A colicins, implying that TolQRA provides the sole pathway for their insertion into/through the cytoplasmic membrane. The periplasmic protease that cleaves between the receptor and catalytic domains of colE7 was not identified, implying either that the responsible gene is essential for cell viability, or that more than one gene product has the necessary proteolysis function.
Collapse
Affiliation(s)
- Onkar Sharma
- Department of Biological Sciences, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
12
|
Cesselin B, Ali D, Gratadoux JJ, Gaudu P, Duwat P, Gruss A, El Karoui M. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. MICROBIOLOGY-SGM 2009; 155:2274-2281. [PMID: 19389779 DOI: 10.1099/mic.0.027797-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous strategies allowing bacteria to detect and respond to oxidative conditions depend on the cell redox state. Here we examined the ability of Lactococcus lactis to survive aerobically in the presence of the reducing agent dithiothreitol (DTT), which would be expected to modify the cell redox state and disable the oxidative stress response. DTT inhibited L. lactis growth at 37 degrees C in aerobic conditions, but not in anaerobiosis. Mutants selected as DTT resistant all mapped to the pstFEDCBA locus, encoding a high-affinity phosphate transporter. Transcription of pstFEDCBA and a downstream putative regulator of stress response, phoU, was deregulated in a pstA strain, but amounts of major oxidative stress proteins were unchanged. As metals participate in oxygen radical formation, we compared metal sensitivity of wild-type and pstA strains. The pstA mutant showed approximately 100-fold increased resistance to copper and zinc. Furthermore, copper or zinc addition exacerbated the sensitivity of a wild-type L. lactis strain to DTT. Inactivation of pstA conferred a more general resistance to oxidative stress, alleviating the oxygen- and thermo-sensitivity of a clpP mutant. This study establishes a role for the pst locus in metal homeostasis, suggesting that pst inactivation lowers intracellular reactivity of copper and zinc, which would limit bacterial sensitivity to oxygen.
Collapse
Affiliation(s)
- Bénédicte Cesselin
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Djae Ali
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Jean-Jacques Gratadoux
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Philippe Gaudu
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Patrick Duwat
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Alexandra Gruss
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| | - Meriem El Karoui
- INRA, UR 888 Unité des Bactéries Lactiques et Pathogènes Opportunistes-UBLO, F-78350 Jouy en Josas, France
| |
Collapse
|
13
|
Gábor K, Hailesellasse Sene K, Smidt H, de Vos WM, van der Oost J. Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression. MICROBIOLOGY-SGM 2009; 154:3686-3696. [PMID: 19047736 DOI: 10.1099/mic.0.2008/021584-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene duplication and horizontal gene transfer play an important role in the evolution of prokaryotic genomes. We have investigated the role of three CprK paralogues from the cAMP receptor protein-fumarate and nitrate reduction regulator (CRP-FNR) family of transcriptional regulators that are encoded in the genome of Desulfitobacterium hafniense DCB-2 and possibly regulate expression of genes involved in the energy-conserving terminal reduction of organohalides (halorespiration). The results from in vivo and in vitro promoter probe assays show that two regulators (CprK1 and CprK2) have an at least partially overlapping effector specificity, with preference for ortho-chlorophenols, while meta-chlorophenols proved to be effectors for CprK4. The presence of a potential transposase-encoding gene in the vicinity of the cprK genes indicates that their redundancy is probably caused by mobile genetic elements. The CprK paralogues activated transcription from promoters containing a 14 bp inverted repeat (dehalobox) that closely resembles the FNR-box. We found a strong negative correlation between the rate of transcriptional activation and the number of nucleotide changes from the optimal dehalobox sequence (TTAAT-N4-ATTAA). Transcription was initiated by CprK4 from a promoter that is situated upstream of a gene encoding a methyl-accepting chemotaxis protein. This might be the first indication of taxis of an anaerobic bacterium to halogenated aromatic compounds.
Collapse
Affiliation(s)
- Krisztina Gábor
- Wageningen University and Research Centre, Laboratory of Microbiology, Dreijenplein 10, Wageningen 6703-HB, The Netherlands
| | - Kagnew Hailesellasse Sene
- Wageningen University and Research Centre, Laboratory of Microbiology, Dreijenplein 10, Wageningen 6703-HB, The Netherlands
| | - Hauke Smidt
- Wageningen University and Research Centre, Laboratory of Microbiology, Dreijenplein 10, Wageningen 6703-HB, The Netherlands
| | - Willem M de Vos
- Wageningen University and Research Centre, Laboratory of Microbiology, Dreijenplein 10, Wageningen 6703-HB, The Netherlands
| | - John van der Oost
- Wageningen University and Research Centre, Laboratory of Microbiology, Dreijenplein 10, Wageningen 6703-HB, The Netherlands
| |
Collapse
|
14
|
Akyol I, Shearman CA. Regulation of flpA, flpB and rcfA promoters in Lactococcus lactis. Curr Microbiol 2008; 57:200-5. [PMID: 18600375 DOI: 10.1007/s00284-008-9174-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
E. coli fumarate nitrate reductase (FNR) binds to conserved FNR sites to regulate transcription under anaerobic condition. L. lactis subsp. cremoris MG1363 strain contains two FNR-like proteins (FlpA and B) encoded by flpA and flpB genes and the rcfA gene-encoded RcfA in L. lactis subsp. lactis IL1403 strain. Potential FNR-binding sites were located upstream of these genes. The flpA promoter is expressed in MG1363 anaerobically and aerobically. The flpB and rcfA promoters have typical class II FNR-dependent promoters and are activated anaerobically in MG1363 and IL1403, respectively. Despite their strong homology, the Flp and RcfA proteins cannot substitute for each other and control these promoters in the heterologous strains. The flpA and flpB promoters require FlpA and FlpB for activation in the MG1363 background. This was confirmed by expressing FlpB under nisin control in flp mutants and monitoring flpA promoter expression. In flpB- backgrounds, both FlpA and FlpB were required for flpA promoter expression. FlpB could not complement for the lack of FlpA protein in flpA- backgrounds.
Collapse
Affiliation(s)
- Ismail Akyol
- Department of Biometry and Genetics, Kahramanmaraş Sutcu Imam University, Kahramanmaras, Turkey.
| | | |
Collapse
|
15
|
Tanous C, Chambellon E, Yvon M. Sequence analysis of the mobilizable lactococcal plasmid pGdh442 encoding glutamate dehydrogenase activity. MICROBIOLOGY-SGM 2007; 153:1664-1675. [PMID: 17464081 DOI: 10.1099/mic.0.2006/002246-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel plasmid named pGdh442 had previously been isolated from a plant Lactococcus lactis strain. This plasmid encodes two interesting properties with applications in the dairy industry: a glutamate dehydrogenase activity that stimulates amino acid conversion to aroma compounds, and cadmium/zinc resistance that can be used as a selectable marker. Moreover, this plasmid can be transferred naturally to other strains, but appears to be incompatible with certain other lactococcal plasmids. During this study, the complete sequence of pGdh442 (68 319 bp) was determined and analysed. This plasmid contains 67 ORFs that include 20 IS elements that may have mediated transfer events between L. lactis and other genera living in the same biotope, such as Streptococcus, Pediococcus and Lactobacillus. Even though it is a low-copy-number plasmid, it is relatively stable due to a theta replication mode and the presence of two genes involved in its maintenance system. However, pGdh442 is incompatible with pSK08-derived protease/lactose plasmids because both possess the same replication and partition system. pGdh442 is not self-transmissible, but can be naturally transmitted via mobilization by conjugative elements carried by the chromosome or by other plasmids, such as the 712-type sex factor, which is widely distributed in L. lactis. In addition to several genes already found on other L. lactis plasmids, such as the oligopeptide transport and utilization genes, pGdh442 also carries several genes not yet identified in L. lactis. Finally, it does not carry genes that would trigger concern over its presence in human food.
Collapse
Affiliation(s)
- Catherine Tanous
- Unité de Biochimie Bactérienne, UR 477, INRA, 78350 Jouy-en-Josas, France
| | - Emilie Chambellon
- Unité de Biochimie Bactérienne, UR 477, INRA, 78350 Jouy-en-Josas, France
| | - Mireille Yvon
- Unité de Biochimie Bactérienne, UR 477, INRA, 78350 Jouy-en-Josas, France
| |
Collapse
|
16
|
Akyol I. Regulation of the ribonucleotide reductases in Lactococcus lactis subsp. cremoris. ACTA BIOLOGICA HUNGARICA 2007; 58:105-14. [PMID: 17385548 DOI: 10.1556/abiol.58.2007.1.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lactococcus lactis has two essential ribonucleotide reductases for DNA biosynthesis and repair which are affected in the presence or absence of oxygen. Expression of glutaredoxin like protein (NrdH), the hydrogen donor for ribonucleotide reductase, was found to be regulated by the FNR like proteins (FlpA and FlpB). Proteomics study demonstrated that expression level of NrdH significantly decreased in the flpA and flpAB deletion mutants. The nrdH gene is located in an nrdHIEF operon and encoding the NrdEF ribonucleotide reductase, which is active under aerobic and anaerobic conditions. Regulation of expression of the nrdHIEF operons was investigated using beta-galactosidase as a reporter gene. The 588 bp fragment containing the nrdH promoter and gene cloned into the pORI vector immediately upstream of a promoterless lacZ gene. Constructed plasmid was transferred into wild type (MG1363), single mutant (flpA orflpB) and double mutant (flpAB). Aerobically, nrdH promoter activity is 15-fold higher than anaerobic expression.
Collapse
Affiliation(s)
- I Akyol
- Animal Science Department, Agriculture Faculty, Kahramanmaras Sutcu Imam University, 46060, Kahramanmaras, Turkey.
| |
Collapse
|
17
|
Wu HJ, Seib KL, Srikhanta YN, Kidd SP, Edwards JL, Maguire TL, Grimmond SM, Apicella MA, McEwan AG, Jennings MP. PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Mol Microbiol 2006; 60:401-16. [PMID: 16573689 DOI: 10.1111/j.1365-2958.2006.05079.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In previous studies it has been established that resistance to superoxide by Neisseria gonorrhoeae is dependent on the accumulation of Mn(II) ions involving the ABC transporter, MntABC. A mutant strain lacking the periplasmic binding protein component (MntC) of this transport system is hypersensitive to killing by superoxide anion. In this study the mntC mutant was found to be more sensitive to H2O2 killing than the wild-type. Analysis of regulation of MntC expression revealed that it was de-repressed under low Mn(II) conditions. The N. gonorrhoeae mntABC locus lacks the mntR repressor typically found associated with this locus in other organisms. A search for a candidate regulator of mntABC expression revealed a homologue of PerR, a Mn-dependent peroxide-responsive regulator found in Gram-positive organisms. A perR mutant expressed more MntC protein than wild-type, and expression was independent of Mn(II), consistent with a role for PerR as a repressor of mntABC expression. The PerR regulon of N. gonorrhoeae was defined by microarray analysis and includes ribosomal proteins, TonB-dependent receptors and an alcohol dehydrogenase. Both the mntC and perR mutants had reduced intracellular survival in a human cervical epithelial cell model.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- School of Molecular and Microbial Sciences and Centre for Metals in Biology, The University of Queensland, Brisbane, Australia 4072
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Uhlich GA, Wonderling LD, Luchansky JB. Analyses of the putative Crp/Fnr family of transcriptional regulators of a serotype 4b strain of Listeria monocytogenes. Food Microbiol 2006; 23:300-6. [PMID: 16943018 DOI: 10.1016/j.fm.2005.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 11/26/2022]
Abstract
A whole-genome sequence analysis of Listeria monocytogenes strain F2365 revealed 15 potential members of the Crp/Fnr family of transcriptional regulatory proteins. Each gene and the flanking regions were cloned, subjected to in vitro transpositional mutagenesis, and recombined into strain F2365. Mutant strains, produced for 14 of the family members, were compared to strain F2365 for differences in carbon utilization, resistance to oxidative stress, and growth under reduced oxygen conditions that would signal an Fnr- or Crp-like function for these proteins. There were no differences among strain F2365 and the 14 mutant strains in the utilization of the carbon sources readily utilized by L. monocytogenes. Although strain KO2 had a reduced growth rate compared to strain F2365 and the other mutant strains at 30 degrees but not at 37 degrees C, there were no differences in growth rates among strain F2365 and the mutant strains when incubated at either 30 or 37 degrees C under reduced oxygen conditions. However, when compared for differences in response to oxidative stress, mutants KO2 and KO5 showed reduced oxidative stress tolerance compared to the wild-type strain F2365. These results suggest that certain members of the putative Crp/Fnr family in L. monocytogenes may function in response to oxidative stress similar to the Fnr-like protein (Flp) of other gram-positive bacteria.
Collapse
Affiliation(s)
- Gaylen A Uhlich
- Microbial Food Safety Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, Pennsylvania 19038, USA.
| | | | | |
Collapse
|
19
|
Stillman TJ, Upadhyay M, Norte VA, Sedelnikova SE, Carradus M, Tzokov S, Bullough PA, Shearman CA, Gasson MJ, Williams CH, Artymiuk PJ, Green J. The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Mol Microbiol 2005; 57:1101-12. [PMID: 16091047 DOI: 10.1111/j.1365-2958.2005.04757.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dps proteins play a major role in the protection of bacterial DNA from damage by reactive oxygen species. Previous studies have implicated the extended lysine-containing N-terminal regions of Dps subunits in DNA binding, but this part of the structure has not previously been observed crystallographically. Here the structures of two Dps proteins (DpsA and DpsB) from Lactococcus lactis MG1363 reveal for the first time the presence of an N-terminal alpha helix that extends from the core of the Dps subunit. Consequently, the N-terminal helices are displayed in parallel pairs on the exterior of the dodecameric Dps assemblies. Both DpsA and DpsB bind DNA. Deletion of the DpsA N-terminal helix impaired DNA binding. The N-terminal Lys residues of Escherichia coli Dps have been implicated in DNA binding. Replacement of the lactococcal DpsA Lys residues 9, 15 and 16 by Glu did not inhibit DNA binding. However, DNA binding was inhibited by EDTA, suggesting a role for cations in DNA binding. In contrast to E. coli, Bacillus brevis and Mycobacterium smegmatis Dps:DNA complexes, in which DNA interacts with crystalline Dps phases, L. lactis DNA:Dps complexes appeared as non-crystalline aggregates of protein and DNA in electron micrographs.
Collapse
Affiliation(s)
- Timothy J Stillman
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, Firth Court, Western Bank, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P. Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. J Bacteriol 2004; 186:1648-57. [PMID: 14996795 PMCID: PMC355967 DOI: 10.1128/jb.186.6.1648-1657.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sugar fermentation was long considered the sole means of energy metabolism available to lactic acid bacteria. We recently showed that metabolism of Lactococcus lactis shifts progressively from fermentation to respiration during growth when oxygen and heme are available. To provide insights into this phenomenon, we compared the proteomic profiles of L. lactis under fermentative and respiratory growth conditions in rich medium. We identified 21 proteins whose levels differed significantly between these conditions. Two major groups of proteins were distinguished, one involved in carbon metabolism and the second in nitrogen metabolism. Unexpectedly, enzymes of the proteolytic system (PepO1 and PepC) which are repressed in rich medium in fermentation growth were induced under respiratory conditions despite the availability of free amino acids. A triple mutant (dtpT dtpP oppA) deficient in oligopeptide transport displayed normal respiration, showing that increased proteolytic activity is not an absolute requirement for respiratory metabolism. Transcriptional analysis confirmed that pepO1 is induced under respiration-permissive conditions. This induction was independent of CodY, the major regulator of proteolytic functions in L. lactis. We also observed that pepO1 induction is redox sensitive. In a codY mutant, pepO1 expression was increased twofold in aeration and eightfold in respiration-permissive conditions compared to static conditions. These observations suggest that new regulators activate proteolysis in L. lactis, which help to maintain the energetic needs of L. lactis during respiration.
Collapse
Affiliation(s)
- Karin Vido
- Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
21
|
Körner H, Sofia HJ, Zumft WG. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 2003; 27:559-92. [PMID: 14638413 DOI: 10.1016/s0168-6445(03)00066-4] [Citation(s) in RCA: 327] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Crp-Fnr regulators, named after the first two identified members, are DNA-binding proteins which predominantly function as positive transcription factors, though roles of repressors are also important. Among over 1200 proteins with an N-terminally located nucleotide-binding domain similar to the cyclic adenosine monophosphate (cAMP) receptor protein, the distinctive additional trait of the Crp-Fnr superfamily is a C-terminally located helix-turn-helix motif for DNA binding. From a curated database of 369 family members exhibiting both features, we provide a protein tree of Crp-Fnr proteins according to their phylogenetic relationships. This results in the assembly of the regulators ArcR, CooA, CprK, Crp, Dnr, FixK, Flp, Fnr, FnrN, MalR, NnrR, NtcA, PrfA, and YeiL and their homologs in distinct clusters. Lead members and representatives of these groups are described, placing emphasis on the less well-known regulators and target processes. Several more groups consist of sequence-derived proteins of unknown physiological roles; some of them are tight clusters of highly similar members. The Crp-Fnr regulators stand out in responding to a broad spectrum of intracellular and exogenous signals such as cAMP, anoxia, the redox state, oxidative and nitrosative stress, nitric oxide, carbon monoxide, 2-oxoglutarate, or temperature. To accomplish their roles, Crp-Fnr members have intrinsic sensory modules allowing the binding of allosteric effector molecules, or have prosthetic groups for the interaction with the signal. The regulatory adaptability and structural flexibility represented in the Crp-Fnr scaffold has led to the evolution of an important group of physiologically versatile transcription factors.
Collapse
Affiliation(s)
- Heinz Körner
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, PF 6980, D-76128 Karlsruhe, Germany
| | | | | |
Collapse
|
22
|
Gaballa A, Helmann JD. A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol Microbiol 2002; 45:997-1005. [PMID: 12180919 DOI: 10.1046/j.1365-2958.2002.03068.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Bacillus subtilis, hydrogen peroxide (H2O2) induces expression of the PerR regulon including catalase (KatA), alkyl hydroperoxide reductase and the DNA-binding protein MrgA. We have identified the P-type metal-transporting ATPase ZosA (formerly YkvW) as an additional member of the perR regulon. Expression of zosA is induced by H2O2 and repressed by the PerR metalloregulatory protein, which binds to two Per boxes in the promoter region. Physiological studies implicate ZosA in Zn(II) uptake. ZosA functions together with two Zur-regulated uptake systems and one known efflux system to maintain Zn(II) homeostasis. ZosA is the major pathway for zinc uptake in cells growing with micromolar levels of Zn(II) that are known to repress the two Zur-regulated transporters. A perR mutant is sensitive to high levels of zinc, and this sensitivity is partially suppressed by a zosA mutation. ZosA is important for resistance to both H2O2 and the thiol-oxidizing agent diamide. This suggests that increased intracellular Zn(II) may protect thiols from oxidation. In contrast, catalase is critical for H2O2 resistance but does not contribute significantly to diamide resistance. Growth of cells with elevated zinc significantly increases resistance to high concentrations of H2O2, and this effect requires ZosA. Our results indicate that peroxide stress leads to the upregulation of a dedicated Zn(II) uptake system that plays an important role in H2O2 and disulphide stress resistance.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
23
|
Masalha M, Borovok I, Schreiber R, Aharonowitz Y, Cohen G. Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. J Bacteriol 2001; 183:7260-72. [PMID: 11717286 PMCID: PMC95576 DOI: 10.1128/jb.183.24.7260-7272.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a gram-positive facultative aerobe that can grow in the absence of oxygen by fermentation or by using an alternative electron acceptor. To investigate the mechanism by which S. aureus is able to adapt to changes in oxygen concentration, we analyzed the transcriptional regulation of genes that encode the aerobic class Ib and anaerobic class III ribonucleotide reductase (RNR) systems that are responsible for the synthesis of deoxyribonucleotides needed for DNA synthesis. The S. aureus class Ib RNR nrdIEF and class III RNR nrdDG genes and their regulatory regions were cloned and sequenced. Inactivation of the nrdDG genes showed that the class III RNR is essential for anaerobic growth. Inhibition of aerobic growth by hydroxyurea showed that the class Ib RNR is an oxygen-dependent enzyme. Northern blot analysis and primer extension analysis demonstrated that transcription of class III nrdDG genes is regulated by oxygen concentration and was at least 10-fold higher under anaerobic than under aerobic conditions. In contrast, no significant effect of oxygen concentration was found on the transcription of class Ib nrdIEF genes. Disruption or deletion of S. aureus nrdDG genes caused up to a fivefold increase in nrdDG and nrdIEF transcription under anaerobic conditions but not under aerobic conditions. Similarly, hydroxyurea, an inhibitor of the class I RNRs, resulted in increased transcription of class Ib and class III RNR genes under aerobic conditions. These findings establish that transcription of class Ib and class III RNR genes is upregulated under conditions that cause the depletion of deoxyribonucleotide. Promoter analysis of class Ib and class III RNR operons identified several inverted-repeat elements that may account for the transcriptional response of the nrdIEF and nrdDG genes to oxygen.
Collapse
Affiliation(s)
- M Masalha
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
24
|
Green J, Scott C, Guest JR. Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol 2001; 44:1-34. [PMID: 11407111 DOI: 10.1016/s0065-2911(01)44010-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cAMP receptor protein (CRP; sometimes known as CAP, the catabolite gene activator protein) and the fumarate and nitrate reduction regulator (FNR) of Escherichia coli are founder members of an expanding superfamily of structurally related transcription factors. The archetypal CRP structural fold provides a very versatile mechanism for transducing environmental and metabolic signals to the transcription machinery. It allows different functional specificities at the sensory, DNA-recognition and RNA-polymerase-interaction levels to be 'mixed and matched' in order to create a diverse range of transcription factors tailored to respond to particular physiological conditions. This versatility is clearly illustrated by comparing the properties of the CRP, FNR and FLP (FNR-like protein) regulators. At the sensory level, the basic structural fold has been adapted in FNR and FLP by the acquisition in the N-terminal region of different combinations of cysteine or other residues; which bestow oxygen/redox sensing mechanisms that are poised according to the oxidative stress thresholds affecting the metabolism of specific bacteria. At the DNA-recognition level, discrimination between distinct but related DNA targets is mediated by amino acid sequence modifications in the conserved core contact between the DNA-recognition helix and target DNA. And, at the level of RNA-polymerase-interaction, different combinations of three discrete regions contacting the polymerase (the activating regions) are used for polymerase recruitment and promoting transcription.
Collapse
Affiliation(s)
- J Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
25
|
Tonon T, Bourdineaud JP, Lonvaud-Funel A. The arcABC gene cluster encoding the arginine deiminase pathway of Oenococcus oeni, and arginine induction of a CRP-like gene. Res Microbiol 2001; 152:653-61. [PMID: 11605985 DOI: 10.1016/s0923-2508(01)01244-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oenococcus oeni, the main species which induces malolactic fermentation in wine, uses arginine via the arginine deiminase (ADI) pathway. Using degenerated primers, two specific probes, one for ornithine transcarbamoylase (OTC) and the other for carbamate kinase (CK), were synthesized. These made it possible to clone and sequence a cluster containing genes encoding ADI (arcA), OTC (arcB) and CK (arcC). In addition, sequence analysis upstream of the arcA gene revealed the presence of an open reading frame (orf229) whose 3'-end was only 101 bp-distant from the start codon of the arcA gene and showed similarity with members of the FNR (regulation for fumarate and nitrate reduction) and CRP (cAMP receptor protein) family of transcriptional regulators. Moreover, a putative binding site for such regulators lies in the promoter region of the arcA gene. Induction of the arc cluster by arginine was studied first at the enzymatic level. The activities of the three enzymes strongly increased when cells were grown in the presence of the amino acid. In addition, the influence of arginine on gene transcription was monitored by RT-PCR (reverse transcriptase-polymerase chain reaction). Expression of the three arc genes, and particularly that of arcA, was positively affected by arginine supplementation and thus confirmed the enzymatic results. Moreover, transcription of the putative CRP-like gene orf229 was also stimulated by arginine. These data suggest that the protein encoded by orf229 could be a CRP-like regulator involved in the metabolism of O. oeni.
Collapse
Affiliation(s)
- T Tonon
- Faculté d'Oenologic, Unité associée INRA, Université Victor Ségalen, Bordeaux II, Laboratoire de Biotechnologie et de Microbiologie Appliquée, Talence, France
| | | | | |
Collapse
|
26
|
Anjum MF, Green J, Guest JR. YeiL, the third member of the CRP-FNR family in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3157-3170. [PMID: 11101674 DOI: 10.1099/00221287-146-12-3157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The yeiL open reading frame located at 48.5 min (2254 kb) in the nfo-fruA region of the Escherichia coli chromosome was predicted to encode a CRP and FNR paralogue capable of forming inter- or intra-molecular disulphide bonds and incorporating one iron-sulphur centre per 25 kDa subunit. Purified MBP-YeiL (a maltose-binding-protein-YeiL fusion protein) was a high-molecular-mass oligomer or aggregate which released unstable monomers (68 kDa) under reducing conditions. The MBP-YeiL protein contained substoichiometric amounts of iron and acid-labile sulphide, and an average of one disulphide bond per monomer. The iron and sulphide contents increased consistent with the acquisition of one [4Fe-4S] cluster per monomer after anaerobic NifS-catalysed reconstitution. By analogy with FNR and FLP (the FNR-like protein of Lactobacillus casei) it was suggested that the transcription-regulatory activity of YeiL might be modulated by a sensory iron-sulphur cluster and/or by reversible disulphide bond formation. A yeiL-lacZ transcriptional fusion showed that aerobic yeiL expression increases at least sixfold during stationary phase, requires RpoS, and is positively autoregulated by YeiL, positively activated by Lrp (and IHF in the absence of FNR) and negatively regulated by FNR. A regulatory link between the synthesis of YeiK (a potential nucleoside hydrolase) and YeiL was inferred by showing that the yeiK and yeiL genes are divergently transcribed from overlapping promoters. A 10-15% deficiency in aerobic growth yield and an enhanced loss of viability under nitrogen starvation conditions were detected with a yeiL::kan(R) mutant, suggesting that YeiL might function as a post-exponential-phase nitrogen-starvation regulator.
Collapse
Affiliation(s)
- Muna F Anjum
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK1
| | - Jeffrey Green
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK1
| | - John R Guest
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK1
| |
Collapse
|
27
|
Scott C, Rawsthorne H, Upadhyay M, Shearman CA, Gasson MJ, Guest JR, Green J. Zinc uptake, oxidative stress and the FNR-like proteins of Lactococcus lactis. FEMS Microbiol Lett 2000; 192:85-9. [PMID: 11040433 DOI: 10.1111/j.1574-6968.2000.tb09363.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lactococcus lactis ssp. cremoris MG1363 contains two FNR homologues, FlpA and FlpB, encoded by the distal genes of two paralogous operons (orfX(A/B)-orfY(A/B)-flpA/B). An flpA flpB double mutant strain is hypersensitive to hydrogen peroxide and has a depleted intracellular Zn(II) pool. The phenotypes of the flp mutant strains suggest that FlpA and FlpB control the expression of high and low affinity ATP-dependent Zn(II) uptake systems, respectively. Plate tests revealed that expression from a orfX(B)::lac reporter was activated by Cd(II), consistent with other Zn(II)-regulated systems. The link between a failure to acquire Zn(II) and hypersensitivity to oxidative stress suggests that Zn(II) may be required to protect vulnerable protein thiols from oxidation.
Collapse
Affiliation(s)
- C Scott
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Scott C, Guest JR, Green J. Characterization of the Lactococcus lactis transcription factor FlpA and demonstration of an in vitro switch. Mol Microbiol 2000; 35:1383-93. [PMID: 10760139 DOI: 10.1046/j.1365-2958.2000.01799.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The commercially important bacterium Lactococcus lactis contains two FNR-like proteins (FlpA and FlpB) which have a high degree of identity to each other and to the FLP of Lactobacillus casei. FlpA was isolated from a GST-FlpA fusion protein produced in Escherichia coli. Like FLP, isolated FlpA is a homodimeric protein containing both Zn and Cu. However, the properties of FlpA were more like those of the E. coli oxygen-responsive transcription factor FNR than the FLP of L. casei. As prepared FlpA recognized an FNR site (TTGAT-N4-ATCAA) but not an FLP site (CCTGA-N4-TCAGG) in band-shift assays. In contrast to FLP, DNA binding by FlpA did not require the formation of an intramolecular disulphide bond. However, despite containing only two cysteine residues per monomer, FlpA was able to acquire an FNR-like, oxygen-labile [4Fe 4S] cluster. But, whereas the incorporation of a [4Fe 4S] cluster into FNR enhances interaction with target DNA, it abolished DNA binding by FlpA. An FlpA variant (FlpA') with an N-terminal region designed to be more FLP-like failed to incorporate an iron-sulphur cluster but could now form an intramolecular disulphide. This simple example of protein engineering, converting an oxygen-labile [4Fe 4S] containing FNR-like protein into a dithiol-disulphide FLP-like redox sensor demonstrates the versatility of the basic CRP structure. Attempts to demonstrate an FlpA-based aerobic-anaerobic switch in the heterologous host E. coli were unsuccessful. However, studies with a series of FNR-dependent lac reporter fusions in strains of E. coli expressing flpA or flpB revealed that both homologues were able to activate expression of FNR-dependent promoters in vivo but only when positioned 61 base pairs upstream of the transcription start.
Collapse
Affiliation(s)
- C Scott
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|