1
|
Singh SK, Wu X, Shao C, Zhang H. Microbial enhancement of plant nutrient acquisition. STRESS BIOLOGY 2022; 2:3. [PMID: 37676341 PMCID: PMC10441942 DOI: 10.1007/s44154-021-00027-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 09/08/2023]
Abstract
Nutrient availability is a determining factor for crop yield and quality. While fertilization is a major approach for improving plant nutrition, its efficacy can be limited and the production and application of fertilizers frequently bring problems to the environment. A large number of soil microbes are capable of enhancing plant nutrient acquisition and thereby offer environmentally benign solutions to meet the requirements of plant nutrition. Herein we provide summations of how beneficial microbes enhance plant acquisition of macronutrients and micronutrients. We also review recent studies on nutrition-dependent plant-microbe interactions, which highlight the plant's initiative in establishing or deterring the plant-microbe association. By dissecting complex signaling interactions between microbes within the root microbiome, a greater understanding of microbe-enhanced plant nutrition under specific biotic and abiotic stresses will be possible.
Collapse
Affiliation(s)
- Sunil K Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xiaoxuan Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyang Shao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
2
|
Hamid H, Li LY, Grace JR. Effect of substrate concentrations on aerobic biotransformation of 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate. CHEMOSPHERE 2020; 261:128108. [PMID: 33113640 DOI: 10.1016/j.chemosphere.2020.128108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Biotransformation of 6:2 fluorotelomer sulfonate (FTS) results in the formation of short-chain (C4 - C6) perfluorocarboxylic acids (PFCAs) in landfill leachate. Although leachate substrate concentrations (i.e., organic carbon, ammonia) vary widely, their effects on 6:2 FTS biotransformation and PFCAs formation are unknown. This study investigated the effect of organic carbon and ammonia concentration in 6:2 FTS aerobic biotransformation and PFCA formation in leachate. Biotransformation experiments were conducted with sediment collected from a landfill leachate ditch, to which deionized (DI) water and various amounts of leachate were added. Microbial community analysis using 16S rRNA indicated that while phylum Proteobacteria dominated the bacterial composition throughout the 60 days, Actinobacteria increased with time. Many genera from Proteobacteria and Actinobacteria can synthesize a wide array of enzymes, indicating that these phyla are likely to play an important role in 6:2 FTS biotransformation. Higher biotransformation of 6:2 FTS was observed in leachate-added microcosms (∼21%), compared to DI water microcosm (∼14%), likely reflecting the substrate dependency of 6:2 FTS biotransformation. Substrate limiting conditions in DI water microcosm resulted in slightly greater formation of ∑(C4 - C6) PFCAs (∼14 mol%), compared with leachate added microcosms (10-13 mol%). The findings suggest that dilution of landfill leachate, (e.g., during wet seasons), likely results in reduced 6:2 FTS biotransformation and increased PFCAs formation compared to dry conditions. Observed formation of C7 - C8 PFCAs in the live microcosms suggested that landfills act as secondary sources of legacy PFCAs (e.g., perfluorooctanoic acid) in the environment.
Collapse
Affiliation(s)
- Hanna Hamid
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Loretta Y Li
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - John R Grace
- Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
3
|
Diversity of Sulfur-Oxidizing and Sulfur-Reducing Microbes in Diverse Ecosystems. ADVANCES IN SOIL MICROBIOLOGY: RECENT TRENDS AND FUTURE PROSPECTS 2018. [DOI: 10.1007/978-981-10-6178-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Utilisation of aromatic organosulfur compounds as sulfur sources by Lipomyces starkeyi CBS 1807. Antonie van Leeuwenhoek 2016; 109:1417-22. [DOI: 10.1007/s10482-016-0729-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/01/2016] [Indexed: 11/25/2022]
|
5
|
Schmalenberger A, Fox A. Bacterial Mobilization of Nutrients From Biochar-Amended Soils. ADVANCES IN APPLIED MICROBIOLOGY 2016; 94:109-59. [PMID: 26917243 DOI: 10.1016/bs.aambs.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur.
Collapse
|
6
|
Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply. FRONTIERS IN PLANT SCIENCE 2014; 5:723. [PMID: 25566295 PMCID: PMC4267179 DOI: 10.3389/fpls.2014.00723] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 05/23/2023]
Abstract
Plant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax, and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.
Collapse
|
7
|
Fox A, Kwapinski W, Griffiths BS, Schmalenberger A. The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion ofLolium perenne. FEMS Microbiol Ecol 2014; 90:78-91. [DOI: 10.1111/1574-6941.12374] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Aaron Fox
- Department of Life Sciences; University of Limerick; Limerick Ireland
| | - Witold Kwapinski
- Department of Chemical and Environmental Sciences; University of Limerick; Limerick Ireland
| | | | | |
Collapse
|
8
|
Wang X, Cheng X, Sun D, Ren Y, Xu G. Fate and transformation of naphthylaminesulfonic azo dye reactive black 5 during wastewater treatment process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:5713-5723. [PMID: 24435205 DOI: 10.1007/s11356-014-2502-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Certain aromatic amines generated by the decolorization of some azo dyes are not removed substantially by conventional anaerobic-aerobic biotreatment. These aromatic amines are potentially toxic and often released in the wastewater of industrial plants. In this study, the fate and transformation of the naphthylaminesulfonic azo dye Reactive Black 5 (RB5) during different phases of a sequencing batch reactor were investigated. The major products of RB5 decolorization during the anaerobic phase include 2-[(4-aminophenyl)sulfonyl]ethyl hydrogen sulfate (APSEHS) and 1-2-7-triamino-8-hydroxy-3-6-naphthalinedisulfate (TAHNDS). During the aerobic phase, APSEHS was hydrolyzed and produced 4-aminobenzenesulfonic acid, which was further degraded via dearomatization. TAHNDS was transformed rapidly via auto-oxidation into TAHNDSDP-1 and TAHNDSDP-2, which were not further removed by the activated sludge during the entire 30-day aerobic phase. In contrast, different behaviors of TAHNDS were observed during the anoxic phase. The transformation of TAHNDS was initiated either by deamination or desulfonation reaction. TAHNDS was then converted into 3,5-diamino-4-hydroxynaphthalene-2-sulfonic acid, which was subsequently removed via ring cleavage reaction under aerobic condition. In conclusion, complete degradation of TAHNDS by activated sludge occurs only during anoxic/aerobic processes instead of the conventional anaerobic/aerobic processes.
Collapse
Affiliation(s)
- Xingzu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401122, People's Republic of China,
| | | | | | | | | |
Collapse
|
9
|
Abstract
Brucellosis is a prevalent zoonotic disease and is endemic in the Middle East, South America, and other areas of the world. In this study, complete inventories of putative functional ABC systems of five Brucella species have been compiled and compared. ABC systems of Brucella melitensis 16M, Brucella abortus 9-941, Brucella canis RM6/66, Brucella suis 1330, and Brucella ovis 63/290 were identified and aligned. High numbers of ABC systems, particularly nutrient importers, were found in all Brucella species. However, differences in the total numbers of ABC systems were identified (B. melitensis, 79; B. suis, 72; B. abortus 64; B. canis, 74; B. ovis, 59) as well as specific differences in the functional ABC systems of the Brucella species. Since B. ovis is not known to cause human brucellosis, functional ABC systems absent in the B. ovis genome may represent virulence factors in human brucellosis.
Collapse
|
10
|
Schmalenberger A, Hodge S, Hawkesford MJ, Kertesz MA. Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities. FEMS Microbiol Ecol 2009; 67:140-50. [PMID: 19120463 DOI: 10.1111/j.1574-6941.2008.00602.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Organically bound sulfur makes up about 90% of the total sulfur in soils, with sulfonates often the dominant fraction. Actinobacteria affiliated to the genus Rhodococcus were able to desulfonate arylsulfonates in wheat rhizospheres from the Broadbalk long-term field wheat experiment, which includes plots treated with inorganic fertilizer with and without sulfate, with farmyard manure, and unfertilized plots. Direct isolation of desulfonating rhizobacteria yielded Rhodococcus strains which grew well with a range of sulfonates, and contained the asfAB genes, known to be involved in sulfonate desulfurization by bacteria. Expression of asfA in vitro increased >100-fold during growth of the Rhodococcus isolates with toluenesulfonate as sulfur source, compared with growth with sulfate. By contrast, the closely related Rhodococcus erythropolis and Rhodococcus opacus type strains had no desulfonating activity and did not contain asfA homologues. The overall actinobacterial community structure in wheat rhizospheres was influenced by the sulfur fertilization regime, as shown by specific denaturing gradient gel electrophoresis of PCR amplified 16S rRNA gene fragments, and asfAB clone library analysis identified nine different asfAB genotypes closely affiliated to the Rhodococcus isolates. However, asfAB-based multiplex restriction fragment length polymorphism (RFLP)/terminal-RFLP analysis of wheat rhizosphere communities revealed only slight differences between the fertilization regimes, suggesting that the desulfonating Rhodococcus community does not specifically respond to changes in sulfate supply.
Collapse
|
11
|
Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 2008; 74:4044-53. [PMID: 18487408 DOI: 10.1128/aem.00353-08] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.
Collapse
|
12
|
Transcription factors CysB and SfnR constitute the hierarchical regulatory system for the sulfate starvation response in Pseudomonas putida. J Bacteriol 2008; 190:4521-31. [PMID: 18456803 DOI: 10.1128/jb.00217-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida DS1 is able to utilize dimethyl sulfone as a sulfur source. Expression of the sfnFG operon responsible for dimethyl sulfone oxygenation is directly regulated by a sigma(54)-dependent transcriptional activator, SfnR, which is encoded within the sfnECR operon. We investigated the transcription mechanism for the sulfate starvation-induced expression of these sfn operons. Using an in vivo transcription assay and in vitro DNA-binding experiments, we revealed that SfnR negatively regulates the expression of sfnECR by binding to the downstream region of the transcription start point. Additionally, we demonstrated that a LysR-type transcriptional regulator, CysB, directly activates the expression of sfnECR by binding to its upstream region. CysB is a master regulator that controls the sulfate starvation response of the sfn operons, as is the case for the sulfonate utilization genes of Escherichia coli, although CysB(DS1) appeared to differ from that of E. coli CysB in terms of the effect of O-acetylserine on DNA-binding ability. Furthermore, we investigated what effector molecules repress the expression of sfnFG and sfnECR in vivo by using the disruptants of the sulfate assimilatory genes cysNC and cysI. The measurements of mRNA levels of the sfn operons in these gene disruptants suggested that the expression of sfnFG is repressed by sulfate itself while the expression of sfnECR is repressed by the downstream metabolites in the sulfate assimilatory pathway, such as sulfide and cysteine. These results indicate that SfnR plays a role independent of CysB in the sulfate starvation-induced expression of the sfn operons.
Collapse
|
13
|
Schmalenberger A, Hodge S, Bryant A, Hawkesford MJ, Singh BK, Kertesz MA. The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ Microbiol 2008; 10:1486-500. [PMID: 18279342 DOI: 10.1111/j.1462-2920.2007.01564.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfonates are a key component of the sulfur present in agricultural soils. Their mobilization as part of the soil sulfur cycle is mediated by rhizobacteria, and involves the oxidoreductase AsfA. In this study, the effect of fertilization regime on rhizosphere bacterial asfA distribution was examined at the Broadbalk long-term wheat experiment, Rothamsted, UK, which was established in 1843, and has included a sulfur-free treatment since 2001. Direct isolation of desulfonating rhizobacteria from the wheat rhizospheres led to the identification of several Variovorax and Polaromonas strains, all of which contained the asfA gene. Rhizosphere DNA was isolated from wheat rhizospheres in plots fertilized with inorganic fertilizer with and without sulfur, with farmyard manure or from unfertilized plots. Genetic profiling of 16S rRNA gene fragments [denaturing gradient gel electrophoresis (DGGE)] from the wheat rhizospheres revealed that the level of inorganic sulfate in the inorganic fertilizer was correlated with changes in the general bacterial community structure and the betaproteobacterial community structure in particular. Community analysis at the functional gene level (asfA) showed that 40% of clones in asfAB clone libraries were affiliated to the genus Variovorax. Analysis of asfAB-based terminal restriction fragment length polymorphism (T-RFLP) fingerprints showed considerable differences between sulfate-free treatments and those where sulfate was applied. The results suggest the occurrence of desulfonating bacterial communities that are specific to the fertilization regime chosen and that arylsulfonates play an important role in rhizobacterial sulfur nutrition.
Collapse
Affiliation(s)
- Achim Schmalenberger
- Faculty of Life Sciences, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
14
|
Kertesz MA, Fellows E, Schmalenberger A. Rhizobacteria and plant sulfur supply. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:235-68. [PMID: 17869607 DOI: 10.1016/s0065-2164(07)62008-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Michael A Kertesz
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
15
|
Habe H, Kouzuma A, Endoh T, Omori T, Yamane H, Nojiri H. Transcriptional regulation of the sulfate-starvation-induced gene sfnA by a sigma54-dependent activator of Pseudomonas putida. MICROBIOLOGY-SGM 2007; 153:3091-3098. [PMID: 17768252 DOI: 10.1099/mic.0.2007/008151-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sigma(54)-dependent transcriptional regulator SfnR is essential for the use of dimethyl sulfone (DMSO(2)) as a sulfur source by Pseudomonas putida DS1. SfnR binds three SfnR-binding sites (sites 1, 2 and 3) within an intergenic region of the divergently transcribed sfnAB and sfnFG gene clusters. The site 1 region, proximal to the sfnF gene, is indispensable for the expression of the sfnFG operon, which encodes components of DMSO(2) monooxygenase. We investigated the transcriptional regulation of the sfnAB operon and possible functions of the sfnA gene. RT-PCR analysis revealed that the sfnAB gene cluster, which is similar to homologues of the acyl-CoA dehydrogenase family, was transcribed as an operon, and its expression was regulated by SfnR under conditions of sulfate starvation. Deletion analyses using lacZ as a reporter demonstrated that the region up to at least -138 bp from the transcription start point of sfnA (containing sites 2 and 3) was necessary for the expression of the sfnAB operon. A growth test of the sfnA-disrupted mutant revealed the possibility that sfnA may be involved in the use of methanethiol as a sulfur source.
Collapse
Affiliation(s)
- Hiroshi Habe
- Research Institute for Innovations in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Kouzuma
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Endoh
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshio Omori
- Department of Industrial Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
16
|
Tralau T, Vuilleumier S, Thibault C, Campbell BJ, Hart CA, Kertesz MA. Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. J Bacteriol 2007; 189:6743-50. [PMID: 17675390 PMCID: PMC2045191 DOI: 10.1128/jb.00889-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a number of infections in humans, but is best known for its association with cystic fibrosis. It is able to use a wide range of sulfur compounds as sources of sulfur for growth. Gene expression in response to changes in sulfur supply was studied in P. aeruginosa E601, a cystic fibrosis isolate that displays mucin sulfatase activity, and in P. aeruginosa PAO1. A large family of genes was found to be upregulated by sulfate limitation in both isolates, encoding sulfatases and sulfonatases, transport systems, oxidative stress proteins, and a sulfate-regulated TonB/ExbBD complex. These genes were localized in five distinct islands on the genome and encoded proteins with a significantly reduced content of cysteine and methionine. Growth of P. aeruginosa E601 with mucin as the sulfur source led not only to a sulfate starvation response but also to induction of genes involved with type III secretion systems.
Collapse
Affiliation(s)
- Tewes Tralau
- Faculty of Life Sciences, University of Manchester, Michael Smith Bldg., Oxford Rd., Manchester M13 9PT, England
| | | | | | | | | | | |
Collapse
|
17
|
Schmalenberger A, Kertesz MA. Desulfurization of aromatic sulfonates by rhizosphere bacteria: high diversity of the asfA gene. Environ Microbiol 2007; 9:535-45. [PMID: 17222151 DOI: 10.1111/j.1462-2920.2006.01172.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plant growth-promoting effect of Pseudomonas putida S-313 is associated with its ability to desulfurize arylsulfonates. To understand this further, other plant-associated bacteria able to desulfurize a range of arylsulfonates were isolated from the rhizospheres of winter and spring barley. The isolates belonged to the beta-proteobacteria, including bacteria from the Variovorax paradoxus group and from the Acidovorax genus. They desulfurized toluenesulfonate to p-cresol, and were found to contain orthologues of the P. putida S-313 asfA gene (> 70% sequence identity to AsfA), which is required for aryldesulfonation in this species. Further putative asfA orthologues were identified in several bacteria and cyanobacteria whose genomes have been sequenced, but of these only Cupriavidus (Ralstonia) metallidurans was able to utilize arylsulfonates as sulfur source. Cultivation of V. paradoxus, C. metallidurans or P. putida S-313 with toluenesulfonate as sulfur source led to a 100-fold increase in expression of the asfA homologues, which was largely repressed when sulfate was added. Polymerase chain reaction with degenerate primers was used to generate asfAB clone libraries from spring- and winter-barley rhizosphere DNA. Cluster analysis of 76 sequenced AsfA fragments revealed a broad diversity, with the majority of the sequences clustered together with AsfA from bacteria that are able to utilize toluenesulfonate as sulfur source. The diversity of asfA in barley rhizosphere underlines the importance of the desulfonation process for bacteria that inhabit the plant rhizosphere.
Collapse
Affiliation(s)
- Achim Schmalenberger
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
18
|
Javaux C, Joris B, De Witte P. Functional Characteristics of TauA Binding Protein from TauABC Escherichia coli System. Protein J 2007; 26:231-8. [PMID: 17203388 DOI: 10.1007/s10930-006-9064-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although TauA shares few common characteristics with other known periplasmic binding protein, TauA is a putative periplasmic binding protein, part of tauABCD gene cluster involved in sulfonate transport in sulphate starvation condition. This protein was expressed in E. coli BL 21 and purified before to assess its binding functionalities. Measurement of K (d) value (mean 11.3 nM) by binding/dialysis studies revealed high affinity and specificity with taurine and also indicated that TauA possessed a unique binding site for its ligand. Comparisons with other periplasmic binding proteins suggests TauA plays a major role in ABC transport system and could be ideal candidate to serve as taurine catcher in biological fluids.
Collapse
Affiliation(s)
- Cédric Javaux
- Biologie du Comportement, Université catholique de Louvain, Place Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
19
|
N/A, 张 万. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:1714-1720. [DOI: 10.11569/wcjd.v14.i17.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
Burguière P, Fert J, Guillouard I, Auger S, Danchin A, Martin-Verstraete I. Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism. J Bacteriol 2005; 187:6019-30. [PMID: 16109943 PMCID: PMC1196162 DOI: 10.1128/jb.187.17.6019-6030.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YtlI regulator of Bacillus subtilis activates the transcription of the ytmI operon encoding an l-cystine ABC transporter, a riboflavin kinase, and proteins of unknown function. The expression of the ytlI gene and the ytmI operon was high with methionine and reduced with sulfate. Using deletions and site-directed mutagenesis, a cis-acting DNA sequence important for YtlI-dependent regulation was identified upstream from the -35 box of ytmI. Gel mobility shift assays confirmed that YtlI specifically interacted with this sequence. The replacement of the sulfur-regulated ytlI promoter by the xylA promoter led to constitutive expression of a ytmI'-lacZ fusion in a ytlI mutant, suggesting that the repression of ytmI expression by sulfate was mainly at the level of YtlI synthesis. We further showed that the YrzC regulator negatively controlled ytlI expression while this repressor also acted on ytmI expression via YtlI. The cascade of regulation observed in B. subtilis is conserved in Listeria spp. Both a YtlI-like regulator and a ytmI-type operon are present in Listeria spp. Indeed, the Lmo2352 protein from Listeria monocytogenes was able to replace YtlI for the activation of ytmI expression and a lmo2352'-lacZ fusion was repressed in the presence of sulfate via YrzC in B. subtilis. A common motif, AT(A/T)ATTCCTAT, was found in the promoter region of the ytlI and lmo2352 genes. Deletion of part of this motif or the introduction of point mutations in this sequence confirmed its involvement in ytlI regulation.
Collapse
Affiliation(s)
- Pierre Burguière
- Unité de Génétique des Génomes Bactériens, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
21
|
Mirleau P, Wogelius R, Smith A, Kertesz MA. Importance of organosulfur utilization for survival of Pseudomonas putida in soil and rhizosphere. Appl Environ Microbiol 2005; 71:6571-7. [PMID: 16269683 PMCID: PMC1287748 DOI: 10.1128/aem.71.11.6571-6577.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 06/22/2005] [Indexed: 11/20/2022] Open
Abstract
The sulfur present in both agricultural and uncultivated soils is largely in the form of sulfonates and sulfate esters and not as free, bioavailable inorganic sulfate. Desulfurization of the former compounds in vitro has previously been studied in Pseudomonas putida, a common rhizosphere inhabitant. Survival of P. putida strains was now investigated in three sulfur-deficient Danish soils which were found to contain 60 to 70% of their sulfur in sulfonate or sulfate ester form, as determined by X-ray near-edge spectroscopy. The soil fitness of P. putida S-313 was compared with that of isogenic strains with mutations in the sftR and asfA genes (required for in vitro desulfurization of sulfate esters and arylsulfonates, respectively) and in the ssu locus (required in vitro for the desulfurization of both sulfonates and sulfate esters). asfA or sftR mutants showed significantly reduced survival compared to the parent strain in bulk soil that had been enriched with carbon and nitrogen to mimic rhizosphere conditions, but this reduced survival was not observed in the absence of these additives. In a tomato rhizosphere grown in compost, survival of sftR and ssu mutants was reduced relative to the parent strain. The results demonstrate that the ability to desulfurize sulfonates and sulfate esters is critical for survival of bacteria in the rhizosphere but less so in bulk soils outside the influence of plant roots, where carbon is the limiting nutrient for growth.
Collapse
Affiliation(s)
- Pascal Mirleau
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England
| | | | | | | |
Collapse
|
22
|
Koch DJ, Rückert C, Rey DA, Mix A, Pühler A, Kalinowski J. Role of the ssu and seu genes of Corynebacterium glutamicum ATCC 13032 in utilization of sulfonates and sulfonate esters as sulfur sources. Appl Environ Microbiol 2005; 71:6104-14. [PMID: 16204527 PMCID: PMC1265983 DOI: 10.1128/aem.71.10.6104-6114.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium glutamicum ATCC 13032 was found to be able to utilize a broad range of sulfonates and sulfonate esters as sulfur sources. The two gene clusters potentially involved in sulfonate utilization, ssuD1CBA and ssuI-seuABC-ssuD2, were identified in the genome of C. glutamicum ATCC 13032 by similarity searches. While the ssu genes encode proteins resembling Ssu proteins from Escherichia coli or Bacillus subtilis, the seu gene products exhibited similarity to the dibenzothiophene-degrading Dsz monooxygenases of Rhodococcus strain IGTS8. Growth tests with the C. glutamicum wild-type and appropriate mutant strains showed that the clustered genes ssuC, ssuB, and ssuA, putatively encoding the components of an ABC-type transporter system, are required for the utilization of aliphatic sulfonates. In C. glutamicum sulfonates are apparently degraded by sulfonatases encoded by ssuD1 and ssuD2. It was also found that the seu genes seuA, seuB, and seuC can effectively replace ssuD1 and ssuD2 for the degradation of sulfonate esters. The utilization of all sulfonates and sulfonate esters tested is dependent on a novel putative reductase encoded by ssuI. Obviously, all monooxygenases encoded by the ssu and seu genes, including SsuD1, SsuD2, SeuA, SeuB, and SeuC, which are reduced flavin mononucleotide dependent according to sequence similarity, have SsuI as an essential component. Using real-time reverse transcription-PCR, the ssu and seu gene cluster was found to be expressed considerably more strongly during growth on sulfonates and sulfonate esters than during growth on sulfate.
Collapse
Affiliation(s)
- D J Koch
- Institut für Genomforschung, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Endoh T, Habe H, Nojiri H, Yamane H, Omori T. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Mol Microbiol 2005; 55:897-911. [PMID: 15661012 DOI: 10.1111/j.1365-2958.2004.04431.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida DS1 is able to utilize dimethyl sulphide through dimethyl sulphoxide, dimethyl sulphone (DMSO2), methanesulphonate (MSA) and sulphite as a sulphur source. We previously demonstrated that sfnR encoding a sigma54-dependent transcriptional regulator is essential for DMSO2 utilization by P. putida DS1. To identify the target genes of SfnR, we carried out transposon mutagenesis on an sfnR disruptant (DMSO2-utilization-defective phenotype) using mini-Tn5, which contains two outward-facing constitutively active promoters; as a result, we obtained a mutant that restored the ability to utilize DMSO2. The DMSO2-positive mutant carried a mini-Tn5 insertion in the intergenic region between two opposite-facing operons, sfnAB and sfnFG. Both sfnA and sfnB products were similar to acyl-CoA dehydrogenase family proteins, whereas sfnF and sfnG encoded a putative NADH-dependent FMN reductase (SfnF) and an FMNH2-dependent monooxygenase (SfnG). Disruption and complementation of the sfn genes indicated that the sfnG product is essential for DMSO2 utilization by P. putida DS1. Furthermore, an enzyme assay demonstrated that SfnG is an FMNH2-dependent DMSO2 monooxygenase that converts DMSO2 to MSA. It was revealed that the expression of the sfnFG operon is directly activated by the binding of SfnR at its upstream region. Site-directed mutagenesis of the SfnR binding sequences allowed us to define a potential recognition sequence for SfnR. These results provided insight into regulation of sulphate starvation-induced genes in bacteria.
Collapse
Affiliation(s)
- Takayuki Endoh
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657 Tokyo, Japan
| | | | | | | | | |
Collapse
|
24
|
Ercole C, Botta A, Sulpizii M, Veglio F, Lepidi A. Microbial desulphonation and β-naphthol formation from 2-naphthalenesulphonic acid. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Kirimura K, Harada K, Iwasawa H, Tanaka T, Iwasaki Y, Furuya T, Ishii Y, Kino K. Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl Microbiol Biotechnol 2004; 65:703-13. [PMID: 15221222 DOI: 10.1007/s00253-004-1652-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 04/27/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
Thermophilic bacteria Bacillus subtilis WU-S2B and Mycobacterium phlei WU-F1 desulfurize dibenzothiophene (DBT) and alkylated DBTs through specific cleavage of the carbon-sulfur bonds over a temperature range up to 52 degrees C. In order to identify and functionally analyze the DBT-desulfurization genes, the gene cluster containing bdsA, bdsB, and bdsC was cloned from B. subtilis WU-S2B. The nucleotide and amino acid sequences of bdsABC show homologies to those of the other known DBT-desulfurization genes and enzymes; e.g. a nucleotide sequence homology of 61.0% to dszABC of the mesophilic bacterium Rhodococcus sp. IGTS8 and 57.8% to tdsABC of the thermophilic bacterium Paenibacillus sp. A11-2. Deletion and subcloning analysis of bdsABC revealed that the gene products of bdsC, bdsA and bdsB oxidized DBT to DBT sulfone (DBTO(2)), converted DBTO(2) to 2'-hydroxybiphenyl-2-sulfinate (HBPSi), and desulfurized HBPSi to 2-hydroxybiphenyl (2-HBP), respectively. Resting cells of a recombinant Escherichia coli JM109 harboring bdsABC converted DBT to 2-HBP over a temperature range of 30-52 degrees C, indicating that the gene products of bdsABC were functional in the recombinant. The activities of DBT degradation at 50 degrees C and DBT desulfurization (2-HBP production) at 40 degrees C in resting cells of the recombinant were approximately five times and twice, respectively, as high as those in B. subtilis WU-S2B. The recombinant E. coli cells also degraded alkylated DBTs, such as 2,8-dimethylDBT and 4,6-dimethylDBT. The nucleotide sequences of B. subtilis WU-S2B bdsABC and the corresponding genes from M. phlei WU-F1 were found to be completely identical to each other although the strains are genetically different.
Collapse
Affiliation(s)
- Kohtaro Kirimura
- Department of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Endoh T, Habe H, Yoshida T, Nojiri H, Omori T. A CysB-regulated and sigma54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1. MICROBIOLOGY (READING, ENGLAND) 2003; 149:991-1000. [PMID: 12686641 DOI: 10.1099/mic.0.26031-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida strain DS1 utilizes dimethyl sulfide (DMS) as a sulfur source, and desulfurizes it via dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO(2)) and methanesulfonate (MSA). Its Tn5 mutant, Dfi74J, no longer utilized DMS, DMSO and DMSO(2), but could oxidize DMS to DMSO(2), suggesting that the conversion of DMSO(2) to MSA was interrupted in the mutant. Sequencing of the Tn5 flanking region of Dfi74J demonstrated that a gene, sfnR (designated for dimethyl sulfone utilization), encoding a transcriptional regulator containing an ATP-dependent sigma(54)-association domain and a DNA-binding domain, was disrupted. sfnR is part of an operon with two other genes, sfnE and sfnC, located immediately upstream of sfnR and in the same orientation. The genes encode NADH-dependent FMN reductase (SfnE) and FMNH(2)-dependent monooxygenase (SfnC). Complementation of Dfi74J with an sfnR-expressing plasmid led to restoration of its growth on DMS, DMSO and DMSO(2). An rpoN-defective mutant of strain DS1, which lacks the sigma(54) factor, grew on MSA, but not on DMS, DMSO and DMSO(2), indicating that SfnR controls expression of gene(s) involved in DMSO(2) metabolism by interaction with sigma(54)-RNA polymerase. Northern hybridization and a reporter gene assay with an sfn-lacZ transcriptional fusion elucidated that expression of the sfnECR operon was induced under sulfate limitation and was dependent on a LysR-type transcriptional regulator, CysB. This is believed to be the first report that a sigma(54)-dependent transcriptional regulator induced under sulfate limitation is involved in sulfur assimilation.
Collapse
Affiliation(s)
- Takayuki Endoh
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroshi Habe
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takako Yoshida
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshio Omori
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
27
|
Kahnert A, Mirleau P, Wait R, Kertesz MA. The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida. Environ Microbiol 2002; 4:225-37. [PMID: 12010129 DOI: 10.1046/j.1462-2920.2002.00289.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulphate esters make up a large proportion of the available sulphur in agricultural soils, and many pseudomonads can desulphurize a range of aryl- and alkylsulphate esters to provide sulphur for growth. After miniTn5 transposon mutagenesis of Pseudomonas putida S-313, we isolated 19 mutants that were defective in cleavage of the chromogenic sulphate ester 5-bromo-4-chloro-3-indoxylsulphate (X-sulphate). Analysis of these strains revealed that they carried independent insertions in a gene cluster that comprised genes for a sulphate ester/sulphonate transporter (atsRBC) a LysR-type regulator (sftR), an oxygenolytic alkylsulphatase (atsK), an arylsulphotransferase (astA) and a putative TonB-dependent receptor (sftP). The SftP protein was localized in the outer membrane, and the arylsulfphotransferase was identified as an intracellular enzyme. Expression of sftR was repressed in the presence of inorganic sulphate, and the sftR gene was required for the expression of atsBC, atsRK and sftP-astA. An sftR mutant was unable to grow with aryl- or alkylsulphate esters in laboratory media and showed significantly reduced survival compared with the parent strain during incubation in Danish agricultural and grassland soils. This effect suggests that sulphate esters are an important sulphur source for microbes in aerobic soils and highlights the importance of the microbial population in the soil sulphur cycle.
Collapse
Affiliation(s)
- Antje Kahnert
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
28
|
Ternan NG, McMullan G. Utilisation of aminomethane sulfonate by Chromohalobacter marismortui VH1. FEMS Microbiol Lett 2002; 207:49-53. [PMID: 11886750 DOI: 10.1111/j.1574-6968.2002.tb11027.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chromohalobacter marismortui VH1 was screened for its ability to utilise organosulfonate compounds at a range of NaCl concentrations. Only aminomethane sulfonate, of seven sulfonates tested, was utilised. Length of lag phase during growth on aminomethane sulfonate, as either nitrogen and/or sulfur source, increased with increasing NaCl concentration. Cell yields increased linearly with increasing aminomethane sulfonate concentration up to 5 mM. Resting cells pregrown on aminomethane sulfonate as sole nitrogen source exhibited carbon-sulfur bond cleaving [0.123 nmol sulfate accumulated h(-1) (mg cells)(-1)] and sulfite-oxidising [0.185 nmol sulfate accumulated h(-1) (mg cells)(-1)] activities. C. marismortui VH1 is capable of sulfur-starvation deregulated metabolism of aminomethane sulfonate under high salt conditions.
Collapse
Affiliation(s)
- Nigel G Ternan
- Environmental Biotechnology Research Group, School of Biological and Environmental Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | | |
Collapse
|
29
|
Abstract
Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains.
Collapse
Affiliation(s)
- R W Eaton
- Gulf Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, USA.
| |
Collapse
|
30
|
Dassa E, Bouige P. The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 2001; 152:211-29. [PMID: 11421270 DOI: 10.1016/s0923-2508(01)01194-9] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
ATP binding cassette (ABC) systems constitute one of the most abundant superfamilies of proteins. They are involved not only in the transport of a wide variety of substances, but also in many cellular processes and in their regulation. In this paper, we made a comparative analysis of the properties of ABC systems and we provide a phylogenetic and functional classification. This analysis will be helpful to accurately annotate ABC systems discovered during the sequencing of the genome of living organisms and to identify the partners of the ABC ATPases.
Collapse
Affiliation(s)
- E Dassa
- Unité de programmation moléculaire et toxicologie génétique, CNRS URA 1444, Institut Pasteur, Paris, France.
| | | |
Collapse
|
31
|
Abstract
Microorganisms require sulfur for growth, and obtain it either from inorganic sulfate or from organosulfur compounds such as sulfonates, sulfate esters, or sulfur-containing amino acids. Transport of sulfate into the cell is catalyzed either by ATP binding cassette (ABC)-type transporters (SulT family) or by major facilitator superfamily-type transporters (SulP family). By contrast, the sulfonate and sulfate ester transporters identified to date are all ABC-type systems, whose synthesis is tightly regulated by the sulfur supply to the cell, mediated by the CysB protein and other transcriptional regulators of the LysR-family.
Collapse
Affiliation(s)
- M A Kertesz
- School of Biological Sciences, University of Manchester, UK.
| |
Collapse
|
32
|
Bohuslavek J, Payne JW, Liu Y, Bolton H, Xun L. Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1. Appl Environ Microbiol 2001; 67:688-95. [PMID: 11157232 PMCID: PMC92636 DOI: 10.1128/aem.67.2.688-695.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Accepted: 11/17/2000] [Indexed: 11/20/2022] Open
Abstract
EDTA is a chelating agent, widely used in many industries. Because of its ability to mobilize heavy metals and radionuclides, it can be an environmental pollutant. The EDTA monooxygenases that initiate EDTA degradation have been purified and characterized in bacterial strains BNC1 and DSM 9103. However, the genes encoding the enzymes have not been reported. The EDTA monooxygenase gene was cloned by probing a genomic library of strain BNC1 with a probe generated from the N-terminal amino acid sequence of the monooxygenase. Sequencing of the cloned DNA fragment revealed a gene cluster containing eight genes. Two of the genes, emoA and emoB, were expressed in Escherichia coli, and the gene products, EmoA and EmoB, were purified and characterized. Both experimental data and sequence analysis showed that EmoA is a reduced flavin mononucleotide-utilizing monooxygenase and that EmoB is an NADH:flavin mononucleotide oxidoreductase. The two-enzyme system oxidized EDTA to ethylenediaminediacetate (EDDA) and nitrilotriacetate (NTA) to iminodiacetate (IDA) with the production of glyoxylate. The emoA and emoB genes were cotranscribed when BNC1 cells were grown on EDTA. Other genes in the cluster encoded a hypothetical transport system, a putative regulatory protein, and IDA oxidase that oxidizes IDA and EDDA. We concluded that this gene cluster is responsible for the initial steps of EDTA and NTA degradation.
Collapse
Affiliation(s)
- J Bohuslavek
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
33
|
Kahnert A, Vermeij P, Wietek C, James P, Leisinger T, Kertesz MA. The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J Bacteriol 2000; 182:2869-78. [PMID: 10781557 PMCID: PMC101997 DOI: 10.1128/jb.182.10.2869-2878.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida S-313 can utilize a broad range of aromatic sulfonates as sulfur sources for growth in sulfate-free minimal medium. The sulfonates are cleaved monooxygenolytically to yield the corresponding phenols. miniTn5 mutants of strain S-313 which were no longer able to desulfurize arylsulfonates were isolated and were found to carry transposon insertions in the ssuEADCBF operon, which contained genes for an ATP-binding cassette-type transporter (ssuABC), a two-component reduced flavin mononucleotide-dependent monooxygenase (ssuED) closely related to the Escherichia coli alkanesulfonatase, and a protein related to clostridial molybdopterin-binding proteins (ssuF). These mutants were also deficient in growth with a variety of other organosulfur sources, including aromatic and aliphatic sulfate esters, methionine, and aliphatic sulfonates other than the natural sulfonates taurine and cysteate. This pleiotropic phenotype was complemented by the ssu operon, confirming its key role in organosulfur metabolism in this species. Further complementation analysis revealed that the ssuF gene product was required for growth with all of the tested substrates except methionine and that the oxygenase encoded by ssuD was required for growth with sulfonates or methionine. The flavin reductase SsuE was not required for growth with aliphatic sulfonates or methionine but was needed for growth with arylsulfonates, suggesting that an alternative isozyme exists for the former compounds that is not active in transformation of the latter substrates. Aryl sulfate ester utilization was catalyzed by an arylsulfotransferase, and not by an arylsulfatase as in the related species Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- A Kahnert
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Eichhorn E, van der Ploeg JR, Leisinger T. Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J Bacteriol 2000; 182:2687-95. [PMID: 10781534 PMCID: PMC101965 DOI: 10.1128/jb.182.10.2687-2695.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli tauABCD and ssuEADCB gene clusters are required for the utilization of taurine and alkanesulfonates as sulfur sources and are expressed only under conditions of sulfate or cysteine starvation. tauD and ssuD encode an alpha-ketoglutarate-dependent taurine dioxygenase and a reduced flavin mononucleotide-dependent alkanesulfonate monooxygenase, respectively. These enzymes are responsible for the desulfonation of taurine and alkanesulfonates. The amino acid sequences of SsuABC and TauABC exhibit similarity to those of components of the ATP-binding cassette transporter superfamily, suggesting that two uptake systems for alkanesulfonates are present in E. coli. Chromosomally located in-frame deletions of the tauABC and ssuABC genes were constructed in E. coli strain EC1250, and the growth properties of the mutants were studied to investigate the requirement for the TauABC and SsuABC proteins for growth on alkanesulfonates as sulfur sources. Complementation analysis of in-frame deletion mutants confirmed that the growth phenotypes obtained were the result of the in-frame deletions constructed. The range of substrates transported by these two uptake systems was largely reflected in the substrate specificities of the TauD and SsuD desulfonation systems. However, certain known substrates of TauD were transported exclusively by the SsuABC system. Mutants in which only formation of hybrid transporters was possible were unable to grow with sulfonates, indicating that the individual components of the two transport systems were not functionally exchangeable. The TauABCD and SsuEADCB systems involved in alkanesulfonate uptake and desulfonation thus are complementary to each other at the levels of both transport and desulfonation.
Collapse
Affiliation(s)
- E Eichhorn
- Institut für Mikrobiologie, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
35
|
Kertesz MA. Riding the sulfur cycle â metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 2000. [DOI: 10.1111/j.1574-6976.2000.tb00537.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Hummerjohann J, Laudenbach S, Rétey J, Leisinger T, Kertesz MA. The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon. J Bacteriol 2000; 182:2055-8. [PMID: 10715018 PMCID: PMC101934 DOI: 10.1128/jb.182.7.2055-2058.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene cluster upstream of the arylsulfatase gene (atsA) in Pseudomonas aeruginosa was characterized and found to encode a putative ABC-type transporter, AtsRBC. Mutants with insertions in the atsR or atsB gene were unable to grow with hexyl-, octyl-, or nitrocatecholsulfate, although they grew normally with other sulfur sources, such as sulfate, methionine, and aliphatic sulfonates. AtsRBC therefore constitutes a general sulfate ester transport system, and desulfurization of aromatic and medium-chain-length aliphatic sulfate esters occurs in the cytoplasm. Expression of the atsR and atsBCA genes was repressed during growth with sulfate, cysteine, or thiocyanate. No expression of these genes was observed in the cysB mutant PAO-CB, and the ats genes therefore constitute an extension of the cys regulon in this species.
Collapse
Affiliation(s)
- J Hummerjohann
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Kertesz MA. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 2000; 24:135-75. [PMID: 10717312 DOI: 10.1016/s0168-6445(99)00033-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonates and sulfate esters are widespread in nature, and make up over 95% of the sulfur content of most aerobic soils. Many microorganisms can use sulfonates and sulfate esters as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. In these organisms, expression of sulfatases and sulfonatases is repressed in the presence of sulfate, in a process mediated by the LysR-type regulator protein CysB, and the corresponding genes therefore constitute an extension of the cys regulon. Additional regulator proteins required for sulfonate desulfonation have been identified in Escherichia coli (the Cbl protein) and Pseudomonas putida (the AsfR protein). Desulfonation of aromatic and aliphatic sulfonates as sulfur sources by aerobic bacteria is oxygen-dependent, carried out by the alpha-ketoglutarate-dependent taurine dioxygenase, or by one of several FMNH(2)-dependent monooxygenases. Desulfurization of condensed thiophenes is also FMNH(2)-dependent, both in the rhodococci and in two Gram-negative species. Bacterial utilization of aromatic sulfate esters is catalyzed by arylsulfatases, most of which are related to human lysosomal sulfatases and contain an active-site formylglycine group that is generated post-translationally. Sulfate-regulated alkylsulfatases, by contrast, are less well characterized. Our increasing knowledge of the sulfur-regulated metabolism of organosulfur compounds suggests applications in practical fields such as biodesulfurization, bioremediation, and optimization of crop sulfur nutrition.
Collapse
Affiliation(s)
- M A Kertesz
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092, Zürich, Switzerland.
| |
Collapse
|
38
|
Quadroni M, James P, Dainese-Hatt P, Kertesz MA. Proteome mapping, mass spectrometric sequencing and reverse transcription-PCR for characterization of the sulfate starvation-induced response in Pseudomonas aeruginosa PAO1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:986-96. [PMID: 10583393 DOI: 10.1046/j.1432-1327.1999.00941.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A set of proteins induced in Pseudomonas aeruginosa PAO1 during growth in the absence of sulfate was characterized by differential two-dimensional electrophoresis and MS. Thirteen proteins were found to be induced de novo or upregulated in P. aeruginosa grown in a succinate/salts medium with sodium cyclohexylsulfamate as the sole sulfur source. Protein spots excised from the two-dimensional gels were analysed by N-terminal Edman sequencing and MS sequencing (MS/MS) of internal protein fragments. The coding sequences for 11 of these proteins were unambiguously identified in the P. aeruginosa genome sequence. Expression of these genes was investigated by reverse transcription-PCR, which confirmed that repression in the presence of sulfate was acting at a transcriptional level. Three classes of sulfur-regulated proteins were found. The first class (five proteins) were high-affinity periplasmic solute-binding proteins with apparent specificity for sulfate and sulfonates. A second class included enzymes involved in sulfonate and sulfate ester metabolism (three proteins). The remaining three proteins appeared to be part of a more general stress response, and included two antioxidant proteins and a putative lipoprotein. This study demonstrates the power of the proteomics approach for direct correlation of the responses of an organism to an environmental stimulus with the genetic structures responsible for that response, and the application of reverse transcription-PCR significantly increases the conclusions that can be drawn from the proteomic study.
Collapse
Affiliation(s)
- M Quadroni
- Protein Chemistry Laboratory, Swiss Federal Institue of Technology, Zurich, Switzerland
| | | | | | | |
Collapse
|
39
|
Abstract
Cysteine and methionine biosynthesis was studied in Pseudomonas putida S-313 and Pseudomonas aeruginosa PAO1. Both these organisms used direct sulfhydrylation of O-succinylhomoserine for the synthesis of methionine but also contained substantial levels of O-acetylserine sulfhydrylase (cysteine synthase) activity. The enzymes of the transsulfuration pathway (cystathionine gamma-synthase and cystathionine beta-lyase) were expressed at low levels in both pseudomonads but were strongly upregulated during growth with cysteine as the sole sulfur source. In P. aeruginosa, the reverse transsulfuration pathway between homocysteine and cysteine, with cystathionine as the intermediate, allows P. aeruginosa to grow rapidly with methionine as the sole sulfur source. P. putida S-313 also grew well with methionine as the sulfur source, but no cystathionine gamma-lyase, the key enzyme of the reverse transsulfuration pathway, was found in this species. In the absence of the reverse transsulfuration pathway, P. putida desulfurized methionine by the conversion of methionine to methanethiol, catalyzed by methionine gamma-lyase, which was upregulated under these conditions. A transposon mutant of P. putida that was defective in the alkanesulfonatase locus (ssuD) was unable to grow with either methanesulfonate or methionine as the sulfur source. We therefore propose that in P. putida methionine is converted to methanethiol and then oxidized to methanesulfonate. The sulfonate is then desulfonated by alkanesulfonatase to release sulfite for reassimilation into cysteine.
Collapse
Affiliation(s)
- P Vermeij
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
| | | |
Collapse
|