1
|
Lee J, Ouellette SP. Cyclic di-AMP drives developmental cycle progression in Chlamydia trachomatis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595738. [PMID: 38826436 PMCID: PMC11142226 DOI: 10.1101/2024.05.24.595738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The obligate intracellular bacterium Chlamydia alternates between two functional forms during its developmental cycle: elementary body (EB) and reticulate body (RB). However, the molecular mechanisms governing the transitions between these forms are unknown. Here, we present evidence cyclic di-AMP (c-di-AMP) is a key factor in triggering the transition from RB to EB (i.e., secondary differentiation) in the chlamydial developmental cycle. By overexpressing or knocking down expression of c-di-AMP synthase genes, we made strains producing different levels of c-di-AMP, which we linked to changes in secondary differentiation status. Increases in c-di-AMP resulted in an earlier increase in transcription of EB-associated genes, and this was further manifested in earlier production of EBs. In contrast, when c-di-AMP levels were decreased, secondary differentiation was delayed. Based on these data, we conclude there is a threshold level of c-di-AMP needed to trigger secondary differentiation in Chlamydia . This is the first study to identify a mechanism by which secondary differentiation is initiated in Chlamydia and reveals a critical role for the second messenger signaling molecule c-di-AMP in this process.
Collapse
|
2
|
Pitre CAJ, Tanner JR, Patel P, Brassinga AKC. Regulatory control of temporally expressed integration host factor (IHF) in Legionella pneumophila. Microbiology (Reading) 2013; 159:475-492. [DOI: 10.1099/mic.0.062117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Chantalle A. J. Pitre
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jennifer R. Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Palak Patel
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ann Karen C. Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Chlamydia trachomatis protein GrgA activates transcription by contacting the nonconserved region of σ66. Proc Natl Acad Sci U S A 2012; 109:16870-5. [PMID: 23027952 DOI: 10.1073/pnas.1207300109] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial RNA polymerase holoenzyme consists of a catalytic core enzyme in complex with a σ factor that is required for promoter-specific transcription initiation. Primary, or housekeeping, σ factors are responsible for most of the gene expression that occurs during the exponential phase of growth. Primary σ factors share four regions of conserved sequence, regions 1-4, which have been further subdivided. Many primary σ factors also contain a nonconserved region (NCR) located between subregions 1.2 and 2.1, which can vary widely in length. Interactions between the NCR of the primary σ factor of Escherichia coli, σ(70), and the β' subunit of the E. coli core enzyme have been shown to influence gene expression, suggesting that the NCR of primary σ factors represents a potential target for transcription regulation. Here, we report the identification and characterization of a previously undocumented Chlamydia trachomatis transcription factor, designated GrgA (general regulator of genes A). We demonstrate in vitro that GrgA is a DNA-binding protein that can stimulate transcription from a range of σ(66)-dependent promoters. We further show that GrgA activates transcription by contacting the NCR of the primary σ factor of C. trachomatis, σ(66). Our findings suggest GrgA serves as an important regulator of σ(66)-dependent transcription in C. trachomatis. Furthermore, because GrgA is present only in chlamydiae, our findings highlight how nonconserved regions of the bacterial RNA polymerase can be targets of regulatory factors that are unique to particular organisms.
Collapse
|
4
|
Jeoung M, Bridges PJ. Cyclic regulation of apoptotic gene expression in the mouse oviduct. Reprod Fertil Dev 2011; 23:638-44. [PMID: 21635812 DOI: 10.1071/rd11011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/07/2011] [Indexed: 12/14/2022] Open
Abstract
The oviduct is a dynamic structure whose function relies upon cyclic changes in the morphology of both ciliated and secretory luminal epithelial cells. Unfortunately, infection of these epithelial cells by sexually transmitted pathogens can lead to pelvic inflammatory disease, ectopic pregnancies and infertility. The disruption of normal, cyclic apoptosis in the oviducal epithelium appears to be a causal factor of oviducal pathology and therefore, these pathways represent a potential target for diagnosis and therapeutic intervention. The objective of this study was to determine the pattern of expression for apoptotic genes in the oviduct of the naturally cycling mouse, generating fundamental information that can be applied to the development of animal models for research and the identification of targets for disease intervention. Whole oviducts were collected from regular cycling mice killed at 1p.m. on each day of the oestrous cycle and the expression of 84 apoptotic genes determined by targeted PCR super-array. Intact and cleaved caspases were then evaluated by western blotting. The expression of mRNA for genes classified as pro-apoptotic (Bad, Bak1 and Bok) and anti-apoptotic (Bag3, Bnip2 and Xiap) was regulated by day (P < 0.05). Differences in the temporal expression of several p53-related genes (Trp53bp2, Trp53inp1 and Trp73), those specific to the TNF superfamily (Tnfrsf10 and Tnfsf10b) and one caspase (Casp14) were also observed (P < 0.05). The cleaved forms of Caspases-3, -6 and -12 were all detected throughout the oestrous cycle. These results represent the first pathway-wide analysis of apoptotic gene expression in the murine oviduct.
Collapse
Affiliation(s)
- Myoungkun Jeoung
- Division of Clinical and Reproductive Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
5
|
Reciprocal expression of integration host factor and HU in the developmental cycle and infectivity of Legionella pneumophila. Appl Environ Microbiol 2009; 75:1826-37. [PMID: 19201975 DOI: 10.1128/aem.02756-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular parasite of protozoa that differentiates late in infection into metabolically dormant cysts that are highly infectious. Regulation of this process is poorly understood. Here we report that the small DNA binding regulatory proteins integration host factor (IHF) and HU are reciprocally expressed over the developmental cycle, with HU expressed during exponential phase and IHF expressed postexponentially. To assess the role of these regulatory proteins in development, chromosomal deletions were constructed. Single (ihfA or ihfB) and double deletion (Deltaihf) IHF mutants failed to grow in Acanthamoeba castellanii unless complemented in trans when expressed temporally from the ihfA promoter but not under P(tac) (isopropyl-beta-d-thiogalactopyranoside). In contrast, IHF mutants were infectious for HeLa cells, though electron microscopic examination revealed defects in late-stage cyst morphogenesis (thickened cell wall, intracytoplasmic membranes, and inclusions of poly-beta-hydroxybutyrate), and were depressed for the developmental marker MagA. Green fluorescent protein promoter fusion assays indicated that IHF and the stationary-phase sigma factor RpoS were required for full postexponential expression of magA. Finally, defects in cyst morphogenesis noted for Deltaihf mutants in HeLa cells correlated with a loss of both detergent resistance and hyperinfectivity compared with results for wild-type cysts. These studies establish IHF and HU as markers of developmental stages and show that IHF function is required for both differentiation and full virulence of L. pneumophila in natural amoebic hosts.
Collapse
|
6
|
Abstract
The intracellular pathogen Chlamydia has an unusual developmental cycle marked by temporal expression patterns whose mechanisms of regulation are largely unknown. To examine if DNA topology can regulate chlamydial gene expression, we tested the in vitro activity of five chlamydial promoters at different superhelical densities. We demonstrated for the first time that individual chlamydial promoters show a differential response to changes in DNA supercoiling that correlates with the temporal expression pattern. The promoters for two midcycle genes, ompA and pgk, were responsive to alterations in supercoiling, and promoter activity could be regulated more than eightfold. In contrast, the promoters for three late transcripts, omcAB, hctA, and ltuB, were relatively insensitive to supercoiling, with promoter activity varying by no more than 2.2-fold over a range of superhelicities. To obtain a measure of how DNA supercoiling levels vary during the chlamydial developmental cycle, we recovered the cryptic chlamydial plasmid at different times after infection and assayed its superhelical density. The chlamydial plasmid was most negatively supercoiled at midcycle, with an approximate superhelical density of -0.07. At early and late times, the plasmid was more relaxed, with an approximate superhelicity of -0.03. Thus, we found a correlation between the responsiveness to supercoiling shown by the two midcycle promoters and the increased level of negative supercoiling during mid time points in the developmental cycle. Our results support a model in which the response of individual promoters to alterations in DNA supercoiling can provide a mechanism for global patterns of temporal gene expression in Chlamydia.
Collapse
|
7
|
Miura K, Toh H, Hirakawa H, Sugii M, Murata M, Nakai K, Tashiro K, Kuhara S, Azuma Y, Shirai M. Genome-wide analysis of Chlamydophila pneumoniae gene expression at the late stage of infection. DNA Res 2008; 15:83-91. [PMID: 18222926 PMCID: PMC2650627 DOI: 10.1093/dnares/dsm032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chlamydophila pneumoniae, an obligate intracellular eubacterium, changes its form from a vegetative reticulate body into an infectious elementary body during the late stage of its infection cycle. Comprehension of the molecular events in the morphological change is important to understand the switching mechanism between acute and chronic infection, which is deemed to relate to the pathogenesis of atherosclerosis. Herein, we have attempted to screen genes expressed in the late stage with a genome-wide DNA microarray, resulting in nomination of 17 genes as the late-stage genes. Fourteen of the 17 genes and six other genes predicted as late-stage genes were confirmed to be up-regulated in the late stage with a quantitative reverse transcriptase–polymerase chain reaction. These 20 late-stage genes were classified into two groups by clustering analysis: ‘drastically induced’ and ‘moderately induced’ genes. Out of eight drastically induced genes, four contain σ28 promoter-like sequences and the other four contain an upstream common sequence. It suggests that besides σ28, there are certain up-regulatory mechanisms at the late stage, which may be involved in the chlamydial morphological change and thus pathogenesis.
Collapse
Affiliation(s)
- Koshiro Miura
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hefty PS, Stephens RS. Chlamydial type III secretion system is encoded on ten operons preceded by sigma 70-like promoter elements. J Bacteriol 2006; 189:198-206. [PMID: 17056752 PMCID: PMC1797217 DOI: 10.1128/jb.01034-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many gram-negative bacterial pathogens employ type III secretion systems for infectious processes. Chlamydiae are obligate intracellular bacteria that encode a conserved type III secretion system that is likely requisite for growth. Typically, genes encoding type III secretion systems are located in a single locus; however, for chlamydiae these genes are scattered throughout the genome. Little is known regarding the gene regulatory mechanisms for this essential virulence determinant. To facilitate identification of cis-acting transcriptional regulatory elements, the operon structure was determined. This analysis revealed 10 operons that contained 37 genes associated with the type III secretion system. Linkage within these operons suggests a role in type III secretion for each of these genes, including 13 genes encoding proteins with unknown function. The transcriptional start site for each operon was determined. In conjunction with promoter activity assays, this analysis revealed that the type III secretion system operons encode sigma(70)-like promoter elements. Transcriptional initiation by a sigma factor responsible for constitutive gene expression indicates that undefined activators or repressors regulate developmental stage-specific expression of chlamydial type III secretion system genes.
Collapse
Affiliation(s)
- P Scott Hefty
- Division of Infectious Diseases, School of Public Health, 140 Earl Warren Hall, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
9
|
Griffiths E, Ventresca MS, Gupta RS. BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species. BMC Genomics 2006; 7:14. [PMID: 16436211 PMCID: PMC1403754 DOI: 10.1186/1471-2164-7-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 01/25/2006] [Indexed: 11/24/2022] Open
Abstract
Background Chlamydiae species are of much importance from a clinical viewpoint. Their diversity both in terms of their numbers as well as clinical involvement are presently believed to be significantly underestimated. The obligate intracellular nature of chlamydiae has also limited their genetic and biochemical studies. Thus, it is of importance to develop additional means for their identification and characterization. Results We have carried out analyses of available chlamydiae genomes to identify sets of unique proteins that are either specific for all Chlamydiales genomes, or different Chlamydiaceae family members, or members of the Chlamydia and Chlamydophila genera, or those unique to Protochlamydia amoebophila, but which are not found in any other bacteria. In total, 59 Chlamydiales-specific proteins, 79 Chlamydiaceae-specific proteins, 20 proteins each that are specific for both Chlamydia and Chlamydophila and 445 ORFs that are Protochlamydia-specific were identified. Additionally, 33 cases of possible gene loss or lateral gene transfer were also detected. Conclusion The identified chlamydiae-lineage specific proteins, many of which are highly conserved, provide novel biomarkers that should prove of much value in the diagnosis of these bacteria and in exploration of their prevalence and diversity. These conserved protein sequences (CPSs) also provide novel therapeutic targets for drugs that are specific for these bacteria. Lastly, functional studies on these chlamydiae or chlamydiae subgroup-specific proteins should lead to important insights into lineage-specific adaptations with regards to development, infectivity and pathogenicity.
Collapse
Affiliation(s)
- Emma Griffiths
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Michael S Ventresca
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
10
|
Rau A, Wyllie S, Whittimore J, Raulston JE. Identification of Chlamydia trachomatis genomic sequences recognized by chlamydial divalent cation-dependent regulator A (DcrA). J Bacteriol 2005; 187:443-8. [PMID: 15629915 PMCID: PMC543534 DOI: 10.1128/jb.187.2.443-448.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia trachomatis divalent cation-dependent regulator (DcrA), encoded by open reading frame CT296, is a distant relative of the ferric uptake regulator (Fur) family of iron-responsive regulators. Chlamydial DcrA specifically binds to a consensus Escherichia coli Fur box and is able to complement an E. coli Fur mutant. In this report, the E. coli Fur titration assay (FURTA) was used to locate chlamydial genomic sequences that are recognized by E. coli Fur. The predictive regulatory regions of 28 C. trachomatis open reading frames contained sequences functionally recognized by E. coli Fur; targets include components of the type III secretion pathway, elements involved in envelope and cell wall biogenesis, predicted transport proteins, oxidative defense enzymes, and components of metabolic pathways. Selected FURTA-positive sequences were subsequently examined for recognition by C. trachomatis DcrA using an electrophoretic mobility shift assay. The resultant data show that C. trachomatis DcrA binds to native chlamydial genomic sequences and, overall, substantiate a functional relationship between chlamydial DcrA and the Fur family of regulators.
Collapse
Affiliation(s)
- Annette Rau
- Department of Microbiology, Box 70579, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-0579, USA
| | | | | | | |
Collapse
|