1
|
Lin GM, Zhang JY, Shao ZH, Yang C, Zhao GP, Huang KY, Zhang CC. The LysR-type transcriptional factor PacR controls heterocyst differentiation and C/N metabolism in the cyanobacterium Anabaena PCC 7120. Microbiol Res 2025; 290:127970. [PMID: 39561606 DOI: 10.1016/j.micres.2024.127970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
PacR (All3953) has previously been identified as a global transcriptional regulator of carbon assimilation in cyanobacteria. In the facultative diazotrophic and filamentous cyanobacterium Anabaena PCC 7120 (Anabaena), inactivation of pacR has been shown to affect cell growth under various conditions. Nitrogen fixation in Anabaena occurs in heterocysts, cells differentiated semiregularly along the filaments following deprivation of combined nitrogen such as nitrate or ammonium. Here, we created a markerless deletion mutant of pacR. In addition to its growth defects observed under different light and nitrogen conditions, the mutant could form a high frequency of heterocysts, including heterocyst doublets, even in the presence of nitrate. Inactivation of pacR led to the upregulation of ntcA, a global regulator of nitrogen metabolism and heterocyst formation, as well as downregulation of genes involved in nitrate uptake and assimilation. These changes led to N-limited cells in the presence of nitrate. PacR also regulates most of the genes encoding bicarbonate transport systems. The promoter regions of ntcA, and several other genes involved in nitrogen or carbon uptake and assimilation, as well as patS and hetN involved in heterocyst patterning can be directly recognized by PacR in vitro. These findings, along with previously reported ChIP-seq data, establish PacR as a crucial transcriptional regulator for balancing carbon and nitrogen metabolism in cyanobacteria.
Collapse
Affiliation(s)
- Gui-Ming Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China.
| | - Zhi-Hui Shao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Ping Zhao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai-Yao Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China.
| |
Collapse
|
2
|
Casanova-Ferrer P, Muñoz-García J, Ares S. Mathematical models of nitrogen-fixing cell patterns in filamentous cyanobacteria. Front Cell Dev Biol 2022; 10:959468. [PMID: 36187490 PMCID: PMC9523125 DOI: 10.3389/fcell.2022.959468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Anabaena genus is a model organism of filamentous cyanobacteria whose vegetative cells can differentiate under nitrogen-limited conditions into a type of cell called a heterocyst. These heterocysts lose the possibility to divide and are necessary for the filament because they can fix and share environmental nitrogen. In order to distribute the nitrogen efficiently, heterocysts are arranged to form a quasi-regular pattern whose features are maintained as the filament grows. Recent efforts have allowed advances in the understanding of the interactions and genetic mechanisms underlying this dynamic pattern. Here, we present a systematic review of the existing theoretical models of nitrogen-fixing cell differentiation in filamentous cyanobacteria. These filaments constitute one of the simplest forms of multicellular organization, and this allows for several modeling scales of this emergent pattern. The system has been approached at three different levels. From bigger to smaller scale, the system has been considered as follows: at the population level, by defining a mean-field simplified system to study the ratio of heterocysts and vegetative cells; at the filament level, with a continuous simplification as a reaction-diffusion system; and at the cellular level, by studying the genetic regulation that produces the patterning for each cell. In this review, we compare these different approaches noting both the virtues and shortcomings of each one of them.
Collapse
Affiliation(s)
- Pau Casanova-Ferrer
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
- Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
| | - Javier Muñoz-García
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Spain
| | - Saúl Ares
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
- Centro Nacional de Biotecnologia (CNB), CSIC, Madrid, Spain
| |
Collapse
|
3
|
Abstract
Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; ,
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; , .,Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Marques LCB, Lima JE, Pimentel JDSM, Giani A. Heterocyte production, gene expression and phylogeography in Raphidiopsis ( = Cylindrospermopsis) Raciborskii. FEMS Microbiol Ecol 2022; 98:6576327. [PMID: 35488867 DOI: 10.1093/femsec/fiac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/03/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Raphidiopsis ( = Cylindrospermopsis) raciborskii was described as a subtropical-tropical cyanobacterium, later reported expanding into temperate regions. Heterocyte presence used to distinguish Cylindrospermopsis from the very similar Raphidiopsis, but recently the two genera were recognized as one and unified. This study aimed to investigate how heterocyte production is related to nitrogen (N) limitation in heterocytous and non-heterocytous strains of R.raciborskii. High N-concentrations did not inhibit heterocyte development in some strains, while prolonged N-starvation periods never stimulated production in others. RT-qPCR was used to examine the genetic background, through the expression patterns of nifH, ntcA and hetR. While gene expression increased under N-restriction, N-sufficiency did not suppress nifH transcripts as previously observed in other diazotrophyc cyanobacteria, suggesting that heterocyte production in R. raciborskii is not regulated by N-availability. Heterocytous and non-heterocytous strains were genotypically characterized to assess their phylogenetic relationships,. In the phylogenetic tree, clusters were intermixed and confirmed Raphidiopsis and Cylindrospermopsis as the same genus. The tree supported previous findings of earlier splitting of American strains, while contesting the African origin hypothesis. The existence of two lines of Chinese strains, with distinct evolutionary patterns, is a significant addition that could lead to new hypotheses of the species biogeography.
Collapse
Affiliation(s)
- Laísa Corrêa Braga Marques
- Department of Botany, Phycology Laboratory, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Joni Esrom Lima
- Department of Botany, Plant Physiology Laboratory, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Alessandra Giani
- Department of Botany, Phycology Laboratory, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Abstract
Bacterial cell division, with a few exceptions, is driven by FtsZ through a treadmilling mechanism to remodel and constrict the rigid peptidoglycan (PG) layer. Yet different organisms may differ in the composition of the cell division complex (divisome). In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, hetF is required for the initiation of the differentiation of heterocysts, cells specialized in N2 fixation under combined-nitrogen deprivation. In this study, we demonstrate that hetF is expressed in vegetative cells and necessary for cell division under certain conditions. Under nonpermissive conditions, cells of a ΔhetF mutant stop dividing, consistent with increased levels of HetF under similar conditions in the wild type. Furthermore, HetF is a membrane protein located at midcell and cell-cell junctions. In the absence of HetF, FtsZ rings are still present in the elongated cells; however, PG remodeling is abolished. This phenotype is similar to that observed with the inhibition of the septal PG synthase FtsI. We further reveal that HetF is recruited to or stabilized at the divisome by interacting with FtsI and that this interaction is necessary for HetF function in cell division. Our results indicate that HetF is a member of the divisome depending mainly on light intensity and reveal distinct features of the cell division machinery in cyanobacteria that are of high ecological and environmental importance.
Collapse
|
6
|
Inactivation of Three RG(S/T)GR Pentapeptide-Containing Negative Regulators of HetR Results in Lethal Differentiation of Anabaena PCC 7120. Life (Basel) 2020; 10:life10120326. [PMID: 33291589 PMCID: PMC7761841 DOI: 10.3390/life10120326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. PCC 7120 produces, during the differentiation of heterocysts, a short peptide PatS and a protein HetN, both containing an RGSGR pentapeptide essential for activity. Both act on the master regulator HetR to guide heterocyst pattern formation by controlling the binding of HetR to DNA and its turnover. A third small protein, PatX, with an RG(S/T)GR motif is present in all HetR-containing cyanobacteria. In a nitrogen-depleted medium, inactivation of patX does not produce a discernible change in phenotype, but its overexpression blocks heterocyst formation. Mutational analysis revealed that PatX is not required for normal intercellular signaling, but it nonetheless is required when PatS is absent to prevent rapid ectopic differentiation. Deprivation of all three negative regulators—PatS, PatX, and HetN—resulted in synchronous differentiation. However, in a nitrogen-containing medium, such deprivation leads to extensive fragmentation, cell lysis, and aberrant differentiation, while either PatX or PatS as the sole HetR regulator can establish and maintain a semiregular heterocyst pattern. These results suggest that tight control over HetR by PatS and PatX is needed to sustain vegetative growth and regulated development. The mutational analysis has been interpreted in light of the opposing roles of negative regulators of HetR and the positive regulator HetL.
Collapse
|
7
|
The Inorganic Nutrient Regime and the mre Genes Regulate Cell and Filament Size and Morphology in the Phototrophic Multicellular Bacterium Anabaena. mSphere 2020; 5:5/5/e00747-20. [PMID: 33115834 PMCID: PMC7593598 DOI: 10.1128/msphere.00747-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena. The model cyanobacterium Anabaena sp. PCC 7120 exhibits a phototrophic metabolism relying on oxygenic photosynthesis and a complex morphology. The organismic unit is a filament of communicated cells that may include cells specialized in different nutritional tasks, thus representing a paradigm of multicellular bacteria. In Anabaena, the inorganic carbon and nitrogen regime influenced not only growth, but also cell size, cell shape, and filament length, which also varied through the growth cycle. When using combined nitrogen, especially with abundant carbon, cells enlarged and elongated during active growth. When fixing N2, which imposed lower growth rates, shorter and smaller cells were maintained. In Anabaena, gene homologs to mreB, mreC, and mreD form an operon that was expressed at higher levels during the phase of fastest growth. In an ntcA mutant, mre transcript levels were higher than in the wild type and, consistently, cells were longer. Negative regulation by NtcA can explain that Anabaena cells were longer in the presence of combined nitrogen than in diazotrophic cultures, in which the levels of NtcA are higher. mreB, mreC, and mreD mutants could grow with combined nitrogen, but only the latter mutant could grow diazotrophically. Cells were always larger and shorter than wild-type cells, and their orientation in the filament was inverted. Consistent with increased peptidoglycan width and incorporation in the intercellular septa, filaments were longer in the mutants, suggesting a role for MreB, MreC, and MreD in the construction of septal peptidoglycan that could affect intercellular communication required for diazotrophic growth. IMPORTANCE Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena. In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena.
Collapse
|
8
|
Expression from DIF1-motif promoters of hetR and patS is dependent on HetZ and modulated by PatU3 during heterocyst differentiation. PLoS One 2020; 15:e0232383. [PMID: 32701963 PMCID: PMC7377430 DOI: 10.1371/journal.pone.0232383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023] Open
Abstract
HetR and PatS/PatX-derived peptides are the activator and diffusible inhibitor for cell differentiation and patterning in heterocyst-forming cyanobacteria. HetR regulates target genes via HetR-recognition sites. However, some genes (such as patS/patX) upregulated at the early stage of heterocyst differentiation possess DIF1 (or DIF+) motif (TCCGGA) promoters rather than HetR-recognition sites; hetR possesses both predicted regulatory elements. How HetR controls heterocyst-specific expression from DIF1 motif promoters remains to be answered. This study presents evidence that the expression from DIF1 motif promoters of hetR, patS and patX is more directly dependent on hetZ, a gene regulated by HetR via a HetR-recognition site. The HetR-binding site upstream of hetR is not required for the autoregulation of hetR. PatU3 (3′ portion of PatU) that interacts with HetZ may modulate the expression of hetR, hetZ and patS. These findings contribute to understanding of the mutual regulation of hetR, hetZ-patU and patS/patX in a large group of multicellular cyanobacteria.
Collapse
|
9
|
Brenes‐Álvarez M, Minguet M, Vioque A, Muro‐Pastor AM. NsiR1, a smallRNAwith multiple copies, modulates heterocyst differentiation in the cyanobacteriumNostocsp.PCC7120. Environ Microbiol 2020; 22:3325-3338. [DOI: 10.1111/1462-2920.15103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Manuel Brenes‐Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla Spain
| | - Marina Minguet
- Instituto de Bioquímica Vegetal y Fotosíntesis Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla Spain
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla Spain
| | - Alicia M. Muro‐Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla Spain
| |
Collapse
|
10
|
Roumezi B, Xu X, Risoul V, Fan Y, Lebrun R, Latifi A. The Pkn22 Kinase of Nostoc PCC 7120 Is Required for Cell Differentiation via the Phosphorylation of HetR on a Residue Highly Conserved in Genomes of Heterocyst-Forming Cyanobacteria. Front Microbiol 2020; 10:3140. [PMID: 32038573 PMCID: PMC6985446 DOI: 10.3389/fmicb.2019.03140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
Hanks-type kinases encoding genes are present in most cyanobacterial genomes. Despite their widespread pattern of conservation, little is known so far about their role because their substrates and the conditions triggering their activation are poorly known. Here we report that under diazotrophic conditions, normal heterocyst differentiation and growth of the filamentous cyanobacterium Nostoc PCC 7120 require the presence of the Pkn22 kinase, which is induced under combined nitrogen starvation conditions. By analyzing the phenotype of pkn22 mutant overexpressing genes belonging to the regulatory cascade initiating the development program, an epistatic relationship was found to exist between this kinase and the master regulator of differentiation, HetR. The results obtained using a bacterial two hybrid approach indicated that Pkn22 and HetR interact, and the use of a genetic screen inducing the loss of this interaction showed that residues of HetR which are essential for this interaction to occur are also crucial to HetR activity both in vitro and in vivo. Mass spectrometry showed that HetR co-produced with the Pkn22 kinase in Escherichia coli is phosphorylated on Serine 130 residue. Phosphoablative substitution of this residue impaired the ability of the strain to undergo cell differentiation, while its phosphomimetic substitution increased the number of heterocysts formed. The Serine 130 residue is part of a highly conserved sequence in filamentous cyanobacterial strains differentiating heterocysts. Heterologous complementation assays showed that the presence of this domain is necessary for heterocyst induction. We propose that the phosphorylation of HetR might have been acquired to control heterocyst differentiation.
Collapse
Affiliation(s)
- Baptiste Roumezi
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| | - Xiaomei Xu
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| | - Véronique Risoul
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| | - Yingping Fan
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| | - Régine Lebrun
- Proteomic Platform, Marseille Protéomique IBiSA Labelled, CNRS, IMM, Aix-Marseille Université, Marseille, France
| | - Amel Latifi
- Laboratoire de Chimie Bactérienne, CNRS, Aix-Marseille Université, Marseille, France
| |
Collapse
|
11
|
Muro-Pastor AM, Hess WR. Regulatory RNA at the crossroads of carbon and nitrogen metabolism in photosynthetic cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194477. [PMID: 31884117 DOI: 10.1016/j.bbagrm.2019.194477] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are photosynthetic bacteria that populate widely different habitats. Accordingly, cyanobacteria exhibit a wide spectrum of lifestyles, physiologies, and morphologies and possess genome sizes and gene numbers which may vary by up to a factor of ten within the phylum. Consequently, large differences exist between individual species in the size and complexity of their regulatory networks. Several non-coding RNAs have been identified that play crucial roles in the acclimation responses of cyanobacteria to changes in the environment. Some of these regulatory RNAs are conserved throughout the cyanobacterial phylum, while others exist only in a few taxa. Here we give an overview on characterized regulatory RNAs in cyanobacteria, with a focus on regulators of photosynthesis, carbon and nitrogen metabolism. However, chances are high that these regulators represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany; University of Freiburg, Freiburg Institute for Advanced Studies, Albertstr. 19, D-79104 Freiburg, Germany.
| |
Collapse
|
12
|
patD, a Gene Regulated by NtcA, Is Involved in the Optimization of Heterocyst Frequency in the Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2019; 201:JB.00457-19. [PMID: 31405917 DOI: 10.1128/jb.00457-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/04/2019] [Indexed: 11/20/2022] Open
Abstract
In the filamentous multicellular cyanobacterium Anabaena sp. strain PCC 7120, 5 to 10% of the cells differentiate into heterocysts, which are specialized in N2 fixation. Heterocysts and vegetative cells are mutually dependent for filament growth through nutrient exchange. Thus, the heterocyst frequency should be optimized to maintain the cellular carbon and nitrogen (C/N) balance for filament fitness in the environment. Here, we report the identification of patD, whose expression is directly activated in developing cells by the transcription factor NtcA. The inactivation of patD increases heterocyst frequency and promotes the upregulation of the positive regulator of heterocyst development hetR, whereas its overexpression decreases the heterocyst frequency. The change in heterocyst frequency resulting from the inactivation of patD leads to the reduction in competitiveness of the filaments under combined-nitrogen-depleted conditions. These results indicate that patD regulates heterocyst frequency in Anabaena sp. PCC 7120, ensuring its optimal filament growth.IMPORTANCE Microorganisms have evolved various strategies in order to adapt to the environment and compete with other organisms. Heterocyst differentiation is a prokaryotic model for studying complex cellular regulation. The NtcA-regulated gene patD controls the ratio of heterocysts relative to vegetative cells on the filaments of Anabaena sp. strain PCC 7120. Such a regulation provides a mechanism through which carbon fixation by vegetative cells and nitrogen fixation by heterocysts are properly balanced to ensure optimal growth and keep a competitive edge for long-term survival.
Collapse
|
13
|
Guío J, Sarasa-Buisan C, Velázquez-Campoy A, Bes MT, Fillat MF, Peleato ML, Sevilla E. 2-oxoglutarate modulates the affinity of FurA for the ntcA promoter in Anabaena sp. PCC 7120. FEBS Lett 2019; 594:278-289. [PMID: 31538336 DOI: 10.1002/1873-3468.13610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/11/2022]
Abstract
2-oxoglutarate (2-OG) is a central metabolite that acts as a signaling molecule informing about the status of the carbon/nitrogen balance of the cell. In recent years, some transcriptional regulators and even two-component systems have been described as 2-OG sensors. In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, two master regulators, NtcA and FurA, are deeply involved in the regulation of nitrogen metabolism. Both of them show a complex intertwined regulatory circuit to achieve a suitable regulation of nitrogen fixation. In this work, 2-OG is found to bind FurA, modulating the specific binding of FurA to the ntcA promoter. This study provides evidence of a new additional control point in the complex network controlled by the NtcA and FurA proteins.
Collapse
Affiliation(s)
- Jorge Guío
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - María Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - María Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Spain
| |
Collapse
|
14
|
Abstract
The filamentous cyanobacterium Anabaena can form heterocysts specialized in N2 fixation, mostly through a cascade of transcriptional activation in response to the nitrogen starvation signal 2-oxoglutarate. It is reported now that a transcription repressor, CalA, acts as a safety device to prevent heterocyst development under certain conditions where the 2-oxoglutarate level may touch the threshold to trigger unnecessary initiation of heterocyst development. Such a control may increase the fitness of Anabaena under a constantly changing environment.
Collapse
|
15
|
Flores E, Picossi S, Valladares A, Herrero A. Transcriptional regulation of development in heterocyst-forming cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:673-684. [DOI: 10.1016/j.bbagrm.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023]
|
16
|
Kaushik MS, Mishra AK. Iron deficiency influences NtcA-dependent regulation of fatty acid desaturation and heterocyte envelop formation in Anabaena sp. PCC 7120. PHYSIOLOGIA PLANTARUM 2019; 166:570-584. [PMID: 30035317 DOI: 10.1111/ppl.12806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
In Anabaena sp. PCC 7120, iron is an essential trace element and its availability determines proper functioning of several kinds of metabolisms. Iron deficiency leads to several unavoidable consequences including membrane damage. In the present study, we dealt with the impact of iron deficiency on NtcA (global nitrogen regulator)-dependent regulation of two important processes, i.e. fatty acid desaturation and heterocyte envelop formation in cyanobacterium Anabaena sp. PCC 7120. In Anabaena sp. PCC 7120, NtcA regulates fatty acid desaturation by regulating enzyme fatty acid desaturases. The NtcA-based regulation of fatty acid desaturation may be direct or indirect. Furthermore, the expression of genes involved in the heterocyte envelope polysaccharide (HEP) layer formation (hepABCK) and heterocyte-specific glycolipids (HGLs) synthesis (devH, hglEA , prpJ and devB) were also under the control of NtcA and reduced under iron deficiency background. The enhanced expression of furA and early downregulation of ntcA under iron deficiency is responsible for reduction in fatty acid desaturation as well as decrease in the expression of genes involved in HEP layer formation and HGL synthesis. Overall results confirmed that iron deficiency influences the NtcA-based regulation of fatty acid desaturation and heterocyte envelop formation in Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Manish S Kaushik
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun K Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
17
|
Brenes‐Álvarez M, Mitschke J, Olmedo‐Verd E, Georg J, Hess WR, Vioque A, Muro‐Pastor AM. Elements of the heterocyst‐specific transcriptome unravelled by co‐expression analysis inNostocsp. PCC 7120. Environ Microbiol 2019; 21:2544-2558. [DOI: 10.1111/1462-2920.14647] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/06/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Manuel Brenes‐Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Jan Mitschke
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
| | - Elvira Olmedo‐Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
- Freiburg Institute for Advanced Studies, University of Freiburg D‐79104 Freiburg Germany
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Alicia M. Muro‐Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| |
Collapse
|
18
|
Elhai J, Khudyakov I. Ancient association of cyanobacterial multicellularity with the regulator HetR and an RGSGR pentapeptide-containing protein (PatX). Mol Microbiol 2018; 110:931-954. [PMID: 29885033 DOI: 10.1111/mmi.14003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
One simple model to explain biological pattern postulates the existence of a stationary regulator of differentiation that positively affects its own expression, coupled with a diffusible suppressor of differentiation that inhibits the regulator's expression. The first has been identified in the filamentous, heterocyst-forming cyanobacterium, Anabaena PCC 7120 as the transcriptional regulator, HetR and the second as the small protein, PatS, which contains a critical RGSGR motif that binds to HetR. HetR is present in almost all filamentous cyanobacteria, but only a subset of heterocyst-forming strains carry proteins similar to PatS. We identified a third protein, PatX that also carries the RGSGR motif and is coextensive with HetR. Amino acid sequences of PatX contain two conserved regions: the RGSGR motif and a hydrophobic N-terminus. Within 69 nt upstream from all instances of the gene is a DIF1 motif correlated in Anabaena with promoter induction in developing heterocysts, preceded in heterocyst-forming strains by an apparent NtcA-binding site, associated with regulation by nitrogen-status. Consistent with a role in the simple model, PatX is expressed dependent on HetR and acts to inhibit differentiation. The acquisition of the PatX/HetR pair preceded the appearance of both PatS and heterocysts, dating back to the beginnings of multicellularity.
Collapse
Affiliation(s)
- Jeff Elhai
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Ivan Khudyakov
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, 196608, Russia
| |
Collapse
|
19
|
Herrero A, Flores E. Genetic responses to carbon and nitrogen availability in Anabaena. Environ Microbiol 2018; 21:1-17. [PMID: 30066380 DOI: 10.1111/1462-2920.14370] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/27/2022]
Abstract
Heterocyst-forming cyanobacteria are filamentous organisms that perform oxygenic photosynthesis and CO2 fixation in vegetative cells and nitrogen fixation in heterocysts, which are formed under deprivation of combined nitrogen. These organisms can acclimate to use different sources of nitrogen and respond to different levels of CO2 . Following work mainly done with the best studied heterocyst-forming cyanobacterium, Anabaena, here we summarize the mechanisms of assimilation of ammonium, nitrate, urea and N2 , the latter involving heterocyst differentiation, and describe aspects of CO2 assimilation that involves a carbon concentration mechanism. These processes are subjected to regulation establishing a hierarchy in the assimilation of nitrogen sources -with preference for the most reduced nitrogen forms- and a dependence on sufficient carbon. This regulation largely takes place at the level of gene expression and is exerted by a variety of transcription factors, including global and pathway-specific transcriptional regulators. NtcA is a CRP-family protein that adjusts global gene expression in response to the C-to-N balance in the cells, and PacR is a LysR-family transcriptional regulator (LTTR) that extensively acclimates the cells to oxygenic phototrophy. A cyanobacterial-specific transcription factor, HetR, is involved in heterocyst differentiation, and other LTTR factors are specifically involved in nitrate and CO2 assimilation.
Collapse
Affiliation(s)
- Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| |
Collapse
|
20
|
Burnat M, Li B, Kim SH, Michael AJ, Flores E. Homospermidine biosynthesis in the cyanobacteriumAnabaenarequires a deoxyhypusine synthase homologue and is essential for normal diazotrophic growth. Mol Microbiol 2018; 109:763-780. [DOI: 10.1111/mmi.14006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mireia Burnat
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla Avda. Américo Vespucio 49E‐41092Sevilla Spain
| | - Bin Li
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Sok Ho Kim
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Anthony J. Michael
- Department of Biochemistry University of Texas Southwestern Medical Center 5323 Harry Hines BlvdDallas TX 75390‐9041USA
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla Avda. Américo Vespucio 49E‐41092Sevilla Spain
| |
Collapse
|
21
|
Di Patti F, Lavacchi L, Arbel-Goren R, Schein-Lubomirsky L, Fanelli D, Stavans J. Robust stochastic Turing patterns in the development of a one-dimensional cyanobacterial organism. PLoS Biol 2018; 16:e2004877. [PMID: 29727442 PMCID: PMC5955598 DOI: 10.1371/journal.pbio.2004877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/16/2018] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
Under nitrogen deprivation, the one-dimensional cyanobacterial organism Anabaena sp. PCC 7120 develops patterns of single, nitrogen-fixing cells separated by nearly regular intervals of photosynthetic vegetative cells. We study a minimal, stochastic model of developmental patterns in Anabaena that includes a nondiffusing activator, two diffusing inhibitor morphogens, demographic fluctuations in the number of morphogen molecules, and filament growth. By tracking developing filaments, we provide experimental evidence for different spatiotemporal roles of the two inhibitors during pattern maintenance and for small molecular copy numbers, justifying a stochastic approach. In the deterministic limit, the model yields Turing patterns within a region of parameter space that shrinks markedly as the inhibitor diffusivities become equal. Transient, noise-driven, stochastic Turing patterns are produced outside this region, which can then be fixed by downstream genetic commitment pathways, dramatically enhancing the robustness of pattern formation, also in the biologically relevant situation in which the inhibitors' diffusivities may be comparable.
Collapse
Affiliation(s)
- Francesca Di Patti
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino, Italia
- CSDC and INFN Sez.di Firenze, Sesto Fiorentino, Italia
| | - Laura Lavacchi
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino, Italia
| | - Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | | | - Duccio Fanelli
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino, Italia
- CSDC and INFN Sez.di Firenze, Sesto Fiorentino, Italia
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Videau P, Rivers OS, Tom SK, Oshiro RT, Ushijima B, Swenson VA, Philmus B, Gaylor MO, Cozy LM. The hetZ gene indirectly regulates heterocyst development at the level of pattern formation in Anabaena sp. strain PCC 7120. Mol Microbiol 2018; 109:91-104. [PMID: 29676808 DOI: 10.1111/mmi.13974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Multicellular development requires the careful orchestration of gene expression to correctly create and position specialized cells. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are differentiated from vegetative cells in a reproducibly periodic and physiologically relevant pattern. While many genetic factors required for heterocyst development have been identified, the role of HetZ has remained unclear. Here, we present evidence to clarify the requirement of hetZ for heterocyst production and support a model where HetZ functions in the patterning stage of differentiation. We show that a clean, nonpolar deletion of hetZ fails to express the developmental genes hetR, patS, hetP and hetZ correctly and fails to produce heterocysts. Complementation and overexpression of hetZ in a hetP mutant revealed that hetZ was incapable of bypassing hetP, suggesting that it acts upstream of hetP. Complementation and overexpression of hetZ in a hetR mutant, however, demonstrated bypass of hetR, suggesting that it acts downstream of hetR and is capable of bypassing the need for hetR for differentiation irrespective of nitrogen status. Finally, protein-protein interactions were observed between HetZ and HetR, Alr2902 and HetZ itself. Collectively, this work suggests a regulatory role for HetZ in the patterning phase of cellular differentiation in Anabaena.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Orion S Rivers
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Sasa K Tom
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Reid T Oshiro
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Blake Ushijima
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Vaille A Swenson
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael O Gaylor
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Loralyn M Cozy
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| |
Collapse
|
23
|
Functional Overlap of hetP and hetZ in Regulation of Heterocyst Differentiation in Anabaena sp. Strain PCC 7120. J Bacteriol 2018; 200:JB.00707-17. [PMID: 29440250 DOI: 10.1128/jb.00707-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
HetR plays a key role in regulation of heterocyst differentiation and patterning in Anabaena It directly regulates genes involved in heterocyst differentiation (such as hetP and hetZ), genes involved in pattern formation (patA), and many others. In this study, we investigated the functional relationship of hetP and hetZ and their role in HetR-dependent cell differentiation. Coexpression of hetP and hetZ from the promoter of ntcA, which encodes the global nitrogen regulator, enabled a hetR mutant to form heterocysts with low aerobic nitrogenase activity. Overexpression of hetZ restored heterocyst differentiation in a hetP mutant and vice versa. Overexpression of hetR restored heterocyst formation in either a hetP or a hetZ mutant but not in a hetZ hetP double mutant. The functional overlap of hetP and hetZ was further confirmed by reverse transcription-quantitative PCR (RT-qPCR) and transcriptomic analyses of their effects on gene expression. In addition, yeast two-hybrid and pulldown assays showed the interaction of HetZ with HetR. HetP and HetZ are proposed as the two major factors that control heterocyst formation in response to upregulation of hetRIMPORTANCE Heterocyst-forming cyanobacteria contribute significantly to N2 fixation in marine, freshwater, and terrestrial ecosystems. Formation of heterocysts enables this group of cyanobacteria to fix N2 efficiently under aerobic conditions. HetR, HetP, and HetZ are among the most important factors involved in heterocyst differentiation. We present evidence for the functional overlap of hetP and hetZ and for the key role of the HetR-HetP/HetZ circuit in regulation of heterocyst differentiation. The regulatory mechanism based on HetR, HetP, and HetZ is probably conserved in all heterocyst-forming cyanobacteria.
Collapse
|
24
|
Muro-Pastor AM, Brenes-Álvarez M, Vioque A. A combinatorial strategy of alternative promoter use during differentiation of a heterocystous cyanobacterium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:449-458. [PMID: 28585763 DOI: 10.1111/1758-2229.12555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Heterocystous cyanobacteria such as Nostoc sp. are filamentous photosynthetic organisms that, in response to nitrogen deficiency, undergo a differentiation process transforming certain, semi-regularly spaced cells into heterocysts, devoted to nitrogen fixation. During transition to a nitrogen-fixing regime, growth of most vegetative cells in the filament is temporarily arrested due to nutritional deprivation, but developing heterocysts require intense transcriptional activity. Therefore, the coexistence of arrested vegetative cells and actively developing prospective heterocysts relies on the simultaneous operation of somewhat opposite transcriptional programs. We have identified genes with multiple nitrogen-responsive transcriptional starts appearing in seemingly paradoxical combinations. For instance, sigA, encoding the RNA polymerase housekeeping sigma factor, is transcribed from one major nitrogen stress-repressed promoter and from a second, nitrogen stress-induced promoter. Here, we show that both promoters are expressed with complementary temporal dynamics. Using a gfp reporter we also show that transcription from the inducible promoter takes place exclusively in differentiating heterocysts and is already detected before any morphological or fluorescence signature of differentiation is observed. Tandem promoters with opposite dynamics could operate a compensatory mechanism in which repression of transcription from the major promoter operative in vegetative cells is offset by transcription from a new promoter only in developing heterocyst.
Collapse
Affiliation(s)
- Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, E-41092, Spain
| | - Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, E-41092, Spain
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, E-41092, Spain
| |
Collapse
|
25
|
Esteves-Ferreira AA, Cavalcanti JHF, Vaz MGMV, Alvarenga LV, Nunes-Nesi A, Araújo WL. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol 2017; 40:261-275. [PMID: 28323299 PMCID: PMC5452144 DOI: 10.1590/1678-4685-gmb-2016-0050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria is a remarkable group of prokaryotic photosynthetic microorganisms, with several genera capable of fixing atmospheric nitrogen (N2) and presenting a wide range of morphologies. Although the nitrogenase complex is not present in all cyanobacterial taxa, it is spread across several cyanobacterial strains. The nitrogenase complex has also a high theoretical potential for biofuel production, since H2 is a by-product produced during N2 fixation. In this review we discuss the significance of a relatively wide variety of cell morphologies and metabolic strategies that allow spatial and temporal separation of N2 fixation from photosynthesis in cyanobacteria. Phylogenetic reconstructions based on 16S rRNA and nifD gene sequences shed light on the evolutionary history of the two genes. Our results demonstrated that (i) sequences of genes involved in nitrogen fixation (nifD) from several morphologically distinct strains of cyanobacteria are grouped in similarity with their morphology classification and phylogeny, and (ii) nifD genes from heterocytous strains share a common ancestor. By using this data we also discuss the evolutionary importance of processes such as horizontal gene transfer and genetic duplication for nitrogenase evolution and diversification. Finally, we discuss the importance of H2 synthesis in cyanobacteria, as well as strategies and challenges to improve cyanobacterial H2 production.
Collapse
Affiliation(s)
- Alberto A Esteves-Ferreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - João Henrique Frota Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luna V Alvarenga
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
26
|
Brenes-Álvarez M, Olmedo-Verd E, Vioque A, Muro-Pastor AM. Identification of Conserved and Potentially Regulatory Small RNAs in Heterocystous Cyanobacteria. Front Microbiol 2016; 7:48. [PMID: 26870012 PMCID: PMC4734099 DOI: 10.3389/fmicb.2016.00048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Small RNAs (sRNAs) are a growing class of non-protein-coding transcripts that participate in the regulation of virtually every aspect of bacterial physiology. Heterocystous cyanobacteria are a group of photosynthetic organisms that exhibit multicellular behavior and developmental alternatives involving specific transcriptomes exclusive of a given physiological condition or even a cell type. In the context of our ongoing effort to understand developmental decisions in these organisms we have undertaken an approach to the global identification of sRNAs. Using differential RNA-Seq we have previously identified transcriptional start sites for the model heterocystous cyanobacterium Nostoc sp. PCC 7120. Here we combine this dataset with a prediction of Rho-independent transcriptional terminators and an analysis of phylogenetic conservation of potential sRNAs among 89 available cyanobacterial genomes. In contrast to predictive genome-wide approaches, the use of an experimental dataset comprising all active transcriptional start sites (differential RNA-Seq) facilitates the identification of bona fide sRNAs. The output of our approach is a dataset of predicted potential sRNAs in Nostoc sp. PCC 7120, with different degrees of phylogenetic conservation across the 89 cyanobacterial genomes analyzed. Previously described sRNAs appear among the predicted sRNAs, demonstrating the performance of the algorithm. In addition, new predicted sRNAs are now identified that can be involved in regulation of different aspects of cyanobacterial physiology, including adaptation to nitrogen stress, the condition that triggers differentiation of heterocysts (specialized nitrogen-fixing cells). Transcription of several predicted sRNAs that appear exclusively in the genomes of heterocystous cyanobacteria is experimentally verified by Northern blot. Cell-specific transcription of one of these sRNAs, NsiR8 (nitrogen stress-induced RNA 8), in developing heterocysts is also demonstrated.
Collapse
Affiliation(s)
- Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla, Spain
| | - Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla, Spain
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla, Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla, Spain
| |
Collapse
|
27
|
Valladares A, Flores E, Herrero A. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacteriumAnabaenaforms tetramers and can be regulated by phosphorylation. Mol Microbiol 2015; 99:808-19. [DOI: 10.1111/mmi.13268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 E-41092 Seville Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 E-41092 Seville Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis; Consejo Superior de Investigaciones Científicas; Universidad de Sevilla; Américo Vespucio 49 E-41092 Seville Spain
| |
Collapse
|
28
|
Structural insights into HetR-PatS interaction involved in cyanobacterial pattern formation. Sci Rep 2015; 5:16470. [PMID: 26576507 PMCID: PMC4649674 DOI: 10.1038/srep16470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/12/2015] [Indexed: 01/07/2023] Open
Abstract
The one-dimensional pattern of heterocyst in the model cyanobacterium Anabaena sp. PCC 7120 is coordinated by the transcription factor HetR and PatS peptide. Here we report the complex structures of HetR binding to DNA, and its hood domain (HetRHood) binding to a PatS-derived hexapeptide (PatS6) at 2.80 and 2.10 Å, respectively. The intertwined HetR dimer possesses a couple of novel HTH motifs, each of which consists of two canonical α-helices in the DNA-binding domain and an auxiliary α-helix from the flap domain of the neighboring subunit. Two PatS6 peptides bind to the lateral clefts of HetRHood, and trigger significant conformational changes of the flap domain, resulting in dissociation of the auxiliary α-helix and eventually release of HetR from the DNA major grove. These findings provide the structural insights into a prokaryotic example of Turing model.
Collapse
|
29
|
Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2015; 197:2442-52. [PMID: 25962912 DOI: 10.1128/jb.00198-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. IMPORTANCE Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria assimilate nitrate, but regulation of the nitrate assimilation system varies in different cyanobacterial groups. In the N2-fixing, heterocyst-forming cyanobacteria, the nirA operon, which includes the structural genes for the nitrate assimilation system, is expressed in the presence of nitrate or nitrite if ammonium is not available to the cells. Here we studied the genes required for production of an active nitrate reductase, providing information on the nitrate-dependent induction of the operon, and found evidence for possible protein-protein interactions in the maturation of nitrate reductase and nitrite reductase.
Collapse
|
30
|
Kopf M, Hess WR. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 2015; 39:301-15. [PMID: 25934122 PMCID: PMC6596454 DOI: 10.1093/femsre/fuv017] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 12/02/2022] Open
Abstract
Regulatory RNAs play versatile roles in bacteria in the coordination of gene expression during various physiological processes, especially during stress adaptation. Photosynthetic bacteria use sunlight as their major energy source. Therefore, they are particularly vulnerable to the damaging effects of excess light or UV irradiation. In addition, like all bacteria, photosynthetic bacteria must adapt to limiting nutrient concentrations and abiotic and biotic stress factors. Transcriptome analyses have identified hundreds of potential regulatory small RNAs (sRNAs) in model cyanobacteria such as Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, and in environmentally relevant genera such as Trichodesmium, Synechococcus and Prochlorococcus. Some sRNAs have been shown to actually contain μORFs and encode short proteins. Examples include the 40-amino-acid product of the sml0013 gene, which encodes the NdhP subunit of the NDH1 complex. In contrast, the functional characterization of the non-coding sRNA PsrR1 revealed that the 131 nt long sRNA controls photosynthetic functions by targeting multiple mRNAs, providing a paradigm for sRNA functions in photosynthetic bacteria. We suggest that actuatons comprise a new class of genetic elements in which an sRNA gene is inserted upstream of a coding region to modify or enable transcription of that region.
Collapse
Affiliation(s)
- Matthias Kopf
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, Institute of Biology III, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
31
|
Ishihara JI, Tachikawa M, Iwasaki H, Mochizuki A. Mathematical study of pattern formation accompanied by heterocyst differentiation in multicellular cyanobacterium. J Theor Biol 2015; 371:9-23. [DOI: 10.1016/j.jtbi.2015.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/26/2022]
|
32
|
Corrales-Guerrero L, Tal A, Arbel-Goren R, Mariscal V, Flores E, Herrero A, Stavans J. Spatial fluctuations in expression of the heterocyst differentiation regulatory gene hetR in Anabaena filaments. PLoS Genet 2015; 11:e1005031. [PMID: 25830300 PMCID: PMC4382288 DOI: 10.1371/journal.pgen.1005031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/27/2015] [Indexed: 11/21/2022] Open
Abstract
Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these basic ingredients combine together in the presence of inevitable stochasticity in gene expression, to control the coupled fluctuations of gene expression that give rise to a one-dimensional developmental pattern in this organism. Under prolonged nitrogen deprivation, one-dimensional filaments of the multicellular cyanobacterium Anabaena undergo a process of development, forming a pattern consisting of cells specialized for nitrogen fixation-heterocysts-, separated by a chain of about ten photosynthetic vegetative cells. The developmental program uses activation, inhibition, and transport to create spatial and temporal patterns of gene expression, in the presence of unavoidable stochastic fluctuations in gene expression among cells. Using a chromosomally-encoded fluorescent marker, we followed the expression of the important regulator HetR in individual cells along filaments, both under abundant nitrogen conditions as well as at different times after nitrogen deprivation. The results of our statistical analysis of these fluctuations illuminate the fundamental role that positive feedback, lateral inhibition and cell-cell communication play in the developmental program, not only after exposure to the external cue that triggers differentiation but also under non-inducing conditions. Furthermore our results establish the spatial extent to which gene expression is correlated along filaments.
Collapse
Affiliation(s)
- Laura Corrales-Guerrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Asaf Tal
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
- * E-mail: (AH); (JS)
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (AH); (JS)
| |
Collapse
|
33
|
Ramos-León F, Mariscal V, Frías JE, Flores E, Herrero A. Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena. Mol Microbiol 2015; 96:566-80. [PMID: 25644579 DOI: 10.1111/mmi.12956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 12/15/2022]
Abstract
Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.
Collapse
Affiliation(s)
- Félix Ramos-León
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | | | | | | | | |
Collapse
|
34
|
Torres-Sánchez A, Gómez-Gardeñes J, Falo F. An integrative approach for modeling and simulation of heterocyst pattern formation in cyanobacteria filaments. PLoS Comput Biol 2015; 11:e1004129. [PMID: 25816286 PMCID: PMC4376521 DOI: 10.1371/journal.pcbi.1004129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022] Open
Abstract
Heterocyst differentiation in cyanobacteria filaments is one of the simplest examples of cellular differentiation and pattern formation in multicellular organisms. Despite of the many experimental studies addressing the evolution and sustainment of heterocyst patterns and the knowledge of the genetic circuit underlying the behavior of single cyanobacterium under nitrogen deprivation, there is still a theoretical gap connecting these two macroscopic and microscopic processes. As an attempt to shed light on this issue, here we explore heterocyst differentiation under the paradigm of systems biology. This framework allows us to formulate the essential dynamical ingredients of the genetic circuit of a single cyanobacterium into a set of differential equations describing the time evolution of the concentrations of the relevant molecular products. As a result, we are able to study the behavior of a single cyanobacterium under different external conditions, emulating nitrogen deprivation, and simulate the dynamics of cyanobacteria filaments by coupling their respective genetic circuits via molecular diffusion. These two ingredients allow us to understand the principles by which heterocyst patterns can be generated and sustained. In particular, our results point out that, by including both diffusion and noisy external conditions in the computational model, it is possible to reproduce the main features of the formation and sustainment of heterocyst patterns in cyanobacteria filaments as observed experimentally. Finally, we discuss the validity and possible improvements of the model.
Collapse
Affiliation(s)
- Alejandro Torres-Sánchez
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
- Laboratori de Càlcul Numèric, Universitat de Politècnica de Catalunya, Barcelona, Spain
| | - Jesús Gómez-Gardeñes
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Fernando Falo
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
35
|
Ehira S, Miyazaki S. Regulation of Genes Involved in Heterocyst Differentiation in the Cyanobacterium Anabaena sp. Strain PCC 7120 by a Group 2 Sigma Factor SigC. Life (Basel) 2015; 5:587-603. [PMID: 25692906 PMCID: PMC4390870 DOI: 10.3390/life5010587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/17/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates specialized cells for nitrogen fixation called heterocysts upon limitation of combined nitrogen in the medium. During heterocyst differentiation, expression of approximately 500 genes is upregulated with spatiotemporal regulation. In the present study, we investigated the functions of sigma factors of RNA polymerase in the regulation of heterocyst differentiation. The transcript levels of sigC, sigE, and sigG were increased during heterocyst differentiation, while expression of sigJ was downregulated. We carried out DNA microarray analysis to identify genes regulated by SigC, SigE, and SigG. It was indicated that SigC regulated the expression of genes involved in heterocyst differentiation and functions. Moreover, genes regulated by SigC partially overlapped with those regulated by SigE, and deficiency of SigC was likely to be compensated by SigE.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| | - Shogo Miyazaki
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
36
|
Mesoscopic model and free energy landscape for protein-DNA binding sites: analysis of cyanobacterial promoters. PLoS Comput Biol 2014; 10:e1003835. [PMID: 25275384 PMCID: PMC4183373 DOI: 10.1371/journal.pcbi.1003835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/26/2014] [Indexed: 01/23/2023] Open
Abstract
The identification of protein binding sites in promoter sequences is a key problem to understand and control regulation in biochemistry and biotechnological processes. We use a computational method to analyze promoters from a given genome. Our approach is based on a physical model at the mesoscopic level of protein-DNA interaction based on the influence of DNA local conformation on the dynamics of a general particle along the chain. Following the proposed model, the joined dynamics of the protein particle and the DNA portion of interest, only characterized by its base pair sequence, is simulated. The simulation output is analyzed by generating and analyzing the Free Energy Landscape of the system. In order to prove the capacity of prediction of our computational method we have analyzed nine promoters of Anabaena PCC 7120. We are able to identify the transcription starting site of each of the promoters as the most populated macrostate in the dynamics. The developed procedure allows also to characterize promoter macrostates in terms of thermo-statistical magnitudes (free energy and entropy), with valuable biological implications. Our results agree with independent previous experimental results. Thus, our methods appear as a powerful complementary tool for identifying protein binding sites in promoter sequences. Binding of specific proteins to particular sites in the DNA sequence is a fundamental issue for gene regulation in molecular biology and genetic engineering. A deep understanding of cell physiology requires the analysis of a plethora of genes involving characterization of their promoter architectures that determine their regulation and gene transcription. In order to locate the promoter elements of a given gene, experimental determination of its transcription start site (TSS) is required. This is an expensive, time-consuming task that, depending on our requirements, could be simplified using computational analysis as a first approach. Nevertheless, most computational methods lack a physical basis on the protein-DNA interaction mechanism. We adopt here this strategy, by using a simple model for protein-DNA interaction to find TSS in a bunch of cyanobacteria promoters. We make use of physical tools to characterize these TSS and to relate them with biological properties as the relative strength of the promoter. Our study shows how a model based on a coarse-grained description of a biomolecule can give valuable insight on its biological function.
Collapse
|
37
|
Kopf M, Klähn S, Scholz I, Matthiessen JKF, Hess WR, Voß B. Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 2014; 21:527-39. [PMID: 24935866 PMCID: PMC4195498 DOI: 10.1093/dnares/dsu018] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RNA-seq and especially differential RNA-seq-type transcriptomic analyses (dRNA-seq) are powerful analytical tools, as they not only provide insights into gene expression changes but also provide detailed information about all promoters active at a given moment, effectively giving a deep insight into the transcriptional landscape. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a unicellular model cyanobacterium that is widely used in research fields from ecology, photophysiology to systems biology, modelling and biotechnology. Here, we analysed the response of the Synechocystis 6803 primary transcriptome to different, environmentally relevant stimuli. We established genome-wide maps of the transcriptional start sites active under 10 different conditions relevant for photosynthetic growth and identified 4,091 transcriptional units, which provide information about operons, 5′ and 3′ untranslated regions (UTRs). Based on a unique expression factor, we describe regulons and relevant promoter sequences at single-nucleotide resolution. Finally, we report several sRNAs with an intriguing expression pattern and therefore likely function, specific for carbon depletion (CsiR1), nitrogen depletion (NsiR4), phosphate depletion (PsiR1), iron stress (IsaR1) or photosynthesis (PsrR1). This dataset is accompanied by comprehensive information providing extensive visualization and data access to allow an easy-to-use approach for the design of experiments, the incorporation into modelling studies of the regulatory system and for comparative analyses.
Collapse
Affiliation(s)
- Matthias Kopf
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Stephan Klähn
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Ingeborg Scholz
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Jasper K F Matthiessen
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Björn Voß
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| |
Collapse
|
38
|
Zhang SR, Lin GM, Chen WL, Wang L, Zhang CC. ppGpp metabolism is involved in heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2013; 195:4536-44. [PMID: 23935047 PMCID: PMC3807476 DOI: 10.1128/jb.00724-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/01/2013] [Indexed: 12/24/2022] Open
Abstract
When deprived of a combined-nitrogen source in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) can form heterocysts capable of nitrogen fixation. The process of heterocyst differentiation takes about 20 to 24 h, during which extensive metabolic and morphological changes take place. Guanosine tetraphosphate (ppGpp) is the signal of the stringent response that ensures cell survival by adjusting major cellular activities in response to nutrient starvation in bacteria, and ppGpp accumulates at the early stage of heterocyst differentiation (J. Akinyanju, R. J. Smith, FEBS Lett. 107:173-176, 1979; J Akinyanju, R. J. Smith, New Phytol. 105:117-122, 1987). Here we show that all1549 (here designated relana) in Anabaena, homologous to relA/spoT, is upregulated in response to nitrogen deprivation and predominantly localized in vegetative cells. The disruption of relana strongly affects the synthesis of ppGpp, and the resulting mutant, all1549Ωsp/sm, fails to form heterocysts and to grow in the absence of a combined-nitrogen source. This phenotype can be complemented by a wild-type copy of relana. Although the upregulation of hetR is affected in the mutant, ectopic overexpression of hetR cannot rescue the phenotype. However, we found that the mutant rapidly loses its viability, within a time window of 3 to 6 h, following the deprivation of combined nitrogen. We propose that ppGpp plays a major role in rebalancing the metabolic activities of the cells in the absence of the nitrogen source supply and that this regulation is necessary for filament survival and consequently for the success of heterocyst differentiation.
Collapse
Affiliation(s)
- Shao-Ran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Gui-Ming Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Li Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Cheng-Cai Zhang
- Aix-Marseille Université, CNRS, Laboratoire de Chimie Bactérienne UMR 7283, Marseille, France
| |
Collapse
|
39
|
Vareli K, Jaeger W, Touka A, Frillingos S, Briasoulis E, Sainis I. Hepatotoxic seafood poisoning (HSP) due to microcystins: a threat from the ocean? Mar Drugs 2013; 11:2751-68. [PMID: 23921721 PMCID: PMC3766863 DOI: 10.3390/md11082751] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 01/11/2023] Open
Abstract
Cyanobacterial blooms are a major and growing problem for freshwater ecosystems worldwide that increasingly concerns public health, with an average of 60% of blooms known to be toxic. The most studied cyanobacterial toxins belong to a family of cyclic heptapeptide hepatotoxins, called microcystins. The microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cell damage following cellular uptake via organic anion-transporting proteins (OATP). Their intracellular biologic effects presumably involve inhibition of catalytic subunits of protein phosphatases (PP1 and PP2A) and glutathione depletion. The microcystins produced by cyanobacteria pose a serious problem to human health, if they contaminate drinking water or food. These toxins are collectively responsible for human fatalities, as well as continued and widespread poisoning of wild and domestic animals. Although intoxications of aquatic organisms by microcystins have been widely documented for freshwater ecosystems, such poisonings in marine environments have only occasionally been reported. Moreover, these poisonings have been attributed to freshwater cyanobacterial species invading seas of lower salinity (e.g., the Baltic) or to the discharge of freshwater microcystins into the ocean. However, recent data suggest that microcystins are also being produced in the oceans by a number of cosmopolitan marine species, so that Hepatotoxic Seafood Poisoning (HSP) is increasingly recognized as a major health risk that follows consumption of contaminated seafood.
Collapse
Affiliation(s)
- Katerina Vareli
- Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; E-Mail:
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria; E-Mail:
| | - Anastasia Touka
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; E-Mail:
| | - Evangelos Briasoulis
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
| | - Ioannis Sainis
- Interscience Molecular Oncology Laboratory, Human Cancer Biobank Center, University of Ioannina, 45110 Ioannina, Greece; E-Mails: (A.T.); (E.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-26-510-075-57; Fax: +30-26-510-070-64
| |
Collapse
|
40
|
González A, Valladares A, Peleato ML, Fillat MF. FurA influences heterocyst differentiation in Anabaena sp. PCC 7120. FEBS Lett 2013; 587:2682-90. [PMID: 23851073 DOI: 10.1016/j.febslet.2013.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/14/2023]
Abstract
In Anabaena sp. PCC 7120, FurA is a global transcriptional regulator whose expression is strongly induced by NtcA in proheterocysts and remains stably expressed in mature heterocysts. In the present study, overexpression of furA partially suppressed heterocyst differentiation by impairing morphogenesis at an early stage. Recombinant purified FurA specifically bound in vitro to the promoter regions of ntcA, while quantitative RT-PCR analyses indicated that furA overexpression strongly affected the transient increase of ntcA expression that occurs shortly after nitrogen step-down. Overall, the results suggest a connection between iron homeostasis and heterocyst differentiation via FurA, by modulating the expression of ntcA.
Collapse
Affiliation(s)
- Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | |
Collapse
|
41
|
Voß B, Bolhuis H, Fewer DP, Kopf M, Möke F, Haas F, El-Shehawy R, Hayes P, Bergman B, Sivonen K, Dittmann E, Scanlan DJ, Hagemann M, Stal LJ, Hess WR. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS One 2013; 8:e60224. [PMID: 23555932 PMCID: PMC3610870 DOI: 10.1371/journal.pone.0060224] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/23/2013] [Indexed: 11/18/2022] Open
Abstract
Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.
Collapse
Affiliation(s)
- Björn Voß
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Henk Bolhuis
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research, Yerseke, The Netherlands
| | - David P. Fewer
- Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Matthias Kopf
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fred Möke
- Plant Physiology, Institute Biosciences, University of Rostock, Rostock, Germany
| | - Fabian Haas
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Paul Hayes
- Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | | | - Kaarina Sivonen
- Food and Environmental Sciences, Division of Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Elke Dittmann
- Institute for Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Dave J. Scanlan
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Martin Hagemann
- Plant Physiology, Institute Biosciences, University of Rostock, Rostock, Germany
| | - Lucas J. Stal
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research, Yerseke, The Netherlands
- Department of Aquatic Microbiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
42
|
Pratte BS, Sheridan R, James JA, Thiel T. Regulation of V-nitrogenase genes inAnabaena variabilisby RNA processing and by dual repressors. Mol Microbiol 2013; 88:413-24. [DOI: 10.1111/mmi.12197] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Brenda S. Pratte
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Ryan Sheridan
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Jessie A. James
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| | - Teresa Thiel
- University of Missouri - St. Louis; Dept. of Biology; Research 223; St. Louis; MO; 63121; USA
| |
Collapse
|
43
|
Muro-Pastor AM, Hess WR. Heterocyst differentiation: from single mutants to global approaches. Trends Microbiol 2012; 20:548-57. [DOI: 10.1016/j.tim.2012.07.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/08/2012] [Accepted: 07/12/2012] [Indexed: 02/05/2023]
|
44
|
Khetkorn W, Lindblad P, Incharoensakdi A. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J Biol Eng 2012; 6:19. [PMID: 23046490 PMCID: PMC3551714 DOI: 10.1186/1754-1611-6-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/07/2012] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED BACKGROUND Biohydrogen from cyanobacteria has attracted public interest due to its potential as a renewable energy carrier produced from solar energy and water. Anabaena siamensis TISTR 8012, a novel strain isolated from rice paddy field in Thailand, has been identified as a promising cyanobacterial strain for use as a high-yield hydrogen producer attributed to the activities of two enzymes, nitrogenase and bidirectional hydrogenase. One main obstacle for high hydrogen production by A. siamensis is a light-driven hydrogen consumption catalyzed by the uptake hydrogenase. To overcome this and in order to enhance the potential for nitrogenase based hydrogen production, we engineered a hydrogen uptake deficient strain by interrupting hupS encoding the small subunit of the uptake hydrogenase. RESULTS An engineered strain lacking a functional uptake hydrogenase (∆hupS) produced about 4-folds more hydrogen than the wild type strain. Moreover, the ∆hupS strain showed long term, sustained hydrogen production under light exposure with 2-3 folds higher nitrogenase activity compared to the wild type. In addition, HupS inactivation had no major effects on cell growth and heterocyst differentiation. Gene expression analysis using RT-PCR indicates that electrons and ATP molecules required for hydrogen production in the ∆hupS strain may be obtained from the electron transport chain associated with the photosynthetic oxidation of water in the vegetative cells. The ∆hupS strain was found to compete well with the wild type up to 50 h in a mixed culture, thereafter the wild type started to grow on the relative expense of the ∆hupS strain. CONCLUSIONS Inactivation of hupS is an effective strategy for improving biohydrogen production, in rates and specifically in total yield, in nitrogen-fixing cultures of the cyanobacterium Anabaena siamensis TISTR 8012.
Collapse
Affiliation(s)
- Wanthanee Khetkorn
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | | | |
Collapse
|
45
|
Restricted cellular differentiation in cyanobacterial filaments. Proc Natl Acad Sci U S A 2012; 109:15080-1. [PMID: 22955880 DOI: 10.1073/pnas.1213507109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Transcription activation by NtcA in the absence of consensus NtcA-binding sites in an anabaena heterocyst differentiation gene promoter. J Bacteriol 2012; 194:2939-48. [PMID: 22467790 DOI: 10.1128/jb.05994-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocyst differentiation is orchestrated by the N control transcriptional regulator NtcA and the differentiation-specific factor HetR. In Anabaena sp. strain PCC 7120, the devBCA operon is expressed from two different promoters activated upon N stepdown. The distal devB promoter (transcription start point [TSP] located at position -704) represents a canonical class II NtcA-activated promoter, including a consensus NtcA-binding site centered 39.5 nucleotides upstream from the TSP. Transcription activation from a second TSP (-454) requires NtcA and is impaired in hetR mutants. In a wild-type background, three different DNA fragments, including both or each individual promoter, directed gfp expression localized mainly to proheterocysts and heterocysts. Expression was undetectable in an ntcA background and, for the fragment including the proximal promoter alone, also in a hetR background. In spite of the absence of consensus NtcA-binding sequences between the two TSPs, NtcA was shown to interact with this DNA region, and NtcA and its effector, 2-oxoglutarate, were necessary and sufficient for in vitro transcription from the -454 TSP. No HetR binding to the DNA or in vitro transcription from the proximal devB TSP promoted by HetR alone were detected. However, a moderate positive effect of HetR on NtcA binding to the DNA between the two devB TSPs was observed. The proximal devB promoter appears to represent a suboptimal NtcA-activated promoter for which HetR may act as a coactivator, with the physiological effect of restricting gene activation to conditions of prevalence of high NtcA and HetR levels, such as those taking place during heterocyst differentiation.
Collapse
|
47
|
Feldmann EA, Ni S, Sahu ID, Mishler CH, Levengood JD, Kushnir Y, McCarrick RM, Lorigan GA, Tolbert BS, Callahan SM, Kennedy MA. Differential Binding between PatS C-Terminal Peptide Fragments and HetR from Anabaena sp. PCC 7120. Biochemistry 2012; 51:2436-42. [DOI: 10.1021/bi300228n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Erik A. Feldmann
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Shuisong Ni
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Clay H. Mishler
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Jeffrey D. Levengood
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Yegor Kushnir
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Robert M. McCarrick
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Blanton S. Tolbert
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Sean M. Callahan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Michael A. Kennedy
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| |
Collapse
|
48
|
Post AF, Rihtman B, Wang Q. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101. THE ISME JOURNAL 2012; 6:629-37. [PMID: 21938021 PMCID: PMC3280139 DOI: 10.1038/ismej.2011.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/03/2011] [Accepted: 08/03/2011] [Indexed: 11/09/2022]
Abstract
Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N(2) fixation). N(2) fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at <2 μM but growth rates declined at elevated concentrations. Assimilation of nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2-20 μM) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 μM) and ammonium (20 μM). However, nifH transcript levels were below detection at ammonium concentrations >20 μM. napA mRNA was found at low levels in both N(2)-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 μM. This effect was restored upon addition of the glutamine synthetase inhibitor L-methionin-DL-sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101.
Collapse
Affiliation(s)
- Anton F Post
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|
49
|
Higa KC, Rajagopalan R, Risser DD, Rivers OS, Tom SK, Videau P, Callahan SM. The RGSGR amino acid motif of the intercellular signalling protein, HetN, is required for patterning of heterocysts in Anabaena sp. strain PCC 7120. Mol Microbiol 2012; 83:682-93. [DOI: 10.1111/j.1365-2958.2011.07949.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci U S A 2011; 108:20130-5. [PMID: 22135468 DOI: 10.1073/pnas.1112724108] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fixation of atmospheric N(2) by cyanobacteria is a major source of nitrogen in the biosphere. In Nostocales, such as Anabaena, this process is spatially separated from oxygenic photosynthesis and occurs in heterocysts. Upon nitrogen step-down, these specialized cells differentiate from vegetative cells in a process controlled by two major regulators: NtcA and HetR. However, the regulon controlled by these two factors is only partially defined, and several aspects of the differentiation process have remained enigmatic. Using differential RNA-seq, we experimentally define a genome-wide map of >10,000 transcriptional start sites (TSS) of Anabaena sp. PCC7120, a model organism for the study of prokaryotic cell differentiation and N(2) fixation. By analyzing the adaptation to nitrogen stress, our global TSS map provides insight into the dynamic changes that modify the transcriptional organization at a critical step of the differentiation process. We identify >900 TSS with minimum fold change in response to nitrogen deficiency of eight. From these TSS, at least 209 were under control of HetR, whereas at least 158 other TSS were potentially directly controlled by NtcA. Our analysis of the promoters activated during the switch to N(2) fixation adds hundreds of protein-coding genes and noncoding transcripts to the list of potentially involved factors. These data experimentally define the NtcA regulon and the DIF(+) motif, a palindrome at or close to position -35 that seems essential for heterocyst-specific expression of certain genes.
Collapse
|